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Abstract – This paper reviews the state of the art of Field 
Programmable Gate Array (FPGA) design methodologies 
with a focus on Industrial Control System applications.  

The paper starts with an overview of FPGA technology 
development, followed by a presentation of design 
methodologies, development tools and relevant CAD 
environments, including the use of portable Hardware 
Description Languages and System Level Programming / 
Design tools. They enable a holistic functional approach 
with the major advantage of setting up a unique modeling 
and evaluation environment for complete industrial 
electronics systems. 

Three main design rules are then presented. These are: 
algorithm refinement, modularity and systematic search 
for the best compromise between the control performance 
and the architectural constraints. An overview of 
contributions and limits of FPGAs is also given, followed 
by a short survey of FPGA-based intelligent controllers for 
modern industrial systems. 

Finally, two complete and timely case studies are 
presented to illustrate the benefits of an FPGA-
implementation when using the proposed system modeling 
and design methodology. These consist of the Direct 
Torque Control for induction motor drives and the control 
of a diesel driven synchronous stand-alone generator with 
the help of fuzzy logic. 

 
Index Terms: FPGAs, Industrial Control Systems, VHDL, 
Design Methodologies, Programmable Architectures, SoC 
 

I. INTRODUCTION 
 

Fast progress of Very Large Scale Integration (VLSI) 
technology and Electronic Design Automation (EDA) 
techniques in recent years has created an opportunity for the 
development of complex and compact high performance 
controllers for industrial electronic systems [1]. Nowadays, 
the design engineer is using modern EDA tools to create, 
simulate and verify a design, and, without committing to 
hardware, can quickly evaluate complex systems and ideas 
with very high confidence in the “right first time” correct 
operation of the final product.  

Speed performance of new components and flexibility 
inherent of all programmable solutions give today many 

opportunities in the field of digital implementation for 
industrial control systems. This is especially true with 
software solutions such as microprocessors or DSPs (Digital 
Signal Processors) [3]. However, specific hardware 
technologies such as Field Programmable Gate Arrays 
(FPGAs) can also be considered as an appropriate solution 
in order to boost the performance of controllers. Indeed, 
these generic components combine low cost development 
(thanks to their re-programmability), use of convenient 
software tools and more and more significant integration 
density [4]-[8]. FPGA technology is now considered by an 
increasing number of designers in various fields of 
application such as wired and wireless telecommunications 
[9], image and signal processing [10], [11], where the 
always more demanding data throughputs take advantage of 
the ever increasing density of the chips. Still, more recently, 
other application fields are in growing demand, such as 
medical equipment [12], robotics [13]-[15], automotive [16] 
and space and aircraft embedded control systems [17]. For 
these embedded applications, reduction of the power 
consumption [18], thermal management and packaging [19], 
reliability [20] and protection against solar radiations [21] 
are of prime importance. Finally, industrial electrical control 
systems are also of great interest because of the ever 
increasing level of expected performance, while at the same 
time reducing the cost of the control systems [22]. This last 
sector is especially targeted by the case studies presented 
briefly in this review paper. Indeed, FPGAs have already 
been used with success in many different electric system 
applications such as power converter control (PWM 
inverters [23], [24], power factor correction [25], multilevel 
converters [26], [27], matrix converters [28], [29], soft 
switching [30], [31], and STATCOM [32]) and electrical 
machines control (induction machine drives [33]-[39], SRM 
drives [40], motion control [41], [42], multi-machines 
systems [43], Neural Network control of induction motors 
[44], Fuzzy Logic control of power generators [45], speed 
measurement [46]). This is because an FPGA-based 
implementation of controllers can efficiently answer current 
and future challenges of this field. Amongst them, we can 
quote: 
- Decrease of the cost for at least three reasons: the use of an 
architecture based only on the specific needs of the 
algorithm to implement, the application of highly advanced 



 

and specific methodologies improving implementation time 
also called "time to market", and the expected development 
in VLSI design that will allow integrating a full control 
system with its analog interface in a single chip, also called 
System-on-a-Chip (SoC); 
- Confidentiality, a specific architecture, integrating the 
know-how of a company, is not easily duplicable; 
- Embedded systems with many constraints as in aircraft 
applications, like limited power consumption, thermal 
consideration, reliability and Single Event Upset (SEU) 
protection; 
- Improvement of control performance. For example, 
execution time can be dramatically reduced by designing 
dedicated parallel architectures, allowing FPGA-based 
controllers to reach the level of performance of their analog 
counterparts without their drawbacks (parameter drifts, lack 
of flexibility). Besides, an FPGA-based controller can be 
adapted in run-time to the needs of the plant by dynamically 
reconfiguring it. These points will be discussed further in 
section V. 

This article aims to provide an overview of the use of 
FPGAs in industrial control systems. Generic FPGA 
architectures and Computer Aided Design (CAD) 
environment characterizing them are presented. Benefits of 
using portable Hardware Description Languages (HDLs) are 
discussed, then, the holistic approach is explained. It extends 
the traditional use of High Level Programming Languages 
and HDLs [2] to encompass the holistic modeling of 
industrial electronic systems. The outcome is a design 
environment that allows all functional aspects of the system 
to be considered simultaneously, therefore increasing the 
determinism of the system, minimizing response time and 
maximizing operational performance in order to achieve 
high efficiency and power quality, while simultaneously 
allowing the rapid prototyping of digital controllers on 
FPGA hardware development platforms. 

Major design rules are given, consisting of control 
algorithm refinement, application of a reuse methodology, 
which allows capitalizing the design efforts and optimization 
of the modules in terms of performance with the help of the 
Algorithm Architecture “Adequation” (A3 ). The authors 
then analyze, in the present industrial environment, the 
contributions and the limits of using FPGAs in electrical 
system controllers. A short survey on intelligent FPGA-
based controllers is also presented.  

Finally, two case studies are discussed to illustrate 
benefits of an FPGA-implementation when using the 
proposed design methodology: i) Direct Torque Control 
(DTC) system for Induction Motor, ii) Fuzzy Logic digital 
controller for a diesel driven stand alone power generator. 
 
II.  DESCRIPTION OF FPGAS AND THEIR DEVELOPMENT 

TOOLS 
A. FPGA Generic Architecture Description 

FPGAs belong to the wide family of programmable logic 
components [4]-[8]. An FPGA is defined as a matrix of 

configurable logic blocks (combinatorial and/or sequential), 
linked to each others by an interconnection network which is 
entirely reprogrammable. The memory cells control the logic 
blocks as well as the connections so that the component can 
fulfill the required application specifications. Several 
configurable technologies exist. Amongst them, only those 
which are reprogrammable (Flash, EPROM, SRAM) are of 
interest since they allow the same flexibility as that of a 
microprocessor. Therefore, the rest of the paper will discuss 
only the SRAM-based FPGA technology [6]-[7], by far the 
most widespread [47]. However, the Flash-based technology 
[8], although it does not allow the same number of 
reconfiguration cycles by an order of magnitude, it is of 
interest for some stringent niche applications such as space 
and aircraft industries. Indeed, Flash technology preserves 
the configuration of the FPGA when the power is off and, as 
a consequence, the chip is ready to operate as soon as it is 
powered up. The generic architecture of a SRAM-based 
FPGA is presented in Fig. 1 [48]. 

The most recent FPGAs are produced using a 65-nm 
copper process. Their density can reach more than 10 
million equivalent gates per chip with clock system 
frequencies of more than 500 MHz. However, it is important 
to note that this kind of information is only accurate for a 
short while, as technology continues to move forward. The 
two main FPGA manufacturers are Altera and Xilinx [6]-[7]. 

 

Fig. 1. Generic architecture of an FPGA. 
 

The FPGA generic architecture is composed of a matrix 
of configurable logic blocks (CLBs), where the number of 
rows and columns are now reaching, for the largest devices, 
192x116. This matrix core is bordered by a ring of 
configurable input/output blocks (IOBs), whose number can 
reach 1000 user IOBs. Finally, all these resources 
communicate amongst themselves through a programmable 
interconnection network.  

More recently, it has also been observed inside these 
architectures, the introduction of some dedicated blocks such 
as RAM, DSP accelerators (hardwired multipliers with 
corresponding accumulators, high-speed clock management 
circuitry, serial transceivers), embedded hard processor 
cores such as PowerPC or ARM [6]-[8] and soft processor 
cores such as Nios [6] or Microblaze [7], [70]. Also very 
interesting for control applications is the recent integration 
of an analog-to-digital converter in the Fusion component 
from Actel [8]. However, this SoC trend, does not replace 
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the former generic architecture but it can be seen as a 
complement to this original matrix. 

- Configurable Logic Blocks: Their structures include 2, 
4 or more logic cells, also called logic elements. The 
structure of a logic cell, which can be considered as the basic 
grain of the FPGA, is presented in Fig.2. 

 

 

 

 

 

Fig. 2. Logic cell structure 

It consists of a 4-bit look-up table (LUT), which can be 
configured either as a (16x1) ROM, RAM or a 
combinatorial function. A carry look-ahead data path is also 
included, in order to build efficient arithmetic operators. 
Finally, a D-Type Flip-Flop, with all its control inputs 
(synchronous or asynchronous set/reset, enable), allows 
registering the output of the logic cell. Such an architecture 
corresponds to a micro state-machine, since the registered 
output can be configured as an input of the same logic cell.  

B. Hardware Description Languages and FPGAs  

Originally, FPGAs were only used to integrate glue-logic 
usually devoted to TTL basic logic circuits. Applications 
were described with the help of simple CAD schematic 
tools. Today, FPGAs are more and more used to implement 
complex functions. For example, it is not unusual to 
implement in a single FPGA a complete digital system 
including an Arithmetic Logic Unit (ALU), memories, 
communication units, and so on. 

This evolution has its origin in the recent advances in 
VLSI but it is also due to the development of appropriate 
design tools and methods, which were initially reserved to 
the world of the Application Specific Integrated Circuits 
(ASICs). These tools are mostly based on Hardware 
Description Languages (HDLs) such as Very high speed 
integrated circuits (Vhsic) Hardware Description Language 
(VHDL) [2], [49] or Verilog [50]. The existence of IEEE 
standards [51] has spread the use of HDLs and has allowed 
the creation and the development of high performance CAD 
tools in the field of microelectronics. Thus, the designer can 
take advantage of HDLs to build his own circuit by using a 
hierarchical and modular approach defined at different levels 
of abstraction using the design “top-down methodology” 
[52]-[53]. The corresponding design flow is partitioned into 
the following four steps: 
- System level, where specifications of the circuit are 

given; 
- Behavior level, that consists in the algorithmic 

description of the circuit; 
- Register Transfer Level (RTL), where the circuit is 

described in terms of its components; 
- Physical level, where the circuit is physically described 

by taking into account the target hardware 
characteristics. 
At each level of abstraction, the future integrated circuit 

is described in HDL, such as behavioral VHDL or 
synthesized VHDL. This last description gives an exact 
representation of the operators and variables of the final 
circuit. 

In order to simulate and validate the digital circuit’s 
functionality, various test benches are written and executed. 
Moreover, thanks to the advent of analog HDLs such as: 
Spectre HDL, VHDL-A, VHDL-AMS [54], it is also 
possible to simulate at each level of abstraction the 
functionality of the circuit, while taking into account its 
analog environment [55]. Another promising approach is the 
holistic one that promotes the use of a unique description 
language during the whole development procedure [56]. 
This will be described in more details in the next section. 
Fig. 3 presents the hierarchic flow of the top-down design 
method and its HDL model environment. Recently, FPGA 
manufacturers [6]-[7] have designed software packages that 
enable both the simulation and the automatic translation into 
hardware of a design. Such software runs inside the Matlab-
Simulink environment for example.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Top-down design approach. 

Simulation results are "bit and cycle accurate". This 
means results that are seen in a Simulink simulation exactly 
match those produced by hardware implementation. Such an 
approach offers an FPGA-based rapid prototyping platform 
[57]. It should be mentioned that the concept of automatic 
code generation has already been applied with success to 
DSP processors [58]. No doubt that this kind of solution will 
be more and more utilized in the near future for a rapid 
evaluation of new control algorithm performance. However, 
this approach is so far still limited to the applications that do 
not require the use of complex sequencers. Indeed, control 
units are still difficult to achieve with the proposed 
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toolboxes [59]. As a consequence, the resulting hardware 
architectures are not area optimized, a fact not acceptable in 
an industrial approach. 
 

III.  INTEGRATED SYSTEM MODELING AND DESIGN 
 

Traditionally, mathematical models have been developed 
to evaluate the functionality of global engineering systems. 
However, the practical development of each part of the 
system needs then to be separately addressed. This often 
involves the use of other CAD tools and/or different 
software platforms, with the design itself being developed in 
a different environment. Recent advance in CAD 
methodologies / languages has brought the functional 
description of design and practical hardware implementation 
closer. System level modeling languages (such as Handel-C, 
System-C) and Hardware Description Languages (such as 
VHDL, Verilog) enable the underpinning mathematical 
description and the electronic design implementation to be 
simultaneously addressed in a unique environment, 
supported by a range of major Computer Aided Engineering 
platforms. Synthesis tools can compile such designs into a 
variety of target technologies.  

A holistic system level approach to the design and 
development of an electronic system enables a top-down 
design methodology, which begins with modeling an idea at 
an abstract level, and proceeds through the iterative steps 
necessary to further refine this into a detailed system. A test 
environment is developed early in the design cycle. As the 
design evolves to completion, the language is able to support 
a complex detailed digital system description and the test 
environment will check compliance with the original 
specification. Concepts are tested before investment is made 
in hardware / physical implementation. In terms of holistic 
modeling of complex electronic systems, system level 
modeling languages offer advantages such as: 
� Simultaneous consideration of the mathematical aspects 

of engineering systems (functional / behavioral 
description) and the detailed electronic hardware design, 
in the same unique environment, normally supported by a 
range of Computer Aided Design platforms. 

� Ability to handle all levels of abstraction. The system can 
be simulated as an overall model during all stages of the 
electronic controller design, which can be subsequently 
targeted for SoC silicon implementation. 

� Fast implementation and relatively short time to market. 
� Easy hardware implementation of Artificial Intelligence. 
� Versatile reusable models / design modules are 

generated, in accordance with modern principles of 
design reuse.  

Simulation results are valuable to check the behavior of a 
model, but on many occasions it is the hardware validation 
of a controller that provides significant information before 
the decision is taken to invest in an ASIC. The cheapest and 
fastest way to validate the design of an optimized digital 
controller is via a prototype board containing re-
programmable devices such as FPGAs. This shortens the 

time to correct any design problem and it ensures an error 
free design before permanent ASIC implementation. The 
prototype board can also be used for the hardware testing of 
other system components. A modern hardware-in-the-loop 
testing approach is also facilitated by this environment, 
allowing effective testing of circuit designs. This method 
uses a hardware-in-loop-simulator (HILS) that uses the 
outputs of the circuit under test as inputs and produces as 
outputs the signals that need to be fed to the circuit under 
test as inputs. These signals are similar with those given by 
the sub-system replaced by the HILS in real-time operation. 
More on HILS can be found in [60]-[62]. 

The DK4 design suite from Celoxica, for example, allows 
Handel-C (high level language similar with C) functional 
modeling of an electronic system. Handel-C produces an 
Electronic Design Interchange Format (EDIF) output when 
compiling the design for the hardware target. The Xilinx 
placement and routing tools are used to translate the EDIF 
format into hardware layout, enabling rapid hardware 
implementation onto development boards containing 
FPGAs. The compiler can also generate Hardware 
Description Language format code such as VHDL, allowing 
combinations with other hardware elements in SoC designs. 
Portability without design modification of the implemented 
system on different PLD/FPGA/ASIC hardware target is 
provided using Platform Abstraction Layer (PAL) 
Application Programming Interface (API). Thus, Handel-C 
can be used as modeling tool and then Xilinx Integrated 
Design Environment [6] enables FPGA real-time analysis.  
 The general benefits of holistic modeling, combined with 
the advantages of HDLs and FPGAs, enable novel complex 
but fast classical / neural / fuzzy FPGA controllers, with 
industrial applications, to be modeled, simulated and 
evaluated with efficient use of resource.  
 

IV.  FPGA-BASED CONTROLLER DESIGN RULES  
 

FPGA technology allows developing specific hardware 
architectures within a flexible programmable environment. 
This specific feature of the FPGAs gives designers a new 
degree of freedom comparing to microprocessor 
implementations, since the hardware architecture of the 
control system is not imposed a priori. However, in many 
cases, the development of this architecture is rather intuitive 
and not adapted to the implementation of more and more 
complex algorithms. Thus, in order to benefit from the 
advantages of the FPGAs and their powerful CAD tools, the 
designer has to follow an efficient design methodology. Such 
a methodology rests on three main principles: the control 
algorithm refinement, the modularity and the best suitability 
between the algorithm to implement and the chosen 
hardware architecture. These three concepts are detailed 
thereafter. 

A. Algorithm refinement 

Algorithm refinement is a necessary step when designing 



 

with FPGAs. It is possible to implement floating-point 
arithmetic on FPGAs [63], but resources use is not 
optimized in this case because of FPGA sea-of-logic-cells 
architectures (see Fig. 2). So, in order to reduce cost, 
manufacturers require from end-users to design controllers 
using fixed-point arithmetic. In this context, cost efficient 
architectures must result from a balance between control 
performances to respect and complexity of the hardware 
architecture to minimise. This leads to formulate two work 
directions: 

 

- Simplification of the computation: Many authors, 
especially in the early days of FPGAs, when the density of 
the chips was limited, proposed smart solutions to avoid 
including greedy operators like multipliers in their designs. 
Amongst the most commonly used techniques of 
simplification, CORDIC can be mentioned, an acronym for 
COordinate Rotation DIgital Computer [64]. CORDIC is a 
very efficient algorithm, only based on adders/ subtractors 
and shifters for computing a wide range of trigonometric, 
hyperbolic, linear and logarithmic functions. Another 
interesting family of algorithms is the distributed arithmetic 
one [65], that can make extensive use of look-up tables 
(LUTs), which makes it ideal for implementing DSP 
functions in LUT-based FPGAs.  

Finally, as explained thereafter, the designer can also 
take advantage in remodeling the target algorithm in order to 
reduce the number of operations to be implemented.  

In order to illustrate these design rules, the authors are 
proposing as example a simple function to be implemented. 
It consists of an (a,b,c) to (d,q) transformation for three-
phase electrical systems. The coordinate transformation is 
used to transform the actual quantities of a three-phase 
electrical system (xa, xb, xc) into a dq reference frame that is 
rotating at an arbitrary angle θ, while keeping the 
instantaneous power equivalent. It gives 
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By making the assumption that the studied three-phase 
system is balanced (no zero-sequence component), the 
transformation can be simplified and expressed as 
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This first level of simplification allows reducing the 
number of operations to be implemented. The former 
expression is then converted into a n-bits fixed-point format. 
This format must be the result of a compromise between the 
required computing accuracy and the available hardware 
resources, as it can be seen later on. It gives: 
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where each X n-bit signed fixed-point value is equal to 

xQXx .= with 
1
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2 −
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x
Q                     (4) 

The scale factor Qx, has to be selected with relevance by 
the designer so as to avoid overflow errors and in the same 
time keeping an acceptable dynamic range. Besides, during 
the conversion process, the designer can also simplify the 
implemented equations with an adequate choice of scale 
factors [34]. In this case, the original square root factor has 
disappeared, simplifying once again the computations. 
Notice also, the regularity of the operations to be executed, 
Aij(θ) variables are all sine functions and both dot product 
(one per row) have exactly the same computing structure. 
This property gives the designer more possibilities of 
factorization when building the final architecture (§ IV.C). 

 

- Search for optimized fixed-point formats: As just 
mentioned earlier, when developing designs with FPGAs, a 
search for the best trade-off between the size of the fixed-
point format of each control variable and the respect of the 
control specifications is needed. To this purpose, a 
methodology is presented in [66], which is based on the 
control system L1 or l1 norms for computing the appropriate 
number of bits to represent each quantity of a controller 
(coefficients and variables). This methodology is applied 
with success to the implementation of a magnetic bearing 
FPGA-based control system. In this example, it is also 
proved that a delta form realization requires less hardware 
than a shift-form realization and provides a closer 
approximation to the original analog compensator. 

In order to represent all the data values with a sufficient 
computation accuracy, Menard et al. propose in [67] a 
methodology for an automatic determination of the fixed-
point specification. Firstly, the dynamic range of each data 
of the control algorithm is evaluated with the help of the 
Interval Arithmetic theory to define the minimal number of 
bits needed to represent the data integer part. Then, the 
accuracy is evaluated on the basis of an analytical approach. 
In the digital signal processing domain, the most common 
used criterion for evaluating the fixed-point specification 
accuracy is the Signal-to-Quantization-Noise-Ratio (SQNR). 
The originality of this approach is that it proposes an 
analytical evaluation of the SQNR expression for linear 
systems and non-recursive non-linear systems. 

B. Design methodology based on reuse modules 

For complex designs, modular conception is generally 
used to reduce the design cycle. This methodology is based 
on hierarchy and regularity concepts. Hierarchy is used to 
divide a large or complex design into sub-parts called 
modules that are more manageable. Regularity is aimed to 
maximize the reuse of already designed modules [68]. 

With the increasing progress of CAD tools, the 
improvement in terms of development time reduction lies 
more in the capacity of the designer to know how to classify 
and reuse his model module, than in a perfect knowledge of 
his CAD tools. Nowadays, the manufacturers and the 
designers of circuits even propose to recover in free [69] or 



 

restricted access [6]-[8], several design models, also called 
Intellectual Property IP modules. Besides, the complexity of 
some modules, such as processor-cores [70], can be 
important. This design approach is based on the reusability 
of IP modules [71]. 

A module can be defined as an element of a library, 
available to the designer, which can be directly inferred 
without having to design it [52]. Therefore, the reuse 
methodology consists in selecting, throughout the synthesis 
process, elements of a library that are useful for the design in 
progress. These modules, extracted of the design flow, are 
distributed between various levels of abstraction. The 
procedure is very similar to those used in DSP 
developments, with soft-macros [72]. Fig. 4 presents two 
types of reuse or IP module libraries that can be constituted, 
one at behavioral level and the other one at RTL level. 

Fig. 4.  Reuse and IP module libraries. 
 

C. Algorithm Architecture “Adequation” Methodology 

To be efficient, the modular design approach must be 
based on reliable modules. However, in many cases, desired 
modules do not already exist and they have to be built. It is 
therefore crucial, when designing them, to be helped by an 
efficient methodology that allows taking into account the 
numerous constraints of such systems. 

The goal of the Algorithm Architecture “Adequation” (or 
A3 methodology), when applied to FPGAs, is to find out an 
optimized hardware architecture for a given application 
algorithm, while satisfying time/area constraints [73]. 
“Adequation” is a French word meaning efficient matching. 
Note that it is different from the English word “adequacy” 
which involves only a sufficient matching. A3 is based on 
graph models to exhibit both the potential parallelism of the 
algorithm and the available parallelism of the proposed 
architecture. The implementation is formalized in terms of 
graph transformations. The (a,b,c) to (d,q) transformation 
case is treated in order to illustrate the effectiveness of this 
methodology. 

 

- Data Flow Graph: Having finalized the algorithm 
refinement procedure, the Data Flow Graph (DFG) of the 
algorithm is directly derived from (3). The DFG 
establishes all the potential parallelisms of the algorithm. 
Fig. 5 shows the data flow graph corresponding to the 
coordinate transformation algorithm. Each node represents 

an operation and each edge represents a dependency of 
data between two operations.  

 

Fig. 5.  DFG of the coordinate transformation algorithm. 

 

- Design of the A3 optimized architecture: The repetitive 
patterns of the DFG presented in Fig. 5 can then be 
advantageously factorized by using the A3 methodology [73] 
in order to match the required hardware constraints. This 
leads to several data-path possibilities. Operations are now 
replaced by operators. Indeed, each operator included in a 
data-path has a cost since it consumes hardware resources. 
In the case of the coordinate transformation algorithm, four 
different ALU data-paths can be derived from the A3 
factorization process, as it is shown in Fig. 6.  

 

Fig. 6.  ALU data-paths of the coordinate transformation. 
 

Notice that, for simplicity reason, only the transformation 
and computation parts of this algorithm have been treated in 
this example. A3 methodology could be also applied with 
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success to sine function generation, also included in the 
(a,b,c) to (d,q) transformation algorithm. Then, the different 
data-paths are compared taking into account their 
performance in terms of latency, speed and size area in order 
to get the best tradeoff between all these constraints. In order 
to compare these data-paths, corresponding architectures are 
synthesized in behavioral VHDL and implemented into the 
same target (Xilinx, SPARTAN 2 XC2s100 PQ208). As it is 
shown in Fig.7, three resolutions were studied (12-bits, 14-
bits and 16-bits). As expected, ALU-1 is the greediest 
solution in terms of consumption of hardware resources but 
at the same time, it is the fastest one. On the other hand, 
ALU-4 is the slowest data-path solution but it presents the 
most optimized solution in terms of the consumption of 
hardware resources. In fact, it represents only one third of 
ALU-1 architecture. ALU-2 and ALU-3 present a 
compromise solution between computation time and 
hardware resources requirements. So, the designer can 
choose the most suitable architecture solution according to 
the hardware requirements and expected control 
performance. 

 

 

 

 

 

 

 

Fig. 7. Performance of the different ALU after synthesis. 
 

V. CONTRIBUTIONS AND LIMITS OF FPGAS USED IN 

ELECTRICAL SYSTEM CONTROLLERS   
 

A.  Domain of use of the FPGAs 

When designing industrial electronics circuits, several 
criteria have to be considered. Some of the most significant 
are: the cost, the power consumption (essential in the case of 
embedded systems), the application performance and above 
all, the suitability for the chosen hardware technology to 
match the requirements of the algorithm to implement. 

This last point will be developed for the case of the 
control of electrical systems. As mentioned in the 
introduction, currently the two main hardware solutions for 
implementing a controller are DSPs and FPGAs. Therefore, 
according to the nature of the algorithm to implement (i.e. its 
DFG), the designer has to choose between these two 
possibilities. The graph in Fig. 8 illustrates in a qualitative 
way the reasons of such a choice.  

The x-axis of this graph represents timing constraints of 
the algorithm. These constraints mainly rely on the type of 
data dependency. The higher this dependency is, the more 
sequential the algorithm is. It is then obvious that software 
solution (DSPs) is perfectly adapted to this case. On the 
other hand, if the DFG reveals many possibilities of 
parallelism (low data dependency and competition between 
operations), it is then the hardware solution (FPGAs) which 
becomes the most interesting. 

Fig. 8.  DSP and FPGA domains of use. 

However, timing constraints are not sufficient to fully 
characterize an algorithm - its complexity is also a key-
element. This is the reason why it is reported on the y-axis of 
the graph. Algorithm complexity is evaluated in two ways: 
the number of operations and their regularity. Indeed, an 
algorithm presenting a significant number of operations is 
not necessarily complex if the majority of these operations 
are identical. It is then easy to design an efficient ALU that 
is optimized for the treatment of these specific operations.  

In the field of digital control of electrical systems, 
algorithms are almost all included in the intersection area of 
these two technologies. However, in many cases, the 
implementation in a DSP is preferred. According to us, the 
reason is historical. Software solutions are older and they do 
not frighten the designers because they are based on 
programming. However, this apprehension of circuit designs 
is less and less founded given the progress of design 
methodologies and CAD tools. When using HDLs, FPGA 
implementations are also relying on portable code. 
Moreover, the reduction of the execution time of an 
algorithm in the case of a DSP implementation is only 
obtained by a long work of optimization of the 
corresponding assembler code. Such an optimization is no 
less consuming in terms of development time than the time 
needed for the design of an efficient architecture when using 
the A3 methodology. However, gain in this last case is often 
spectacular in terms of execution time. Of course, other 
aspects must also been considered, such as accuracy issue. 
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B. Benefits of using FPGAs for Control of Electrical 
Systems 
 

As a complement of the former section, authors are now 
trying to outline the benefits of using FPGAs for controlling 
industrial electrical systems, driven by a power converter. A 
typical example consists in the current control for PWM 
inverters. The demonstration is based on the ability of 
FPGA-based controllers to execute quasi-instantaneously 
their tasks, as shown in Fig. 9. In this figure, TADC represents 
the analog-to-digital signals time conversion, TC is the 
execution time of the control algorithm and Ts is the 
sampling period that is usually taken equal to the switching 
period of the power converter or to half of it. 

 

 
Fig. 9. Timing distribution (a) General purpose microcontroller, (b) 

DSPcontroller, (c) FPGA-based controller 

 
Fig. 9.a corresponds to the use of a general purpose 

microcontroller. In this case, the main limitation factor is the 
computing power of this component. Sampling period is 
fixed according to this limit, leading to one and a half 
switching period of delay (one period due to the 
computation delay and a half-period delay which 
corresponds to the usual statistical delay due to the PWM 
signals application). This reduces the bandwidth of the 
closed loop system and in some cases, may destabilize the 
controlled process. Signal waveforms are also very poor 
[74]. Finally, it should be mentioned that direct control of 
power converters (sliding mode, bang-bang control) are not 
recommended in this case. 

Fig. 9.b corresponds to the case of a DSP controller 
implementation. This case gives much better results than the 
former one. Indeed, thanks to their adapted architecture, 
these components allow controlling the current of an 
electrical machine or a load in a few dozens of micro-
seconds. As a consequence, the lack of rapidity of the 
controller is no longer the limiting factor of the closed-loop 
system. Limitations take their origin in the switching losses 
of the power converter, leading to a sampling frequency of 
around 10-20kHz for medium range power systems. When 

carefully designed, the delay can be reduced to an half 
switching period (≈ 50µs), which greatly improves the 
dynamic performance. Direct control of the power 
converters can be achieved but expected results are of less 
quality than those obtained via an analog controller. 

Fig. 9.c corresponds to an FPGA-based controller. Due 
to their ability to transcript on the hardware architecture all 
the potential parallelisms of the control algorithm, FPGAs 
can only take a fraction of the switching period to execute in 
real-time a full complex algorithm. A direct consequence of 
this extreme rapidity is the consummation of a large number 
of the internal resources of the chip, increasing in the same 
time the cost [33]. However, by using optimization 
techniques such as A3 [73] and/or pipelining, the designer 
can easily build a balanced architecture, which respects the 
area limitation and preserves the rapidity of execution of the 
control algorithm (≈ 1-2µs for AC motor drive control). 
Therefore, the obtained computing time TC for FPGA-based 
controllers is far below the one reached with a programmed 
solution. 

Such instant reactions make FPGA-based controllers 
very close in their behaviors to their analog counterparts. 
They preserve their advantages (no calculation delay, higher 
bandwidth) without their drawbacks (parameters drifting, 
poor level of integration). Hence, this quasi-analog property 
could be sufficient to promote this technology for 
implementing more and more industrial digital control 
systems.  

However, a more careful look at Fig. 9c, shows 
important time left within each sampling period, when the 
controller has finished its computing tasks and has only to 
handle the PWM signals generation. As a consequence, only 
a little part of the FPGA is active during this time, leaving 
the component largely underexploited. This important 
observation has been made by some authors in the past, even 
if very few clearly highlight it [75]. In most cases, it leads 
them to propose several interesting improvements that we 
are now trying to classify. 

 
- Over-sampling: A first approach consists in over-

sampling techniques as proposed in [25], where the authors 
integrate the current in a PFC controller at a frequency 4 
times higher than the sampling frequency, yielding more 
accurate results for this current regulation. The care taken to 
simplify the computation (reduction of the number of 
multipliers) is also to be mentioned. In [76], Chapuis et al. 
propose a quasi-analog digital DTC, where the torque 
regulation is updated every 2µs; a protection module is 
added, which prevents switching on the same inverter leg. 

 
- Predictive control: In [77], Ling et al. propose the 

implementation of a complete Model Predictive Control 
strategy applied to an aircraft example. It is to be noticed 
that the algorithm is using floating point arithmetic, which is 
still rare when working with FPGAs.  

 
- Current measurement improvements: In [78], Fratta et 

al. propose an ideal PWM ripple filter, obtained by over-
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sampling the measurements of the controlled current, then 
computing its average value inside a time sliding-window 
and re-introducing it in the current loop. Careful 
comparisons are also made with an alternative DSP 
implementation. 

In [79], authors present an FPGA-based implementation 
of an SRM current control which allows avoiding anti-
aliasing filters. Indeed, by choosing the perfect instant of 
sampling, a true average current may be measured. 

 
- Control of multi-systems with the same controller: In 

[80], Garcia et al. have implemented an FPGA-based 
controller for a 16 phases DC/DC converter. The targeted 
application is automotive. This kind of example is very 
demanding: as it is low voltage, the sampling frequency can 
be very high and the controller has to manage up to 16 
interleaved channels. Such power segmentation is also 
required in aircraft applications for reliability reasons. These 
examples can be considered as typical niche applications for 
FPGAs. 

In [43], Tazi et al. proposed the control of up to 4 AC 
motors with the same FPGA vector current controller, with a 
sampling period of 50µs. 

 
Finally, as FPGAs can handle very fast computing and 

the main limitation of the power converter being the 
switching losses of the transistors, some authors have 
proposed some improvements to the classical PWM strategy 
in order to reduce the switching period. It consists in the 
single switch commutation technique that avoids the 
application of a deadtime when a commutation occurs. Thus, 
using this technique, one can implement a faster current loop 
(up to 40kHz for medium power) [81]. 

 

C.  Dynamic Reconfiguration of FPGAs 

Reconfigurations of control algorithms in run-time can 
be done by software with DSPs. Conversely, SRAM-based 
FPGAs allow dynamical reconfiguring of hardware 
architectures. This possibility has already been largely 
explored in computer vision applications [82]. Besides, as 
explained in [83], reconfiguring induction motor control 
algorithms in run-time, depending on the operating point of 
the machine, can improve significantly the performance of 
the whole system. Authors had also experimented with 
success a first dynamically reconfigurable architecture 
dedicated to the tests of evolving PWM strategies [84]. 
Another interesting use of dynamic reconfiguration consists 
of reconfiguring the control system when a major failure 
occurs [85]. The reconfiguration is then necessary to still 
control the plant evolution or at least to cancel the process in 
safety conditions. 

However, the dynamic reconfiguration of hardware 
configuration, which can be partial or total, is still largely 
underexploited in the field of industrial control systems. A 
major reason is the poor reconfiguration speed [7]. This may 
change in the near future. 

 

VI.  FPGAS IN INTELLIGENT AND COMPLEX CONTROL 
SYSTEMS 

 
The use of modern Electronic Design Automation 

packages for electronic systems design facilitates easy 
implementation of complex control algorithms and Artificial 
Intelligence (AI) into hardware. Hence, a wide range of 
complex and intelligent controller designs have been 
recently developed, with applications in industry. A 
significant number of them target FPGAs, due to the rapid 
prototyping features and the flexibility offered by FPGAs, 
especially through the recent availability of microprocessor 
or DSP cores, allowing hardware software co-design and 
implementation. Some areas using FPGAs for the 
implementation of complex controllers are highlighted 
below and a case study of an AI (fuzzy logic) controller will 
be dealt with in more detail in a separate section.  
 

A. Neural Networks implemented in FPGA 

According to a recent report of an European Network of 
Excellence [86], the near and long-term future 
implementations of hardware-based neural networks will be 
shaped in three ways: i) by developing advanced techniques 
for mapping neural networks onto FPGAs, ii) by developing 
innovative learning algorithms which are hardware-
realizable, iii) by defining high-level descriptions of the 
neural algorithms in an industry standard to allow full 
simulations to be carried out and to allow fabrication by the 
most appropriate technique and to produce demonstrators of 
the technology for industry.  

Such designs will be of use to industry if the cost of 
adopting this new technology is sufficiently low for the 
company and if the technology is made accessible to them. 
The cost of implementing new technology in an ASIC falls 
each year. Europe lags behind Japan and the USA in the 
application of intelligent techniques, especially in consumer 
electronics. Considerable expertise in the design of neural 
networks and their application to industry is available in 
universities throughout the European Union. Strong 
collaboration exists in this field, especially between 
universities, as expressed through existing ESPRIT 
programs such as NEuroNet [86].  

Hardware-based neural networks are important to 
industry as they offer a small-size and low-power 
consumption compared to software running on a 
workstation. Therefore such neural network controllers can 
be embedded in a wide range of systems both large and 
small. The benefits of neural networks to industry have been 
recognized especially in Japan, where a number of consumer 
goods are making use this technology. A recent prominent 
product has been a microwave oven (Sharp), which uses a 
neural module developed in the UK. Other consumer 
applications of related technology include fuzzy logic 
modules in cameras and in vacuum cleaners. Solutions 
should be tailored to the needs of industry by providing a 
choice of implementations from software modules, through 
FPGAs and semi-custom chips to full-custom VLSI. 



 

Libraries of neural functions should be made available in 
software and libraries of cells (digital, mixed and analog) for 
hardware. Software libraries exist for the traditional neural 
network models, for example for use with MATLAB.  
 For industry to take up university-based designs, these 
designs must be in an industry-standard form, for example 
VHDL or C++ functional code, they should be modular and 
they should be parameterized to allow customization to the 
industry’s needs. The following European companies are 
known to have investigated the use of hardware-based neural 
networks: Ericsson (UK, Sweden), Philips Research 
(Holland), Siemens (Germany, UK), 3M Laboratories 
Europe GmbH Neuss, XIONICS Document Technologies 
GmbH Dortmund, Robert Bosch GmbH Reutlingen, 
Spectrum Microelectronics Siek (Germany), Fiat (Italy), 
Domain Dynamics Ltd (UK) [86]. Specific application areas 
include the control of telecommunications networks, speech 
processing and recognition, speaker identification and 
micro-electromechanical systems. The industry which 
already applies neural technology, or is likely to benefit 
from it, is already pan-European. For example, Siemens has 
activities in both Germany and the UK, Ericsson has 
activities in Sweden and in most European states and the UK 
hosts Ericsson's VLSI Design Centre. The main areas of 
application are [86]: 
• Communications systems, demodulators, intelligent 

antennas, semiconductors for the space environment.  
• Object identification, image compression, HDTV, 

medical and biometric image analysis, thermal image 
processing systems, materials analysis.  

• Character recognition, speaker identification, speech 
recognition and enhancement, handwriting recognition.  

• Information retrieval, exploratory data analysis, quality 
control, function learning, automatic control, economic 
prediction, electrical consumption prediction, 
knowledge extraction, intelligent controls, automatic 
verification of VLSI and WSI circuits.  

• Stochastic learning algorithms, Content Addressable 
Memory, massively parallel processors, pulse-stream 
computation.  

Some directions for implementation [86] are: 
• VLSI digital and analog hardware, analog 

implementation of neural networks, pulse-stream 
systems, on-chip weight perturbation algorithms 

• On-chip learning, reinforcement training, feed-forward 
training, stochastic training  

• Distributed and heterogeneous processor architectures, 
fault tolerant systems, optical neural techniques 

• Analog and mixed hardware implementations of neural 
networks using time-continuous or coherent pulse-width 
modulation techniques,  

• Massively parallel computers, silicon implementations 
of neural networks, neuro-fuzzy systems. 

A wide range of research papers on Neural Networks 
based Controllers were published in prestigious journals. 
Some (like [87]) were collated in special issues on 
Transactions of Industrial Electronics [88], [89]. Recently, 

other papers on Neural Networks are more frequently 
present in regular issues of this journal ([90]-[94]). 
 

B. Fuzzy Logic Based Control Systems  

 Today, fuzzy logic based control systems, or simply, 
Fuzzy Logic Controllers (FLCs) can be found in a growing 
number of products, from washing machines to speedboats, 
from air condition units to hand-held autofocus cameras. The 
success of fuzzy logic controllers is mainly due to their 
ability to cope with knowledge represented in a linguistic 
form instead of representation in the conventional 
mathematical framework. Control engineers have 
traditionally relied on mathematical models for their designs. 
However, the more complex a system, the less effective the 
mathematical model. This fundamental concept provided the 
motivation for fuzzy logic and is stated by Lofti Zadeh as the 
Principle of Incompatibility [95]. There are five main 
elements in a fuzzy logic controller: Fuzzification module 
(Fuzzifier), Knowledge base, Rule base, Inference Engine, 
Defuzzification module (Defuzzifier). Automatic changes in 
the design parameters of any of the five elements create an 
adaptive fuzzy controller. Fuzzy control systems with fixed 
parameters are non-adaptive. Other non-fuzzy elements 
which are also part of the control system include sensors, 
analog-digital converters, digital-analog converters and 
normalization circuits. There are two types of normalization 
circuits: one maps the physical values of the control inputs 
onto a normalized universe of discourse and the other maps 
the normalized value of the control output variables back 
onto its physical domain. 

FPGAs constitute an appropriate target for the 
implementation of fuzzy-logic controllers, facilitated by the 
flexibility of the design environment, enabling direct 
implementation of the circuit’s abstract model. A high 
number of works have been published on fuzzy logic-based 
control systems. One paper presents a method employing 
hardware/software co-design techniques according to an ‘a 
priori’ partition of the tasks assigned to the selected 
components. This feature makes it possible to tackle the 
control system prototyping as one of the design stages. In 
this case, the platform considered for prototyping has been a 
development board containing a standard microcontroller 
and an FPGA. Experimental results from an actual control 
application validate the efficiency of this methodology [96]. 

A paper, advocates a novel approach to implement the 
fuzzy logic controller for speed control of electric vehicle by 
using FPGA [97]. The speed of the motor has to be 
controlled, which in turn controls the vehicle dynamics to 
run the vehicle. So, the main aim is to determine the motor 
speed, which drives the vehicle. In this respect, parameters 
such as acceleration, braking, energy status, gear and terrain 
are considered. This system, which functions as a closed 
loop system, also takes the motor speed as a reference along 
with the above-mentioned parameters to estimate the 
variation of the motor speed [97].  

A paper [98] presents an implementation of a fuzzy logic 
controller (FLC) on a reconfigurable FPGA system. Another 
paper explores the use of FPGA technologies to implement 



 

FLCs. Two different approaches are described. The first 
option is based on the logic synthesis of the boolean 
equations describing the controller input-output relations. 
The second approach uses dedicated hardware to implement 
the fuzzy algorithm according to a specific architecture 
based on a VHDL cell library [99]. A FPGA based fuzzy 
sliding-mode controller, which combines both the merits of 
fuzzy control and sliding-mode control, is proposed in [100], 
to control the mover position of a linear induction motor 

(LIM) drive to compensate the uncertainties including the 
frictional force. The uncertainties are lumped in the sliding-
mode controller and the upper bound of the lumped 
uncertainty is necessary in the design of the sliding-mode 
controller but it is difficult to obtain in advance in practical 
applications. Therefore, a fuzzy sliding-mode controller is 
investigated, in which a simple fuzzy inference mechanism is 

utilized to estimate the upper bound of the lumped 
uncertainty. An FPGA is adopted to implement the indirect 

field-oriented mechanism and the developed control 
algorithms for possible low-cost and high-performance 
industrial applications.  

C. Hardware Implementation of Fuzzy and Neural Network 
Controllers 

A paper on problems of hardware implementation of 
neural networks (NN) in the re–programmable structures 
was written by A. Klepaczko et al. [101]. New class of these 
devices, which integrate in one silicon wafer entire SoC, 
facilitates NN construction and their application. The 
cooperation of Micro–Controller Unit (MCU) and FPGA 
helps to overcome space and interconnection limitations. 
The paper aims to prove that large multi–layer neural 
networks are achievable by associating programmable logic 
array with a micro–controller, which supports space and 
speed-efficient designs, in comparison to systems realized 
only in an FPGA device or simulated only by MCU. Much 
attention has been devoted to the practical application of the 
NN in the System for European Water Monitoring 
(SEWING) [101]. 

Another work is focused on custom architectures for 
Fuzzy and Neural Networks controllers [102]. It presents 
efficient architecture approaches to develop controllers 
using specific circuits, using HDLs and synthesizing them to 
get the FPGA configuration bit-stream. 
 

D. Intelligent Data Acquisition Devices (DAQ) 

Intelligent DAQ devices use National Instruments 
LabVIEW reconfigurable FPGAs to implement custom high-
performance data acquisition on commercial off-the-shelf 
(COTS) hardware. Instead of a predefined subset of DAQ 
functionality, the intelligent DAQ uses an FPGA-based 
system timing controller to make all analog and digital I/Os 
configurable for application-specific operation. By 
programming the FPGA, the custom high-performance DAQ 
tasks can easily be implemented. Additionally, because of 
the parallel architectures of FPGAs, the high-performance 
task implementation is achieved without performance 
degradation [103]. With the new direct memory access 

(DMA) capabilities in the LabVIEW 8 FPGA Module, data 
from within the execution of the FPGA device can be 
retrieved at speeds up to 50 MB/s, depending on the target 
hardware and host processor. DMA provides a direct link for 
data on the FPGA to RAM on the host machine, improving 
data-logging efficiency and making data immediately 
available for analysis and visualization. This high-speed data 
transfer provides real-time visibility into parameters and 
variables within the FPGA [103]. 
 

E. Evolvable hardware 

Evolvable hardware offers much for the future of 
complex system design. Evolutionary techniques not only 
give the potential to explore larger solution spaces, but when 
implemented on hardware allow system designs to adapt to 
changes in the environment, including failures in system 
components. Novel evolutionary algorithms are being 
developed and applied to intrinsic hardware evolution [104]. 
A major objective of this work is to produce an evolutionary 
system that can be readily implemented on COTS hardware. 
As an example of the new system, an FPGA-based controller 
for a mobile robot has been developed by Prof. Andy Tyrrell 
and his team at University of York, UK. The controller 
consists of look-up tables, which perform the mapping from 
sensor data to actuator, evolved using an effective 
evolutionary algorithm. The experimental results on a 
Khepera robot show that the method can successfully evolve 
a robot controller for autonomous navigation to avoid 
collision in an unknown or changing environment even if 
sensor faults occur prior to evolution or after a successful 
member of a population has been evolved. [104]. 
 

F. Controller designs for smart structural systems 

The design of controllers for smart structural systems 
usually proceeds without regard for their eventual 
implementation, thus resulting either in serious performance 
degradation or in hardware requirements that squander 
power, complicate integration and drive up cost. The level of 
integration assumed by the smart patch further exacerbates 
these difficulties and any design inefficiency may render the 
realization of a single-package sensor-controller-actuator 
system infeasible. The research carried out automates the 
controller implementation process and relieves the design 
engineer of implementation concerns like quantization, 
computational efficiency and device selection. FPGAs are 
specifically targeted as a hardware platform because these 
devices are highly flexible, power efficient, and 
reprogrammable. The proposed controller design 
methodology is implemented on a simple cantilever beam 
test structure using FPGA hardware [105].  
 

G. FPGAs used in Motion Control Interface 

New Ethernet-based FPGA-based controllers for motion 
control are reported [106]. They include all hardware 
functions, such as timing, synchronisation and processing of 
cyclic and noncyclic data on the basis of two integrated 



 

Ethernet MACs. Cores for two controllers are available, 
based on the low-cost Spartan-3 Xilinx FPGA platform. The 
SERCON100 master and slave controllers are available, 
both integrated in a FT256 BGA housing so that a common 
hardware design can be realized. This makes a very 
powerful, low-cost standard hardware platform available, 
which reduces implementation efforts and also ensures a 
high acceptance by suppliers [106]. 
 

VII  FPGA-BASED DTC CONTROLLER 
 

In this section, the authors present FPGA-based 
implementations of Direct Torque and Stator Flux Control 
(DTC) and Direct Torque and Rotor Flux Control (DTRFC) 
with the use of Space Vector Modulation (SVM) for 
induction motor drives. Indeed, due to their similar 
structures but also their differences, these two algorithms are 
good examples to show the effectiveness of an FPGA-based 
functional modular approach to implement sensorless 
control induction motor drives. Therefore, the chosen 
solution is based on a custom hardware architecture 
designed by assembling a set of functional building blocks. 
These blocks are tested and organized in a library of 
Intellectual Property (IP) modules for easy re-use [107]. 
Each block is geared towards a specific algorithm function 
(Flux estimator, Hysteresis controller, etc.). A special 
attention is given to the algorithm refinement, which allows 
finding the optimum fixed-point data word length for each 
internal variable of the algorithm. Finally, experimental 
results are shown, which validate the proposed approach. 
 
A. Principles of the proposed control algorithms 

DTC and SVM-DTRFC algorithms have high torque 
dynamic performances. In a first approximation, the SVM-
DTRFC algorithm can be considered as derived from the 
well-known DTC algorithm [108]. While the basic DTC 
technique is to directly select stator voltage vectors 
according to the differences between reference and actual 
torque and between reference and stator flux linkage, SVM-
DTRFC strategy is based on torque and rotor flux control 
[109]. Moreover, in this case the Voltage Source Inverter 
(VSI) is controlled indirectly by using SVM in a similar way 
with what was proposed in [110]. This technique allows a 
smoother behavior of the torque regulation at steady-state 
operation than basic DTC. 

 
 

Fig.10. Block diagram of the DTC technique 
 

The block diagrams of DTC and SVM-DTRFC are 
presented in Fig. 10 and Fig. 11 respectively. 

 
B. Design of modular architectures 

The discretization of the normalized control algorithms is 
performed with the forward-difference (FD) approximation. 
A full description of these algorithms can be found in [111]. 
Then, algorithm refinement procedure is carried out.  
 

 
Fig.11. Block diagram of SVM-DTRFC strategy 

 
In order to increase module reutilization, a modular and 

standard design principle is applied. The functional 
algorithm decomposition leads to a set of specific sub-
algorithms or modules, which are summarized in table I: 

 
TABLE I: Functional Algorithm Decomposition 

 
 Transformation 

blocks Estimation blocks Control blocks 

DTC 
-(a,b,c) to (d,q) - Stator flux  

(Magnitude, Angle) 
- Torque 

- Hysteresis 
- Switching table 

SVM- 
DTRFC 

- (a,b,c) to (d,q) - Rotor flux  
(Magnitude, Angle) 
- Torque 
- voltage vector 

- Hysteresis 
- Switching 
function 
- SVM 

 

As it can be seen from table I, there are several common 
blocks used by both control algorithms. For each block, 
appropriate Data Flow Graph (DFG) has been established. 
Fig.12 illustrates the DFG of the α-axis stator flux estimator. 

 
Fig.12. DFG of the α-axis stator flux estimator. 

 

As for the magnitude and the angle of the stator or rotor 
flux vector, they are estimated using CORDIC [64]. A 
MATLAB program is used to search for the best choice in 
terms of accuracy and number of CORDIC steps. It has been 
found that 10 CORDIC steps are enough for this application. 
As mentioned earlier, an interesting metric for evaluating the 
precision of the digital algorithms developed with fixed-
point arithmetic is the Signal to Quantization Noise Ratio 
(SQNR) [67].  
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As an example, a set of evaluations performed with the 
α-axis stator flux estimator are described, for which the DFG 
is presented in Fig.12. The results are given in table II for a 
SQNR constraint of 80 dB. It is shown that the first solution, 
where all the signals have the same word-length (1st row), 
can be optimized using [67], while respecting the SQNR 
constraint (2nd row). 

 
Table II: Optimal word length 

Word length 
isα b1 b2 b3 b4 Φsα 

SQNR 
(dB) 

24 24 24 24 24 24 84.2 
16 16 16 22 22 16 80.5 

 
Simulation is then achieved under Simulink with the 

Xilinx System Generator (SG) fixed-point toolbox. Fig.13 
illustrates a simulated version of the DTC algorithm by SG 
toolbox. Good performance was obtained using the optimum 
fixed-point formats established by the analytic approach 
[67]. The sampling frequency is fixed to 20KHZ. 

 
Fig.13. Diagram of the DTC controller (built with Xilinx SG toolbox) 

 
The development of each module in terms of architecture 

is based on standardization principles. These principles are 
regularity, understandability and reusability of already 
designed components. A Register Transfer Level (RTL) 
library of standard Intellectual Property (IP) blocks is 
developed [107]. A detailed description of the flux and 
torque estimator module is now given as example: 

- Description of the module: This module implements a 
torque and stator and rotor flux vector estimators for a three 
phase induction motor. The data path is obtained with the 
help of the A3 methodology [73]. As it can be seen in Fig. 
15, the factorization process is applied to the greediest 
operators (multipliers).  

- Module properties: Scalable module based on generic 
VHDL is developed. Module latency is 23 clock cycles 
(40MHz). Hardware used resources are 29 % of a Spartan 
XC2s100 FPGA [7]. 

- Module Interface:  

 
Fig.14. Top view of the RTL model 

The resulted (RTL) model of the estimator architecture, 
presenting the VHDL entity, is shown in Fig.14.  

 

C. Experimental results 

Experiments are carried out with a 1kW, 4 poles 
induction motor. These two algorithms have been 
implemented on a low cost FPGA device (XC2S100), Table 
III reports the very short execution time for each FPGA-
based control algorithm. Fig. 16 (a) and Fig. 16 (b) present 
torque step-responses using respectively DTC and SVM-
DTRFC algorithms.  

Table III 
Processing time for FPGA-based control algorithms 

FPGA-based architectures Processing time (µs) 
DTC 1.15 
SVM-DTRFC 1.42 

 

Fig.15 Estimator architecture factorized by the use of A3 methodology 

 

Fig.16. Experimental results torque step response 0Nm to 4Nm, 
sTs µ50= , (a) DTC, (b) DTRFC 
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Torque dynamic is almost the same for both control 
algorithms (1ms). It is to be noted that, in the case of SVM-
DTRFC, torque ripples are significantly reduced. Interested 
readers can compare these performances to those obtained 
with a DSP-controller target [112]. However, direct 
comparisons between FPGA and DSP controllers in terms of 
performance must be lead carefully. Indeed, to be totally 
fair, among others, both targets must be of the same 
generation, the design effort must be similar, and control 
features - accuracy and sampling period - must be identical 
too. The authors do not aim to perform such a comparison in 
this paper, or to open a debate about the preference of using 
one or another of these technologies. The paper is focused 
on reviewing the use of FPGAs in industrial control. 

 
VIII F UZZY LOGIC CONTROLLER FOR STAND ALONE 

SYNCHRONOUS GENERATORS 
 

This case study describes the analysis and design of an 
electronic control system allowing variable speed operation 
of diesel driven stand alone synchronous generators [45], 
[1]. The system is shown in Fig. 17. A control scheme that 
can isolate the final output frequency of the system from the 
effects of speed variations is simulated and designed. The 
proposed design aims to improve the efficiency of diesel 
engine driven generators by allowing optimum speed 
operation. Fuel economy and environmental protection are 
achieved. The a.c. generated voltage is rectified into d.c. 
power and then converted back into a.c. using a Pulse Width 
Modulation (PWM) inverter before being applied to the 
load. This configuration is widely used in variable speed 
wind energy conversion systems [1], [113]. A suitable fuzzy 
logic control system is designed to control the fuel valve of 
the diesel engine based on the DC link voltage input. The 
overall function of the control system is to ensure that the 
output voltage of the system maintains the desired 
magnitude and frequency over a range of varying rotational 
speed and loading conditions. Due to the difficulty in 
obtaining a precise model for the engine-generator set, fuzzy 
logic is used in the control system, as it does not require an 
accurate mathematical model. A typical fuzzy control system 
can be divided into four main sections.  

i.  Fuzzifier - compares the input variables of the controller 
with a predefined set of membership functions and assigns 
the appropriate membership values. Thus, the fuzzifier 
converts crisp input signals into fuzzy values. 
ii. Fuzzy Inference Machine - links the controller to a set of 
fuzzy rules. 
iii.  Fuzzy Rule Base - is a set of intuitive or linguistic rules, 
which forms the basis of the control strategy. 
iv. Defuzzifier - performs a function opposite to that of the 
fuzzifier: it converts the control system’s fuzzy output into a 
single crisp value that can be applied as control signal. 
 In the actual Fuzzy Logic Control (FLC) module [45], 
the Vdc voltage and the rate of change of Vdc are used as 
input variables. The output is the fuel flow rate control 
signal. The steps in designing the FLC are:  
i.  Identify the variables.  
ii.  Formulate Fuzzy Rules and Fuzzy Associative Memory 
Table. The FVSG has 25 fuzzy rules that map the input 
states to 25 output conditions (C1 to C25). General form is:  

Rk : IF x1 is A k
1  and x2 is A k

2 ,  THEN Ck      
where: Rk (k = 1, 2, …, 25)  is the kth rule of the fuzzy 

system and x1 and x2 are the input variables, A i
k  (i = 1,2 ; k 

= 1, 2, …, 25) is the kth  fuzzy set defined in the ith input 
space, Ck is the output condition inferred by the kth rule. 
iii. Define membership function for input variables 

(fuzzification).  
iv. Define membership function for fuzzy output sets.  

v.  Defuzzification. The defuzzification process chosen for 
this controller is the weighted average method [45]. 

 The FLC design is achieved in VHDL, which allows easy 
description of the fuzzy implication techniques. For 
example: PB (Positive Big) = max (C1, C2, C6) is described: 
 PB <= 0 when c1=0 and c2=0 and c6=0  
 else c1 when (c1>=c2 and c1>=c6) else 
  c2 when (c2>=c1 and c2>=c6) else c6; 
In this example, the rules state that the output signal u is 
Positive Big (PB) when output condition is C1, C2 or C6.  

  

 
Fig. 17. Fuzzy Logic Controlled power system 
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Fig. 18 VHDL Simulation Results 

 
The d.c. output voltage is simulated during a step 

increase of the load current. The results in Fig. 18 show that 
the fuzzy logic control system is successfully correcting the 
tendency to fall of the output voltage Vdc. The system is 
therefore able to cope with variations in Vdc resulting from 
variable load and variable speed of operation. After the 
complete system was modeled and simulated using VHDL, 
the circuit design of the controller was synthesized and 
implemented into a Xilinx XC4010 FPGA for rapid 
prototyping. By adjusting the speed of the engine to the 
operating conditions, fuel consumption can be reduced while 
the same torque can be produced. Fig. 19 shows the voltage 
response when the controller is connected to the system. The 
desired DC voltage is set at 250 V. 
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Fig. 19. Voltage response with control system. 

 
The graph shows that the controller is successful in 

stabilizing the generator system. Although there is a voltage 
drop of about 14% when the load resistance is decreased, 
this effect is counteracted by the controller, and the voltage 
level recovers to a steady value. The main achievements of 
this system are: 
• The configuration allows the final output voltage to be 

independent of the generator speed, thus allowing the 
system to operate at the most efficient speed at all times. 

• The control system maintains the output voltage at the 
desired magnitude and frequency against changes in Vdc 
which arise from changes in speed and/or load. 

 The system provides a suitable platform for the study of 
efficient diesel engine driven variable speed generators. 

 
IX. CONCLUSIONS AND PERSPECTIVES 

 
The aim of this paper is to present the contributions of 

FPGAs to the control of industrial systems. After a short 
description of FPGAs and their CAD tools, the authors have 
focused on the design methodology issue. Indeed, due to the 
simultaneous increase of the control algorithm complexity 
and the chip density, using an efficient design methodology 
is essential in this context. To this purpose, a modeling 
technique is proposed for the holistic investigation of power 
electronic systems. This is based on System Level Modeling 
Languages or Hardware Description Languages and allows 
rapid FPGA prototyping of the control systems. The digital 
controller designs are developed from idea, through the 
design and simulation stages, to complete systems in a short 
time and in close interaction with the optimized holistic 
model of the complex engineering industrial system to be 
controlled. Further advantages are provided such as: 
multiple choices for the implementation target technology, a 
reliable framework for design verification, high confidence 
in the correct first time operation and wide compatibility of 
the design (as IP block) with respect to multiple existing 
modern CAD tools. The latter allows the integration of 
digital electronic controller models in complex system 
models. 
After that, three main design rules are presented. The main 
characteristics of the proposed architecture design 
methodology are: the algorithm refinement, the modularity, 
and the systematic search for the best compromise between 
the control performances and the architectural constraints 
(see A3 section). Then, an overview of contributions and 
limits of FPGAs has been proposed and comparisons with 
traditional DSP software solutions are also made. This 
section is followed by a short survey of FPGA-based 
intelligent controllers for modern industrial systems. Finally, 
full and timely examples are presented to illustrate the 
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benefits of FPGA implementation when using the proposed 
design approach. They include the Direct Torque Control for 
induction motor drives and the control of a synchronous 
stand-alone generator using fuzzy logic. It is demonstrated 
that in both cases a low cost FPGA-based controller can 
greatly improve the control performance, especially due to 
the reduction of execution time, while keeping a high level 
of flexibility. 

In the near future, the complexity of the control systems 
will continue to grow. The tasks devoted to the control 
algorithm will no longer be limited to regulation but will 
have to manage diagnosis and fault-adaptive on line control. 
In this context, the research effort on the theory and the 
applications of dynamic reconfiguration is crucial. 

Another interesting direction of research is based on the 
following observation: a control algorithm, when 
implemented in an FPGA, can have a very short execution 
time due to the high degree of parallelism of its architecture. 
At the same time, the constraints imposed by the power 
electronic components imply a sampling period that is, for 
many applications, much higher than the execution time. The 
resulting “wasted time” could be advantageously employed. 
Several examples of relevant FPGA utilizations in this 
context are presented in section V.B. They consist of 
predictive control, over-sampling strategies, multi-plants 
control, etc. All these very promising control paradigms 
must still be improved.  

Another perspective on FPGA design is to propose a 
prototyping development system of a fully integrated 
controller from VLSI technology and SoC design that can 
include digital control and its analog interface (sensors, 
ADC, power drivers, etc.) [8]. Finally, the co-design [114] 
issue must be addressed, since the borders between software 
and hardware are rapidly vanishing (one can already 
implement up to 4 PowerPCs inside a single FPGA [6]). The 
main problem in this case is to propose automatic rules of 
partitioning, based on relevant quantitative indicators. 
However, it can be estimated that holistic modeling 
methodologies will be of great help for such tasks and also 
for rapid controller prototyping in the very near future. 
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