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Abstract    

Previous investigators reported the impairment of foveal visual acuity by nearby flanking 

targets (contour interaction) is reduced or eliminated when acuity is measured using low 

contrast targets. Unlike earlier studies, we compared contour interaction for high and low 

contrast acuity targets using flankers at fixed angular separations, rather than at specific 

multiples of the acuity target’s stroke width. Percent correct letter identification was 

determined in 4 adult observers for computer generated, high and low contrast dark Sloan 

letters surrounded by 4 equal contrast flanking bars. Two low contrast targets were 

selected to reduce each observer’s visual acuity by 0.2 and 0.4 logMAR.  The crowding 

functions measured for high and low contrast letters are very similar when percent correct 

letter identification is plotted against the flanker separation in min arc. These results 

indicate that contour interaction of foveal acuity targets occurs within a fixed angular zone 

of a few min arc, regardless of the size or contrast of the acuity target.  
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Highlights 

 Previous work found that crowding at the fovea is reduced or absent with low 

contrast targets 

 We investigated foveal contour interaction at three contrast levels for letters and 

flankers at fixed angular separations  

 Similar amounts of contour interaction occur at the fovea for all target contrasts 

within a fixed angular zone  
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1. Introduction 

Contour interaction is the degradation of single letter visual acuity by the presence of 

surrounding stimuli, such as flanking bars, and is thought to contribute, together with 

unstable and inaccurate fixational eye movements and attention, to the more general 

crowding effect seen in full chart letter acuity measurements (Flom, 1991, Flom, 

Weymouth & Kahneman, 1963b). Here, we will use the term “contour interaction” when the 

acuity stimulus consists of a single target (including flanking bars) and the term “ crowding” 

when more than a single target, such as a line of letters, is used. The spatial extent of 

contour interaction has been quantified for high contrast foveal acuity targets and found 

generally to be proportional to the minimum angle of resolution for both normal and 

amblyopic observers (Flom et al., 1963b, Hess & Jacobs, 1979, Simmers, Gray, McGraw 

& Winn, 1999, Stuart & Burian, 1962); but see Hess, Dakin, Tewfik & Brown, (2001) for 

exceptions. On the basis of this relationship, contour interaction is evaluated traditionally 

by plotting a measure of psychophysical performance, such as percent correct letter 

identification, against the flanker to target separation in optotype units, e.g., multiples of 

the letter stroke width. Contour interaction also has been shown to occur when the target 

and surrounding contours are presented to each eye separately, implicating a post retinal 

mechanism (Flom, Heath & Takahashi, 1963a, Masgoret, Asper, Alexander & Suttle, 2011, 

Taylor & Brown, 1972). For high contrast stimuli at the fovea, contour interaction in normal 

observers extends over short distances (Ehrt & Hess, 2005), on the order of about one 

letter size, or 4 - 6 min arc (Danilova & Bondarko, 2007 , Flom et al., 1963b, Jacobs, 1979, 

Takahashi, 1968, Wolford & Chambers, 1984). 

A different result has been reported by most studies that assessed foveal acuity using low 

contrast targets. Specifically, Kothe and Regan (1990) found that the difference between 

isolated letter and Snellen acuity in children (i.e. their measure of crowding) was 

substantially less for low than for high contrast letters. Simmers and colleagues (1999) 

measured the percent correct recognition of Sloan letters as a function of flanking bar 
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separation and reported an absence of contour interaction for low contrast foveal stimuli. 

Based on their results, Simmers et al concluded that contour interaction only occurs for 

high contrast acuity stimuli. Strasburger, Harvey & Rentschler, (1991) measured the 

contrast required to identify foveally presented numerals and reported little or no difference 

for isolated and crowded targets, the latter being the center element of a three number 

string. These authors also concluded that no crowding effect exists at the fovea. On the 

other hand, Pascal & Abadi, (1995) reported significant contour interaction in normal 

observers and patients with nystagmus for Landolt C stimuli with 94%, 34% and 12% 

contrast. Although Pascal and Abadi found contour interaction at all three contrast levels of 

their Landolt C stimuli, the magnitude of the effect was reduced for low contrast targets. 

Unlike results obtained at the fovea, several studies reported robust crowding effects using 

low contrast stimuli in the periphery (Pelli, Palomares & Majaj, 2004, Strasburger et al., 

1991, Tripathy & Cavanagh, 2002). An explanation for this discrepancy could lie in the 

relatively short distances over which contour interaction operates in the fovea (Toet & Levi, 

1992, Tripathy & Cavanagh, 2002).There is evidence that, for an individual observer, the 

critical separation for contour interaction does not scale with the size of the acuity target, 

either in foveal or peripheral viewing (Chung, Levi & Legge, 2001, Danilova & Bondarko, 

2007, Hariharan, Levi & Klein, 2005, Pelli et al., 2004, Tripathy & Cavanagh, 2002). 

Because acuity worsens as contrast is reduced, a low contrast target that is at or near the 

acuity threshold will be larger than a high contrast target. If the spatial extent of crowding 

does not increase with the letter size, then an appropriate comparison of contour 

interaction for high and low contrast acuity targets requires that flankers be presented at 

fixed angular separations, rather than at specific multiples of the acuity target’s stroke 

width. This was the strategy adopted in the experiment reported below. 

2. Methods 

2.1 Subjects 
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Four adult observers with normal or corrected to normal visual acuity (of at least 6/6), 

normal binocular vision and who were free from ocular disease participated in the 

experiment. Two of the observers were authors; the other two were unpaid well practiced 

volunteers.  The research followed the tenets of the Declaration of Helsinki and approval of 

the experimental protocol was obtained from Anglia Ruskin University Human Research 

Ethics Committee. Informed consent was obtained before the experiments were conducted 

and after the nature and consequences of the study were explained.  

2.2 Stimuli 

Stimuli were generated by a commercially available visual acuity test program (Test Chart 

2000Pro; Thomson Software Solutions, Herts, UK) using a standard PC platform and 

presented on a 19” PC monitor (Dell systems) under normal room illumination. The stimuli 

were high or low contrast dark Sloan letter optotypes displayed either in isolation or 

surrounded by 4 flanking bars of equal contrast, length and stroke width. When present, 

the flanking bars were 0.5, 1, 2, 3, or 5 edge to edge stroke widths from the high contrast 

optotype. The screen resolution was 1024 X 768 pixels (refreshed at 100Hz) with a 

background luminance of 100 cd/m2. Optotype Weber contrast varied in the 3 

experimental conditions from high (-89%) to low (range: -2.5% to -7.9% contrast across 

observers). The two lower contrast values were obtained based on the reduction of each 

observer’s visual acuity by 0.2 and 0.4 logMAR, respectively. On average, the lowest 

contrast was -3.8% and the middle contrast was -6.1%.  

2.3 Procedures 

Observers viewed the monitor monocularly after reflection from two optical quality front 

surface mirrors. Single Sloan letters were presented in the middle of the monitor and 

observers were required to identify each letter. The proportion of correctly identified letters 

(percent correct) was determined for each run of 25 trials. For each observer, initial trials 

using high contrast unflanked letters were employed to find the distance from the monitor 
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where performance was consistently within the range of 80-94% correct. Once this 

distance was established it was fixed for that observer for all subsequent runs and 

conditions.  

Subsequently, letter size was increased by 0.2 logMAR and 0.4 logMAR for the 2 lower 

contrast letter conditions, respectively. The contrast values for the lower contrast letter 

conditions were determined, separately for each observer, by finding the letter contrast 

that again produced unflanked performance between 80 and 94% correct. For the 2 lower 

contrast conditions, the five flanking bar separations were the same angular separations 

used for the high contrast condition. These edge to edge flanking bar separations ranged 

between 0.3 to 4.1 min arc for the different observers, which corresponded to a range 

between 0.15 and 3.2 stroke widths. In all conditions, the Sloan letters and flanking bars 

had the same contrast. For any one run, letters were presented at random and only a 

single flanking separation was used. The flanking separation was randomized between 

runs. Each datum reflects at least 2 runs per condition for each observer. Breaks were 

taken between conditions to minimize any fatigue effects.  

3. Results 

Percentage correct response for each contrast condition, averaged across the 4 

observers, is plotted as a function of the edge to edge flanker separation in Figure 1. The 

error bars in the figure represent ±1 SE. In the top panel, flanker separation is represented 

as a multiple of the letter stroke width, whereas in the bottom panel flanker separation is 

given in min arc. The abscissa values in the lower panel represent the average of the 

angular separations for the four observers, whose unflanked high contrast acuity ranged 

from 6/3.6 to 6/4.9. As contrast was reduced, the angular size of the letters increased. 

Because the same flanker separations in min arc were used for all 3 contrast conditions, 

the flanker separations shown in the top panel of Fig. 1 decrease systematically when 

expressed as multiples of the stroke width.  
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Insert Figure 1 about here  

Both panels of Fig. 1 show that the magnitude of the contour interaction effect, i.e., the 

reduction in percentage correct performance, decreases similarly in the presence of 

flanking bars for the three contrast conditions. The top panel of Fig. 1 shows a systematic 

decrease in the extent of contour interaction as contrast is decreased. Consistent with 

previous reports, the high contrast letters exhibit contour interaction that extends to a 

flanker separation of at least 3 stroke widths (Danilova & Bondarko, 2007, Ehrt & Hess, 

2005, Flom et al., 1963b, Jacobs, 1979). On the other hand, the extent of contour 

interaction for the lowest contrast condition is reduced to less than 2 stroke widths. 

However, the bottom panel of Fig. 1 illustrates that the extent of contour interaction, when 

plotted in min arc, is approximately equal under all contrast conditions.  

4. Discussion 

Our results indicate that both the magnitude and the angular extent of foveal contour 

interaction are approximately the same for high and low contrast foveal acuity targets. 

Even so, our data are consistent with previous studies that reported foveal crowding to be 

reduced or absent for low contrast stimuli (Kothe & Regan, 1990, Pascal & Abadi, 1995, 

Simmers et al., 1999, Strasburger et al., 1991). This is because previous authors generally 

presented both high and low contrast stimuli with the same proportional spacing between 

the acuity target and flankers. For observers to achieve similar performance for high and 

low contrast targets in the unflanked condition, the letter size must be increased when the 

contrast is reduced. If the letter to flanker spacing remains proportional, then the low 

contrast acuity targets used in previous studies were necessarily located further rightward 

on the abscissa in the lower panel of Figure 1, where the magnitude of crowding is 

reduced.  

As indicated in section 2.2, above, we followed the convention established by Flom et al 

(Flom et al., 1963a, Flom et al., 1963b) and expressed letter to flanking bar distances in 
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terms of the edge to edge separation. Several more recent studies have instead quantified 

the target to flanker separation in terms of the center to center distance (Chung et al., 

2001, Levi, Klein & Hariharan, 2002, Strasburger et al., 1991). Our use of edge to edge 

separation is based in part on the studies of Takahashi, (1968), who investigated the 

influence of flanking bars on two line resolution. Takahashi determined that the threshold 

elevating effect of flanking bars on a narrow two line resolution target is maximal when the 

edge to edge separation is approximately 2.5 - 3 min arc and declines to essentially zero 

when the separation is 4 - 5 min arc. Importantly, the edge to edge separations that 

produced (1) the maximum threshold elevation and (2) beyond which contour interaction 

disappears were the same for flanking bars that were 1.4 and 4.3 min arc wide, and even 

when each flanking bar extended to the outer margin of the stimulus display 

(approximately 1 deg). A second justification for using edge to edge separation is evident if 

the data in the lower panel of Fig. 1 are replotted in terms of the center to center target to 

flanker separation. Because center to center separation increases with the size of the 

acuity target, a plot of our data using center to center separation on the abscissa yields 

functions for the different contrast conditions that are similar to those in the top panel and 

no longer superimposed. Although we present our results in terms of edge to edge 

separation, it is possible that center to center separation is a more appropriate metric 

when the flanking targets do not have well defined edges, i.e., when blurred or spatially 

filtered targets are used. 

The results reported here provide added support for the contention that foveal contour 

interaction can not be explained on the basis of lateral masking (Chung et al., 2001, 

Danilova & Bondarko, 2007, Ehrt & Hess, 2005, Nandy & Tjan, 2007). An explanation that 

is based on masking would predict that the contour interaction function should scale with 

the size of the acuity target. Contrary to this prediction, our data indicate clearly that 

contour interaction occurs over approximately the same angular extent for high and low 

contrast letters that differ in size by 0.4 log units (2.5 times).  
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Finally, the demonstration that substantial contour interaction occurs for low contrast 

foveal targets eliminates a potential distinction between the mechanisms that generate 

foveal and peripheral contour interaction. Although it is clear that the magnitude and extent 

of contour interaction are greater in the retinal periphery than in the fovea (Bouma, 1970, 

Jacobs, 1979, Leat, Li & Epp, 1999, Takahashi, 1968, Toet & Levi, 1992, Wolford & 

Chambers, 1984) an implication of the results reported here is that the differences 

between peripheral and foveal contour interaction may be more quantitative than 

qualitative.  

Conclusion  

Similar amounts of contour interaction occur at the fovea for all target contrasts within a 

fixed angular zone. 
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Figure Caption 

Figure 1: Percentage correct responses averaged across observers and plotted as a 

function of flanker separation in stroke widths (top panel) and min arc (bottom panel) for 

the high (diamonds), middle (triangles) and low (squares) contrast conditions. Error bars 

represent ±1 SE. Data at ‘INF’ on the abscissa represent the unflanked condition.  

 

 

 
 
 


