
 1



Abstract— An algorithm for compact neural network

hardware implementation is presented, which exploits special

properties of the Boolean functions describing the operation of

artificial neurones with step activation function. The algorithm

contains three steps: ANN mathematical model digitisation,

conversion of the digitised model into a logic gate structure, and

hardware optimisation by elimination of redundant logic gates. A

set of C++ programs automates algorithm implementation,

generating optimised VHDL code. This strategy bridges the gap

between ANN design software and hardware design packages

(Xilinx). Although the method is directly applicable only to

neurones with step activation functions, it can be extended to

sigmoidal functions.

Index Terms— Neural Networks, Hardware Implementation,

FPGA.

I. INTRODUCTION

CCORDING to an European Network of Excellence

report [1], the future implementation of hardware neural

networks is shaped in 3 ways: i) by developing advanced

techniques for mapping neural networks onto FPGA, ii) by

developing innovative learning algorithms which are

hardware-realizable [2], iii) by defining high-level descriptions

of the neural algorithms in an industry standard to allow full

simulations and fabrication and to produce demonstrators of

the technology for industry. Such new designs will be of use to

industry if the cost of adopting them is sufficiently low.

Hardware-based neural networks are important to industry as

they offer low power consumption and small size compared to

PC software and they can be embedded in a wide range of

systems. Software libraries exist for traditional Artificial

Neural Network (ANN) models (Matlab). The industry-

standard form is however VHDL or C++ parameterized

modular code, allowing customization.

A range of research papers on ANN based controllers were

published over the last decade ([3], [4]). Some recent

publications ([5], [6], [7], [8]) consider the FPGA as an

effective implementation solution of control algorithms for

industrial applications. Hardware implemented ANNs have an

important advantage over computer simulated ones by fully

exploiting the parallel operation of the neurones, thereby

achieving high speed of information processing [9]. Some

VLSI algorithms achieve efficient implementation by using a

combination of AND gates, OR gates and Threshold Gates

(TG) [10]. This method leads to compact hardware structures

but it cannot be used for FPGA implementation because TGs

are not available in FPGA’s Configurable Logic Blocks.

 The algorithm presented in this letter is applicable to both

ASIC and FPGA implementation of ANNs composed of

neurones with step activation functions [10]. Each neurone is

treated as a Boolean function and it is implemented separately,

thus minimising implementation complexity. The most useful

property of such a Boolean function is that if its truth table is

constructed as a matrix with as many dimensions as neurone

inputs, then the truth table has only one large group of ‘1’ and

one large group of ‘0’. The solid group of ‘1’ is not visible

when the Gray codification is used and thus classical Quine-

McClusky algorithms or Karnaugh maps cannot efficiently be

used. Our algorithm uses a different approach and generates a

multilayer pyramidal hardware structure, where layers of AND

gates alternate with layers of OR gates. The bottom layer

consists of incomplete NOT gates, a structure to be optimised

later by eliminating redundant logic gates groups. However,

the method is effective only when the numbers of inputs and

bits on each input are low, otherwise a classical circuit may be

more efficient.

II. THE IMPLEMENTATION ALGORITHM

Each neurone of the ANN is first converted into a binary

equivalent neurone whose inputs are only ‘1’ and ‘0’, in a two-

step process. Subsequently, the binary neurone model is

iteratively transformed into a logic gate structure.

A. Digitisation of One Neurone Mathematical Model

 The binary codification used for neurone inputs is the

"two's complement", generally used to represent integers but it

can be adapted for real values in the interval [-1, +1). Thus,

considering a n-bit representation bn-1bn-2bn-3....b1b0, the

corresponding integer value (In) is given by:

 I b bn

n

n

i

i

i

n

    







2 21

1

0

2
 (1)

The largest positive number, which can be represented on

‘n’ bits, is 2
n-1

-1, and -2
n-1

 the smallest. Real values between -

1.0 and +1.0 can be represented by dividing the corresponding

integer value In by 2
n-1

. Thus, equation (2) illustrates the

complementary code for real numbers:

Direct Neural Networks Hardware

Implementation Algorithm

Andrei Dinu, Member, IEEE, Marcian N. Cirstea, Senior Member, IEEE, Silvia E. Cirstea

A. Dinu is with Goodrich Corporation, Birmingham, UK (e-mail: andrei.dinu@goodrich.com).

M. N. Cirstea, S. E. Cirstea are with Anglia Ruskin University, UK. (marcian@ieee.org, silvia.cirstea@anglia.ac.uk).

A

mailto:andrei.dinu@goodrich.com

 2

R

I
b bn

n

n n

n i

i

i

n

    
 

  






2

2
1 1

1

0

2
 (2)

 The analogue neurone model is transformed, in two steps,

into an appropriate digital model. At each stage, the input

weights and the threshold levels of the initial NN are altered

carefully, keeping the neurone functionality. This can be

achieved by keeping constant the sign of the argument of the

activation function:

 sign w x t sign net t cons ti i

i

m

 








   




1

tan
 (3)

However, for mathematical simplicity, a more restrictive

condition is used instead: argument "net-t" of the activation

function is kept itself constant rather than only its sign:

 ttanconstnettxw
m

1i

ii 


 (4)

 Conversion Stage One

Fig. 1 Neurone model before / after stage one conversion

 The first step transforms the analogue inputs of the

neurones into digital inputs expressed as groups of nb bits.

This process is associated with transforming each analogue

neurone input into an equivalent group of nb binary inputs. The

task is achieved by splitting each input defined by its initial

weight wij into nb subinputs, whose weights wijp (p=0,1, ..., nb-

1) are calculated as follows [11]:























i

)1(

i

ij

)1(

)1n(ij

bijn

1p
)1(

ijp

tt

ww

1npw
2

2
w

b

b (5)

 The superscripts ‘(1)’ and ‘(2)’ refer to the respective

conversion stage. The initial 'm' inputs are turned into 'm' input

clusters, each containing 'nb' subinputs (Fig. 1). The symbol

‘wij’ stands for the weight number ‘j’ of the neurone ‘i’ in the

network, while ‘
)1(

ijpw ’ represents the weight of subinput ‘p’ in

cluster ‘j’ pertaining to neurone ‘i’. According to the previous

considerations, only those neurone parameter changes that

maintain the argument "neti-ti" of the activation function

constant are allowed. The argument after the first conversion

stage is calculated as:

)1(

i

m

1j

2n

0p

)1(

jpn

1p

ij

)1(

jpij

m

1j

1n

0p

)1(

i

)1(

jp

)1(

ijp

)1(

i

)1(

i tx
2

2
wxwtxwtnet

b

b

b














  















 (6)

where x jp

()1
 (p=0,1,2,...nb-1) are bits of the complementary

code received by each new neurone input. The equation is:

)1(

i

m

1j

2n

0p

)1(

jp

1pn)1(

)1n(jij

)1(

i

)1(

i tx2xwtnet
b

b

b













  











 (7)

The expression in brackets relates to the complementary

code definition given in equation (2). Then (6) becomes:

iii

m

1j

jij

)1(

i

m

1j

jij

)1(

i

)1(

i tnettxwtxwtnet  


 (8)

where xj is an analogue input value of the initial neurone. This

meets the condition expressed by (4). Thus, the codification

style based on complementary code has been introduced and

the required parameter modifications have been performed,

without changing the neurone’s behaviour.

 Conversion Stage Two

 The second conversion stage aims to replace the

neurones with negative weights resulting from the first stage,

with equivalent ones, having only positive weights, by using

only the module of their values:)1(

ijp

)2(

ijp ww  . This means that

supplementary parameter alterations are required in order to

counteract the neurone behaviour alteration caused by

changing the sign of some input weights. A simple solution is

to reverse the value of the affected input bits. The modification

can be implemented into hardware with NOT logic gates. The

relationship between the input bits
)2(

ijpx and those at stage-one

()1(

ijpx) is:












0wifx1

0wifx
x

)1(

ijp

)1(

ijp

)1(

ijp

)1(

ijp)2(

ijp

 (9)

These two alternatives can be compressed into:

  
 )1(

ijp

)1(

ijp

)1(

ijp)2(

ijp xwsign
2

wsign1
x 


 (10)

 The transfer function argument is calculated as [11]:

)2(

i

m

1j

1n

0p

)1(

ijp

)1(

ijp
m

1j

1n

0p

)1(

ijp

)1(

ijp

)2(

i

)2(

i t
2

ww
xwtnet

bb














 
 











(11)

The arguments of the activation function before and after

the second conversion stage have to be equal:

)1(

i

m

1j

1n

0p

)1(

ijp

)1(

ijp

)2(

i

m

1j

1n

0p

)1(

ijp

)1(

ijp
m

1j

1n

0p

)1(

ijp

)1(

ijp txwt
2

ww
xw

bbb














 
 















(12)

Therefore, the threshold level of the stage-two neurones is:

 









m

1j

1n

0p

)1(

ijp

)1(

ijp)1(

i

)2(

i

b

2

ww
tt (13)

The stage-one neurone parameters in equation (13) depend

on the initial parameters of the analogue neurone as described

by (5). Consequently, substituting (5) in (13):


















m

1j

2n

0p

ijn

1p

ijn

1p

m

1j

ijij

i

)2(

i

b
bb

2

w
2

2
w

2

2

2

ww
tt (14)

This expression can be successively transformed [11] into:

  









m

1j

ij

n
m

1j

ij

n

i

)2(

i w2w21tt bb (15)

So, the neurone parameters after stage 2 can be calculated

as a function of initial analogue neurone parameters:

 















 
 





m

1j

m

1j

ij

n

ij

n

i

)2(

i

bijn

1p
)2(

ijp

w2w21tt

1n...,2,1,0pw
2

2
w

bb

b
 (16)

B. The Binary Neurone Implementation and Optimization

 The ANN implementation into a hardware structure is

done separately for each neurone and requires at first that the

 3

input weights)2(

ijpw are sorted in descending order, in an array

with A=m
.
 nb elements: s

A

sss wwww ,...,,, 321
, where 'm' is the

number of initial analogue neurone inputs and 'nb' the number

of bits for each input binary code. The weights correspond to

the input binary signals: x x xs s

A

s

1 2, ,... . An iterative

conversion procedure is used to analyse the input weights and

to generate the logic gate implementation netlist description.

At each step, a larger neurone is split into subneurones. Some

of them can be implemented with only a few AND and OR

logic gates, while the rest are further decomposed into simpler

subneurones, until all have been implemented. Several

important concepts and definitions are presented in [12], along

with the step by step iterative implementation procedure,

which ends by adding inverters to those inputs corresponding

to the initial negative weights at stage one of neural model

digitisation. The hardware implementation netlist obtained has

redundancies both inside each neurone and across different

neurones. Most are eliminated using a simple procedure: the

file is repeatedly analysed and when same type logic gates are

found, of same input signals, all but one are removed from the

netlist and interconnections are updated; the cycle ends when

no gates can be removed.

C. Neurone Implementation Example

Fig. 2 Digital mathematical model to gate conversion

 The sample in Fig. 2 shows a neurone with 12 input

weights and positive threshold level. The weights are sorted in

descending order and a recursive implementation starts. The

first three weights are larger than the threshold, so inputs 4, 7,

1 will drive an OR gate along with the subneurones built using

the other subgroups [11].

D. Automated Implementation Method

 The algorithm was automated using C++ programs that

generate a netlist description of the circuit, optimize it and

then generate the VHDL code. In terms of the software, there

is no limitation of the ANN size. The characteristics of the

ANN are introduced in the C++ program as a matrix text file

(.csv format). A feed forward ANN with 3 subnetworks

generating the PWM switching pattern for an inverter, was

designed [9] using this method (Fig. 3):

Fig. 3 ANN structure and testbench for operation speed testing

o Angle analyses the argument of current difference vector.

o Position analyses the argument and value of the voltage.

o Control Signals generates three PWM binary outputs.

 In contrast with training algorithms, constructive ones

determine both the network architecture and the neurone

weights and are guaranteed to converge in finite time. The

numerical values of all neurone weights and thresholds were

calculated [11] using a geometric constructive solution known

as Voronoi diagrams [7]. For this work, the complex plane is

divided into triangular Voronoi cells. The master program

allows user control over main parameters: i) Number of

Voronoi cells, ii) Number of sectors dividing the 360 degrees

interval for argument analysis, iii) Number of bits used to code

the components of the two complex inputs iv) Maximum fan-in

for the VHDL logic gate model. The desired performance /

complexity ratio is adopted. In this case, 5 bits to code each

component of the two complex inputs gives enough precision

(delays less than 100 ns), resulting in a total number of logic

gates of 1329 on 14+6=20 layers [10], which fits Xilinx

XC4010XL FPGA.

 When the number of inputs and bits on each input is low

(precision appropriate for drives), this method is more

effective than a classical digital circuit design implemented in

FPGA. For a high number of bits/controller inputs, the NN

approach can be less effective than a classical circuit. The

explanation is that in the NN approach the complexity of the

resulting circuit raises exponentially with these numbers,

whereas in a traditional approach, the complexity increases

quadratically. The case study presented in this paper was

implemented as part of an induction motor controller in a

10,000 gates equivalent FPGA, as opposed to a classical

digital vector control circuit, for controlling the same motor,

which was commissioned in our research group, using 99% of

a 40,000 gate equivalent FPGA [12].

III. SIMULATION AND VERIFICATION

 The ANN operation speed was tested by designing a

VHDL testbench (Fig. 3). Input patterns are generated by a 20-

bit counter and a pseudo-random sequence block. A simulation

waveform is shown in Fig. 4, illustrating delay readings of

39.5 ns and 80.5 ns.

 4

Fig. 4 Timing simulation using Xilinx software

 Generally, oscilloscope measurements taken on the XS40

board, containing a Xilinx XC4010XL FPGA, indicate delays

not exceeding 100 ns. Thus, the propagation time is less than

1.5 clock cycles, which demonstrates the advantage of higher

operating speeds comparing with other digital circuits [13].

IV. CONCLUSIONS

A new digital hardware implementation strategy for feed-

forward ANNs with step activation functions is reported. The

novel algorithm treats each neurone as a special case of

Boolean function with properties that can be exploited to

achieve compact implementation. This is accomplished by

means of reusable VHDL code that can be easily translated

into an FPGA implementation, using suitable EDA software.

The VHDL programs bridge the gap between the

facilities offered by simulation software and software packages

specialised in hardware design. This method is most efficient

for a low number of inputs/bits on each input, otherwise a

classical circuit may be preferred.

V. REFERENCES

[1] NEuroNet Roadmap, “Future Prospects for Neural Networks”, European

Network of Excellence in Neural Networks, 2001.

http://cordis.europa.eu/ist/ka3/iaf/links.htm

[2] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar, "Computing

Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural

Networks," IEEE Trans. on Ind. Electronics, vol. 55, no. 10, pp. 3784-

3790, Oct. 2008.

[3] Special Section: “Neural Networks for Robotics”, IEEE Trans. on Ind.

Electronics, vol. 44, no. 6, Dec. 1997.

 [4] Special Section: “Fusion of Neural Nets, Fuzzy Systems and Genetic

Algorithms in Industrial Applications”, IEEE Trans. on Ind. Electronics,

vol.46, no.6, 1999.

[5] J. J. Rodriguez-Andina, M. J. Moure, M. D. Valdes: “Features, Design

Tools and Application Domains of FPGAs”, IEEE Trans. on Ind.

Electronics, vol.54, no.4, pp.1810-1823. Aug. 2007.

[6] E. Monmasson, M.N. Cirstea: “FPGA Design Methodology for Industrial

Control Systems – a Review”, IEEE Transactions on Ind. Electronics,

vol. 54, no.4, pp. 1824-1842, Aug. 2007.

[7] L. Vachhani, K. Sridharan: “Hardware efficient Prediction-Correction-

Based Generalised Vornonoi Diagram Construction and FPGA

Implementation”, IEEE Tran. on Ind. Electronics, vol. 55, no.4, pp.

1558-1569. April 2008.

[8] Da Zhang, Hui Li, "A Stochastic-Based FPGA Controller for an Induction

Motor Drive With Integrated Neural Network Algorithms," IEEE Trans.

on Ind. Electronics, vol. 55, no. 2, pp. 551-561, Feb. 2008.

[9] M. N. Cirstea, A. Dinu, J. Khor and M. McCormick: "Neural and Fuzzy

Logic Control of Drives and Power Systems", Elsevier Science Ltd.,

Oxford, UK, 2002.

[10] A. Dinu, M. N. Cirstea: “A Digital Neural Network FPGA Direct

Hardware Implementation Algorithm”, Proc. of ISIE 2007, Vigo, Spain,

pp.2307-2312.

[11] A. Dinu, "FPGA Neural Controller for Three Phase Sensorless Induction

Motor Drive Systems", PhD Thesis, De Montfort University, 2000.

[12] A. Aounis, M. McCormick, M.N. Cirstea: "A Novel Approach to

Induction Motor Controller Design and Implementation", Proc. of IEEE

Power Conversion Conference (PCC), Osaka, pp.993-998, April 2002.

[13] B. K. Bose, “Neural Network Applications in Power Electronics and

Motor Drives - An Introduction and Perspective”, IEEE Transactions on

Ind. Electronics, vol. 54, no. 1, pp. 14-33, Feb. 2007.

AUTHOR BIOGRAPHIES

Andrei Dinu (M’05) received the BEng and

MSc degrees in electrical engineering from

Transilvania University of Brasov, Romania, in

1995 and 1996, respectively. He completed his

PhD in electrical / electronic engineering at De

Montfort University, UK, in 2000, with a thesis

concerning the sensorless control of induction

motors using hardware implemented neural

networks. He was then appointed lecturer at the

same university, where he conducted research

in electrical drives control until 2003, when he

moved to industry.

He was design engineer at Datalink Electronics (Loughborough, UK), and in

2004 he joined Goodrich Corporation as control systems engineer. He is co-

author of two books and over 20 refereed papers, one of which has received

an ABB award. He currently works on R&D projects carried out by the

Electromagnetic Systems Technical Centre of Goodrich Corporation

(Birmingham, UK). Dr. Dinu is also Member of IET and Member of the IEEE

Industrial Electronics Society (IES).

Marcian N. Cirstea (M’97-SM’04)

completed a PhD at Nottingham Trent

University, UK, in 1996, after obtaining a

degree in electrical engineering from

Transilvania University of Brasov, Romania.

He is currently Professor of Industrial

Electronics and Head of Computing and

Technology Department at Anglia Ruskin

University in Cambridge, UK, after previously

working for De Montfort University, UK.

Prof. Cirstea has co-authored several technical

books and over 100 peer reviewed papers,

three of which have received awards. His

research is focused on digital / FPGA controller design for power electronics,

with recent interests in renewable energy. He is founder and past Chairman of

the ‘Electronic Systems on Chip’ Technical Committee of the IEEE Industrial

Electronics Society, Member of IET and Chartered Engineer (CEng). Prof.

Cirstea is also Associate Editor for IEEE Transactions on Industrial

Electronics and was General Co-Chair of ISIE conference (Cambridge, 2008).

He currently coordinates an European renewable energy project consortium.

Silvia E. Cirstea received a BSc and an

MSc in mathematics from the University of

Bucharest, Romania, and a PhD in

electronics from De Montfort University,

UK, with a thesis on depth extraction from

3D integral images. She then worked at the

Central Laboratory of the Research Councils

in the field of theoretical modeling of

radiowave propagation, and at the Medical

Research Council's Institute of Hearing

Research, UK, being involved in acoustic

modeling and sound synthesis.

Since 2005, Dr. Cirstea is a lecturer in

Applied Mathematics and Media Technology at Anglia Ruskin University,

Cambridge, UK. Her current research interests are in mathematical modeling,

artificial intelligence algorithms and simulation for engineering and physical

applications.

http://cordis.europa.eu/ist/ka3/iaf/links.htm
http://www.bh.com/newnes/

