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 

Abstract— An algorithm for compact neural network 

hardware implementation is presented, which exploits special 

properties of the Boolean functions describing the operation of 

artificial neurones with step activation function. The algorithm 

contains three steps: ANN mathematical model digitisation, 

conversion of the digitised model into a logic gate structure, and 

hardware optimisation by elimination of redundant logic gates. A 

set of C++ programs automates algorithm implementation, 

generating optimised VHDL code. This strategy bridges the gap 

between ANN design software and hardware design packages 

(Xilinx). Although the method is directly applicable only to 

neurones with step activation functions, it can be extended to 

sigmoidal functions. 

 
Index Terms— Neural Networks, Hardware Implementation, 

FPGA. 

I. INTRODUCTION 

CCORDING to an European Network of Excellence 

report [1], the future implementation of hardware neural 

networks is shaped in 3 ways: i) by developing advanced 

techniques for mapping neural networks onto FPGA, ii) by 

developing innovative learning algorithms which are 

hardware-realizable [2], iii) by defining high-level descriptions 

of the neural algorithms in an industry standard to allow full 

simulations and fabrication and to produce demonstrators of 

the technology for industry. Such new designs will be of use to 

industry if the cost of adopting them is sufficiently low. 

Hardware-based neural networks are important to industry as 

they offer low power consumption and small size compared to 

PC software and they can be embedded in a wide range of 

systems. Software libraries exist for traditional Artificial 

Neural Network (ANN) models (Matlab). The industry-

standard form is however VHDL or C++ parameterized 

modular code, allowing customization. 

A range of research papers on ANN based controllers were 

published over the last decade ([3],  [4]). Some recent 

publications ([5], [6], [7], [8]) consider the FPGA as an 

effective implementation solution of control algorithms for 

industrial applications. Hardware implemented ANNs have an 

important advantage over computer simulated ones by fully 

exploiting the parallel operation of the neurones, thereby 

achieving high speed of information processing [9]. Some 

 
 

VLSI algorithms achieve efficient implementation by using a 

combination of AND gates, OR gates and Threshold Gates 

(TG) [10]. This method leads to compact hardware structures 

but it cannot be used for FPGA implementation because TGs 

are not available in FPGA’s Configurable Logic Blocks. 

 The algorithm presented in this letter is applicable to both 

ASIC and FPGA implementation of ANNs composed of 

neurones with step activation functions [10]. Each neurone is 

treated as a Boolean function and it is implemented separately, 

thus minimising implementation complexity. The most useful 

property of such a Boolean function is that if its truth table is 

constructed as a matrix with as many dimensions as neurone 

inputs, then the truth table has only one large group of ‘1’ and 

one large group of ‘0’. The solid group of ‘1’ is not visible 

when the Gray codification is used and thus classical Quine-

McClusky algorithms or Karnaugh maps cannot efficiently be 

used. Our algorithm uses a different approach and generates a 

multilayer pyramidal hardware structure, where layers of AND 

gates alternate with layers of OR gates. The bottom layer 

consists of incomplete NOT gates, a structure to be optimised 

later by eliminating redundant logic gates groups. However, 

the method is effective only when the numbers of inputs and 

bits on each input are low, otherwise a classical circuit may be 

more efficient.   

II. THE IMPLEMENTATION ALGORITHM 

Each neurone of the ANN is first converted into a binary 

equivalent neurone whose inputs are only ‘1’ and ‘0’, in a two-

step process. Subsequently, the binary neurone model is 

iteratively transformed into a logic gate structure. 

A. Digitisation of One Neurone Mathematical Model 

 The binary codification used for neurone inputs is the 

"two's complement", generally used to represent integers but it 

can be adapted for real values in the interval [-1, +1). Thus, 

considering a n-bit representation bn-1bn-2bn-3....b1b0, the 

corresponding integer value (In) is given by: 
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The largest positive number, which can be represented on 

‘n’ bits, is 2
n-1

-1, and -2
n-1

 the smallest. Real values between -

1.0 and +1.0 can be represented by dividing the corresponding 

integer value In by 2
n-1

. Thus, equation (2) illustrates the 

complementary code for real numbers: 
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 The analogue neurone model is transformed, in two steps, 

into an appropriate digital model. At each stage, the input 

weights and the threshold levels of the initial NN are altered 

carefully, keeping the neurone functionality. This can be 

achieved by keeping constant the sign of the argument of the 

activation function: 
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However, for mathematical simplicity, a more restrictive 

condition is used instead: argument "net-t" of the activation 

function is kept itself constant rather than only its sign: 
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 Conversion Stage One 

 
Fig. 1  Neurone model before / after stage one conversion 

 The first step transforms the analogue inputs of the 

neurones into digital inputs expressed as groups of nb bits. 

This process is associated with transforming each analogue 

neurone input into an equivalent group of nb binary inputs. The 

task is achieved by splitting each input defined by its initial 

weight wij into nb subinputs, whose weights wijp (p=0,1, ..., nb-

1) are calculated as follows [11]: 
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 The superscripts ‘(1)’ and ‘(2)’ refer to the respective 

conversion stage. The initial 'm' inputs are turned into 'm' input 

clusters, each containing 'nb' subinputs (Fig. 1). The symbol 

‘wij’ stands for the weight number ‘j’ of the neurone ‘i’ in the 

network, while ‘
)1(

ijpw ’ represents the weight of subinput ‘p’ in 

cluster ‘j’ pertaining to neurone ‘i’. According to the previous 

considerations, only those neurone parameter changes that 

maintain the argument "neti-ti" of the activation function 

constant are allowed. The argument after the first conversion 

stage is calculated as: 
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where x jp

( )1
 (p=0,1,2,...nb-1) are bits of the complementary 

code received by each new neurone input. The equation is: 
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The expression in brackets relates to the complementary 

code definition given in equation (2). Then (6) becomes:  
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where xj is an analogue input value of the initial neurone. This 

meets the condition expressed by (4). Thus, the codification 

style based on complementary code has been introduced and 

the required parameter modifications have been performed, 

without changing the neurone’s behaviour. 
 

 Conversion Stage Two 

 The second conversion stage aims to replace the 

neurones with negative weights resulting from the first stage, 

with equivalent ones, having only positive weights, by using 

only the module of their values: )1(

ijp

)2(

ijp ww  . This means that 

supplementary parameter alterations are required in order to 

counteract the neurone behaviour alteration caused by 

changing the sign of some input weights. A simple solution is 

to reverse the value of the affected input bits. The modification 

can be implemented into hardware with NOT logic gates. The 

relationship between the input bits 
)2(

ijpx and those at stage-one 

( )1(

ijpx ) is: 
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These two alternatives can be compressed into: 
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 The transfer function argument is calculated as [11]: 
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The arguments of the activation function before and after 

the second conversion stage have to be equal: 
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Therefore, the threshold level of the stage-two neurones is: 
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The stage-one neurone parameters in equation (13) depend 

on the initial parameters of the analogue neurone as described 

by (5). Consequently, substituting (5) in (13): 
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This expression can be successively transformed [11] into:  
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So, the neurone parameters after stage 2 can be calculated 

as a function of initial analogue neurone parameters: 
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B. The Binary Neurone Implementation and Optimization 

 The ANN implementation into a hardware structure is 

done separately for each neurone and requires at first that the 
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input weights )2(

ijpw  are sorted in descending order, in an array 

with A=m  
.
  nb elements: s

A

sss wwww ,...,,, 321
, where 'm' is the 

number of initial analogue neurone inputs and 'nb' the number 

of bits for each input binary code. The weights correspond to 

the input binary signals: x x xs s

A

s

1 2, ,... . An iterative 

conversion procedure is used to analyse the input weights and 

to generate the logic gate implementation netlist description. 

At each step, a larger neurone is split into subneurones. Some 

of them can be implemented with only a few AND and OR 

logic gates, while the rest are further decomposed into simpler 

subneurones, until all have been implemented. Several 

important concepts and definitions are presented in [12], along 

with the step by step iterative implementation procedure, 

which ends by adding inverters to those inputs corresponding 

to the initial negative weights at stage one of neural model 

digitisation. The hardware implementation netlist obtained has 

redundancies both inside each neurone and across different 

neurones. Most are eliminated using a simple procedure: the 

file is repeatedly analysed and when same type logic gates are 

found, of same input signals, all but one are removed from the 

netlist and interconnections are updated; the cycle ends when 

no gates can be removed. 

C. Neurone Implementation Example 

 
Fig. 2  Digital mathematical model to gate conversion 

 

 The sample in Fig. 2 shows a neurone with 12 input 

weights and positive threshold level. The weights are sorted in 

descending order and a recursive implementation starts. The 

first three weights are larger than the threshold, so inputs 4, 7, 

1 will drive an OR gate along with the subneurones built using 

the other subgroups [11]. 

D. Automated Implementation Method 
 

 The algorithm was automated using C++ programs that 

generate a netlist description of the circuit, optimize it and 

then generate the VHDL code. In terms of the software, there 

is no limitation of the ANN size. The characteristics of the 

ANN are introduced in the C++ program as a matrix text file 

(.csv format). A feed forward ANN with 3 subnetworks 

generating the PWM switching pattern for an inverter, was 

designed [9] using this method (Fig. 3): 

 
Fig. 3  ANN structure and testbench for operation speed testing 

 

o Angle analyses the argument of current difference vector.  

o  Position analyses the argument and value of the voltage.  

o  Control Signals generates three PWM binary outputs. 

 In contrast with training algorithms, constructive ones 

determine both the network architecture and the neurone 

weights and are guaranteed to converge in finite time. The 

numerical values of all neurone weights and thresholds were 

calculated [11] using a geometric constructive solution known 

as Voronoi diagrams [7]. For this work, the complex plane is 

divided into triangular Voronoi cells. The master program 

allows user control over main parameters: i) Number of 

Voronoi cells, ii) Number of sectors dividing the 360 degrees 

interval for argument analysis, iii) Number of bits used to code 

the components of the two complex inputs iv) Maximum fan-in 

for the VHDL logic gate model. The desired performance / 

complexity ratio is adopted. In this case, 5 bits to code each 

component of the two complex inputs gives enough precision 

(delays less than 100 ns), resulting in a total number of logic 

gates of 1329 on 14+6=20 layers [10], which fits Xilinx 

XC4010XL FPGA.  

 When the number of inputs and bits on each input is low 

(precision appropriate for drives), this method is more 

effective than a classical digital circuit design implemented in 

FPGA. For a high number of bits/controller inputs, the NN 

approach can be less effective than a classical circuit. The 

explanation is that in the NN approach the complexity of the 

resulting circuit raises exponentially with these numbers, 

whereas in a traditional approach, the complexity increases 

quadratically. The case study presented in this paper was 

implemented as part of an induction motor controller in a 

10,000 gates equivalent FPGA, as opposed to a classical 

digital vector control circuit, for controlling the same motor, 

which was commissioned in our research group, using 99% of 

a 40,000 gate equivalent FPGA [12].  

III. SIMULATION AND VERIFICATION 

 

 The ANN operation speed was tested by designing a 

VHDL testbench (Fig. 3). Input patterns are generated by a 20-

bit counter and a pseudo-random sequence block. A simulation 

waveform is shown in Fig. 4, illustrating delay readings of 

39.5 ns and 80.5 ns.  
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Fig. 4  Timing simulation using Xilinx software 

 

 Generally, oscilloscope measurements taken on the XS40 

board, containing a Xilinx XC4010XL FPGA, indicate delays 

not exceeding 100 ns. Thus, the propagation time is less than 

1.5 clock cycles, which demonstrates the advantage of higher 

operating speeds comparing with other digital circuits [13]. 

 

IV. CONCLUSIONS 

A new digital hardware implementation strategy for feed-

forward ANNs with step activation functions is reported. The 

novel algorithm treats each neurone as a special case of 

Boolean function with properties that can be exploited to 

achieve compact implementation. This is accomplished by 

means of reusable VHDL code that can be easily translated 

into an FPGA implementation, using suitable EDA software. 

The VHDL programs bridge the gap between the 

facilities offered by simulation software and software packages 

specialised in hardware design. This method is most efficient 

for a low number of inputs/bits on each input, otherwise a 

classical circuit may be preferred. 
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