
FPGA Design Methodology for Industrial Control
Systems – a Review

*Eric Monmasson, SENIOR MEMBER, IEEE, ** Marcian Cirstea, SENIOR MEMBER, IEEE

*
SATIE, Université de Cergy-Pontoise, rue d’Eragny, Neuville-sur-Oise, 95031 Cergy-Pontoise, France

Phone: +33 (0)1 34 25 68 91, Fax: +33 (0)1 34 25 69 01, E-Mail: eric.monmasson@u-cergy.fr
**

Department of Design and Technology, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, England, UK,
Phone: +44 (0)1223 363271 ext.2184, Fax: +44 (0)1223-417711, E-Mail: marcian.cirstea@anglia.ac.uk

Abstract – This paper reviews the state of the art of Field
Programmable Gate Array (FPGA) design methodologies
with a focus on Industrial Control System applications.

The paper starts with an overview of FPGA technology
development, followed by a presentation of design
methodologies, development tools and relevant CAD
environments, including the use of portable Hardware
Description Languages and System Level Programming /
Design tools. They enable a holistic functional approach
with the major advantage of setting up a unique modeling
and evaluation environment for complete industrial
electronics systems.

Three main design rules are then presented. These are:
algorithm refinement, modularity and systematic search
for the best compromise between the control performance
and the architectural constraints. An overview of
contributions and limits of FPGAs is also given, followed
by a short survey of FPGA-based intelligent controllers for
modern industrial systems.

Finally, two complete and timely case studies are
presented to illustrate the benefits of an FPGA-
implementation when using the proposed system modeling
and design methodology. These consist of the Direct
Torque Control for induction motor drives and the control
of a diesel driven synchronous stand-alone generator with
the help of fuzzy logic.

Index Terms: FPGAs, Industrial Control Systems, VHDL,
Design Methodologies, Programmable Architectures, SoC

I. INTRODUCTION

Fast progress of Very Large Scale Integration (VLSI)
technology and Electronic Design Automation (EDA)
techniques in recent years has created an opportunity for the
development of complex and compact high performance
controllers for industrial electronic systems [1]. Nowadays,
the design engineer is using modern EDA tools to create,
simulate and verify a design, and, without committing to
hardware, can quickly evaluate complex systems and ideas
with very high confidence in the “right first time” correct
operation of the final product.

Speed performance of new components and flexibility
inherent of all programmable solutions give today many

opportunities in the field of digital implementation for
industrial control systems. This is especially true with
software solutions such as microprocessors or DSPs (Digital
Signal Processors) [3]. However, specific hardware
technologies such as Field Programmable Gate Arrays
(FPGAs) can also be considered as an appropriate solution
in order to boost the performance of controllers. Indeed,
these generic components combine low cost development
(thanks to their re-programmability), use of convenient
software tools and more and more significant integration
density [4]-[8]. FPGA technology is now considered by an
increasing number of designers in various fields of
application such as wired and wireless telecommunications
[9], image and signal processing [10], [11], where the
always more demanding data throughputs take advantage of
the ever increasing density of the chips. Still, more recently,
other application fields are in growing demand, such as
medical equipment [12], robotics [13]-[15], automotive [16]
and space and aircraft embedded control systems [17]. For
these embedded applications, reduction of the power
consumption [18], thermal management and packaging [19],
reliability [20] and protection against solar radiations [21]
are of prime importance. Finally, industrial electrical control
systems are also of great interest because of the ever
increasing level of expected performance, while at the same
time reducing the cost of the control systems [22]. This last
sector is especially targeted by the case studies presented
briefly in this review paper. Indeed, FPGAs have already
been used with success in many different electric system
applications such as power converter control (PWM
inverters [23], [24], power factor correction [25], multilevel
converters [26], [27], matrix converters [28], [29], soft
switching [30], [31], and STATCOM [32]) and electrical
machines control (induction machine drives [33]-[39], SRM
drives [40], motion control [41], [42], multi-machines
systems [43], Neural Network control of induction motors
[44], Fuzzy Logic control of power generators [45], speed
measurement [46]). This is because an FPGA-based
implementation of controllers can efficiently answer current
and future challenges of this field. Amongst them, we can
quote:
- Decrease of the cost for at least three reasons: the use of an
architecture based only on the specific needs of the
algorithm to implement, the application of highly advanced

and specific methodologies improving implementation time
also called "time to market", and the expected development
in VLSI design that will allow integrating a full control
system with its analog interface in a single chip, also called
System-on-a-Chip (SoC);
- Confidentiality, a specific architecture, integrating the
know-how of a company, is not easily duplicable;
- Embedded systems with many constraints as in aircraft
applications, like limited power consumption, thermal
consideration, reliability and Single Event Upset (SEU)
protection;
- Improvement of control performance. For example,
execution time can be dramatically reduced by designing
dedicated parallel architectures, allowing FPGA-based
controllers to reach the level of performance of their analog
counterparts without their drawbacks (parameter drifts, lack
of flexibility). Besides, an FPGA-based controller can be
adapted in run-time to the needs of the plant by dynamically
reconfiguring it. These points will be discussed further in
section V.

This article aims to provide an overview of the use of
FPGAs in industrial control systems. Generic FPGA
architectures and Computer Aided Design (CAD)
environment characterizing them are presented. Benefits of
using portable Hardware Description Languages (HDLs) are
discussed, then, the holistic approach is explained. It extends
the traditional use of High Level Programming Languages
and HDLs [2] to encompass the holistic modeling of
industrial electronic systems. The outcome is a design
environment that allows all functional aspects of the system
to be considered simultaneously, therefore increasing the
determinism of the system, minimizing response time and
maximizing operational performance in order to achieve
high efficiency and power quality, while simultaneously
allowing the rapid prototyping of digital controllers on
FPGA hardware development platforms.

Major design rules are given, consisting of control
algorithm refinement, application of a reuse methodology,
which allows capitalizing the design efforts and optimization
of the modules in terms of performance with the help of the
Algorithm Architecture “Adequation” (A3). The authors
then analyze, in the present industrial environment, the
contributions and the limits of using FPGAs in electrical
system controllers. A short survey on intelligent FPGA-
based controllers is also presented.

Finally, two case studies are discussed to illustrate
benefits of an FPGA-implementation when using the
proposed design methodology: i) Direct Torque Control
(DTC) system for Induction Motor, ii) Fuzzy Logic digital
controller for a diesel driven stand alone power generator.

II. DESCRIPTION OF FPGAS AND THEIR DEVELOPMENT

TOOLS
A. FPGA Generic Architecture Description

FPGAs belong to the wide family of programmable logic
components [4]-[8]. An FPGA is defined as a matrix of

configurable logic blocks (combinatorial and/or sequential),
linked to each others by an interconnection network which is
entirely reprogrammable. The memory cells control the logic
blocks as well as the connections so that the component can
fulfill the required application specifications. Several
configurable technologies exist. Amongst them, only those
which are reprogrammable (Flash, EPROM, SRAM) are of
interest since they allow the same flexibility as that of a
microprocessor. Therefore, the rest of the paper will discuss
only the SRAM-based FPGA technology [6]-[7], by far the
most widespread [47]. However, the Flash-based technology
[8], although it does not allow the same number of
reconfiguration cycles by an order of magnitude, it is of
interest for some stringent niche applications such as space
and aircraft industries. Indeed, Flash technology preserves
the configuration of the FPGA when the power is off and, as
a consequence, the chip is ready to operate as soon as it is
powered up. The generic architecture of a SRAM-based
FPGA is presented in Fig. 1 [48].

The most recent FPGAs are produced using a 65-nm
copper process. Their density can reach more than 10
million equivalent gates per chip with clock system
frequencies of more than 500 MHz. However, it is important
to note that this kind of information is only accurate for a
short while, as technology continues to move forward. The
two main FPGA manufacturers are Altera and Xilinx [6]-[7].

Fig. 1. Generic architecture of an FPGA.

The FPGA generic architecture is composed of a matrix
of configurable logic blocks (CLBs), where the number of
rows and columns are now reaching, for the largest devices,
192x116. This matrix core is bordered by a ring of
configurable input/output blocks (IOBs), whose number can
reach 1000 user IOBs. Finally, all these resources
communicate amongst themselves through a programmable
interconnection network.

More recently, it has also been observed inside these
architectures, the introduction of some dedicated blocks such
as RAM, DSP accelerators (hardwired multipliers with
corresponding accumulators, high-speed clock management
circuitry, serial transceivers), embedded hard processor
cores such as PowerPC or ARM [6]-[8] and soft processor
cores such as Nios [6] or Microblaze [7], [70]. Also very
interesting for control applications is the recent integration
of an analog-to-digital converter in the Fusion component
from Actel [8]. However, this SoC trend, does not replace

Configurable
Input/Output

Block

Configurable
Logic Block

Interconnection
Programmable

Network

the former generic architecture but it can be seen as a
complement to this original matrix.

- Configurable Logic Blocks: Their structures include 2,
4 or more logic cells, also called logic elements. The
structure of a logic cell, which can be considered as the basic
grain of the FPGA, is presented in Fig.2.

Fig. 2. Logic cell structure

It consists of a 4-bit look-up table (LUT), which can be
configured either as a (16x1) ROM, RAM or a
combinatorial function. A carry look-ahead data path is also
included, in order to build efficient arithmetic operators.
Finally, a D-Type Flip-Flop, with all its control inputs
(synchronous or asynchronous set/reset, enable), allows
registering the output of the logic cell. Such an architecture
corresponds to a micro state-machine, since the registered
output can be configured as an input of the same logic cell.

B. Hardware Description Languages and FPGAs

Originally, FPGAs were only used to integrate glue-logic
usually devoted to TTL basic logic circuits. Applications
were described with the help of simple CAD schematic
tools. Today, FPGAs are more and more used to implement
complex functions. For example, it is not unusual to
implement in a single FPGA a complete digital system
including an Arithmetic Logic Unit (ALU), memories,
communication units, and so on.

This evolution has its origin in the recent advances in
VLSI but it is also due to the development of appropriate
design tools and methods, which were initially reserved to
the world of the Application Specific Integrated Circuits
(ASICs). These tools are mostly based on Hardware
Description Languages (HDLs) such as Very high speed
integrated circuits (Vhsic) Hardware Description Language
(VHDL) [2], [49] or Verilog [50]. The existence of IEEE
standards [51] has spread the use of HDLs and has allowed
the creation and the development of high performance CAD
tools in the field of microelectronics. Thus, the designer can
take advantage of HDLs to build his own circuit by using a
hierarchical and modular approach defined at different levels
of abstraction using the design “top-down methodology”
[52]-[53]. The corresponding design flow is partitioned into
the following four steps:
- System level, where specifications of the circuit are

given;
- Behavior level, that consists in the algorithmic

description of the circuit;
- Register Transfer Level (RTL), where the circuit is

described in terms of its components;
- Physical level, where the circuit is physically described

by taking into account the target hardware
characteristics.
At each level of abstraction, the future integrated circuit

is described in HDL, such as behavioral VHDL or
synthesized VHDL. This last description gives an exact
representation of the operators and variables of the final
circuit.

In order to simulate and validate the digital circuit’s
functionality, various test benches are written and executed.
Moreover, thanks to the advent of analog HDLs such as:
Spectre HDL, VHDL-A, VHDL-AMS [54], it is also
possible to simulate at each level of abstraction the
functionality of the circuit, while taking into account its
analog environment [55]. Another promising approach is the
holistic one that promotes the use of a unique description
language during the whole development procedure [56].
This will be described in more details in the next section.
Fig. 3 presents the hierarchic flow of the top-down design
method and its HDL model environment. Recently, FPGA
manufacturers [6]-[7] have designed software packages that
enable both the simulation and the automatic translation into
hardware of a design. Such software runs inside the Matlab-
Simulink environment for example.

Fig. 3. Top-down design approach.

Simulation results are "bit and cycle accurate". This
means results that are seen in a Simulink simulation exactly
match those produced by hardware implementation. Such an
approach offers an FPGA-based rapid prototyping platform
[57]. It should be mentioned that the concept of automatic
code generation has already been applied with success to
DSP processors [58]. No doubt that this kind of solution will
be more and more utilized in the near future for a rapid
evaluation of new control algorithm performance. However,
this approach is so far still limited to the applications that do
not require the use of complex sequencers. Indeed, control
units are still difficult to achieve with the proposed

Inputs

[3:0

LU

LUT

Chemin Carry
Path

Bascule
D
D

Flip-Flop

Input
carry

Clock

Flip-Flop output

Combinatorial
output

Output carry

 System
Level

Behavioral
Level

RTL or Synthesis
Level

Physical
Level

Simulation Simulation

Synthesis

Behavioral
HDL

Circuit
Specifications

Simulation Simulation

Analog
HDL

Test
Bench

Mixed Simulation
Environment

FPGA

ASIC

toolboxes [59]. As a consequence, the resulting hardware
architectures are not area optimized, a fact not acceptable in
an industrial approach.

III. INTEGRATED SYSTEM MODELING AND DESIGN

Traditionally, mathematical models have been developed
to evaluate the functionality of global engineering systems.
However, the practical development of each part of the
system needs then to be separately addressed. This often
involves the use of other CAD tools and/or different
software platforms, with the design itself being developed in
a different environment. Recent advance in CAD
methodologies / languages has brought the functional
description of design and practical hardware implementation
closer. System level modeling languages (such as Handel-C,
System-C) and Hardware Description Languages (such as
VHDL, Verilog) enable the underpinning mathematical
description and the electronic design implementation to be
simultaneously addressed in a unique environment,
supported by a range of major Computer Aided Engineering
platforms. Synthesis tools can compile such designs into a
variety of target technologies.

A holistic system level approach to the design and
development of an electronic system enables a top-down
design methodology, which begins with modeling an idea at
an abstract level, and proceeds through the iterative steps
necessary to further refine this into a detailed system. A test
environment is developed early in the design cycle. As the
design evolves to completion, the language is able to support
a complex detailed digital system description and the test
environment will check compliance with the original
specification. Concepts are tested before investment is made
in hardware / physical implementation. In terms of holistic
modeling of complex electronic systems, system level
modeling languages offer advantages such as:
� Simultaneous consideration of the mathematical aspects

of engineering systems (functional / behavioral
description) and the detailed electronic hardware design,
in the same unique environment, normally supported by a
range of Computer Aided Design platforms.

� Ability to handle all levels of abstraction. The system can
be simulated as an overall model during all stages of the
electronic controller design, which can be subsequently
targeted for SoC silicon implementation.

� Fast implementation and relatively short time to market.
� Easy hardware implementation of Artificial Intelligence.
� Versatile reusable models / design modules are

generated, in accordance with modern principles of
design reuse.

Simulation results are valuable to check the behavior of a
model, but on many occasions it is the hardware validation
of a controller that provides significant information before
the decision is taken to invest in an ASIC. The cheapest and
fastest way to validate the design of an optimized digital
controller is via a prototype board containing re-
programmable devices such as FPGAs. This shortens the

time to correct any design problem and it ensures an error
free design before permanent ASIC implementation. The
prototype board can also be used for the hardware testing of
other system components. A modern hardware-in-the-loop
testing approach is also facilitated by this environment,
allowing effective testing of circuit designs. This method
uses a hardware-in-loop-simulator (HILS) that uses the
outputs of the circuit under test as inputs and produces as
outputs the signals that need to be fed to the circuit under
test as inputs. These signals are similar with those given by
the sub-system replaced by the HILS in real-time operation.
More on HILS can be found in [60]-[62].

The DK4 design suite from Celoxica, for example, allows
Handel-C (high level language similar with C) functional
modeling of an electronic system. Handel-C produces an
Electronic Design Interchange Format (EDIF) output when
compiling the design for the hardware target. The Xilinx
placement and routing tools are used to translate the EDIF
format into hardware layout, enabling rapid hardware
implementation onto development boards containing
FPGAs. The compiler can also generate Hardware
Description Language format code such as VHDL, allowing
combinations with other hardware elements in SoC designs.
Portability without design modification of the implemented
system on different PLD/FPGA/ASIC hardware target is
provided using Platform Abstraction Layer (PAL)
Application Programming Interface (API). Thus, Handel-C
can be used as modeling tool and then Xilinx Integrated
Design Environment [6] enables FPGA real-time analysis.
 The general benefits of holistic modeling, combined with
the advantages of HDLs and FPGAs, enable novel complex
but fast classical / neural / fuzzy FPGA controllers, with
industrial applications, to be modeled, simulated and
evaluated with efficient use of resource.

IV. FPGA-BASED CONTROLLER DESIGN RULES

FPGA technology allows developing specific hardware
architectures within a flexible programmable environment.
This specific feature of the FPGAs gives designers a new
degree of freedom comparing to microprocessor
implementations, since the hardware architecture of the
control system is not imposed a priori. However, in many
cases, the development of this architecture is rather intuitive
and not adapted to the implementation of more and more
complex algorithms. Thus, in order to benefit from the
advantages of the FPGAs and their powerful CAD tools, the
designer has to follow an efficient design methodology. Such
a methodology rests on three main principles: the control
algorithm refinement, the modularity and the best suitability
between the algorithm to implement and the chosen
hardware architecture. These three concepts are detailed
thereafter.

A. Algorithm refinement

Algorithm refinement is a necessary step when designing

with FPGAs. It is possible to implement floating-point
arithmetic on FPGAs [63], but resources use is not
optimized in this case because of FPGA sea-of-logic-cells
architectures (see Fig. 2). So, in order to reduce cost,
manufacturers require from end-users to design controllers
using fixed-point arithmetic. In this context, cost efficient
architectures must result from a balance between control
performances to respect and complexity of the hardware
architecture to minimise. This leads to formulate two work
directions:

- Simplification of the computation: Many authors,
especially in the early days of FPGAs, when the density of
the chips was limited, proposed smart solutions to avoid
including greedy operators like multipliers in their designs.
Amongst the most commonly used techniques of
simplification, CORDIC can be mentioned, an acronym for
COordinate Rotation DIgital Computer [64]. CORDIC is a
very efficient algorithm, only based on adders/ subtractors
and shifters for computing a wide range of trigonometric,
hyperbolic, linear and logarithmic functions. Another
interesting family of algorithms is the distributed arithmetic
one [65], that can make extensive use of look-up tables
(LUTs), which makes it ideal for implementing DSP
functions in LUT-based FPGAs.

Finally, as explained thereafter, the designer can also
take advantage in remodeling the target algorithm in order to
reduce the number of operations to be implemented.

In order to illustrate these design rules, the authors are
proposing as example a simple function to be implemented.
It consists of an (a,b,c) to (d,q) transformation for three-
phase electrical systems. The coordinate transformation is
used to transform the actual quantities of a three-phase
electrical system (xa, xb, xc) into a dq reference frame that is
rotating at an arbitrary angle θ, while keeping the
instantaneous power equivalent. It gives

() () ()
() () () 
















⋅
















+−−−−
+−⋅=

















c

b

a

q

d

o

x

x

x

x

x

x

3/2sin3/2sinsin

3/2cos3/2coscos

2/12/12/1

3

2

πθπθθ
πθπθθ

 (1)

By making the assumption that the studied three-phase
system is balanced (no zero-sequence component), the
transformation can be simplified and expressed as

() ()
() () 








⋅








−−
−−

⋅=








b

a

q

d

x

x

x

x

θπθ
θπθ

cos3/2cos

sin3/2sin
2 (2)

This first level of simplification allows reducing the
number of operations to be implemented. The former
expression is then converted into a n-bits fixed-point format.
This format must be the result of a compromise between the
required computing accuracy and the available hardware
resources, as it can be seen later on. It gives:

() ()
() () 








⋅








−
−

=








b

a

q

d

X

X

AA

AA

X

X

θθ
θθ

2221

1211 (3)

where each X n-bit signed fixed-point value is equal to

xQXx .= with
1

max

2 −
=

nx

x
Q (4)

The scale factor Qx, has to be selected with relevance by
the designer so as to avoid overflow errors and in the same
time keeping an acceptable dynamic range. Besides, during
the conversion process, the designer can also simplify the
implemented equations with an adequate choice of scale
factors [34]. In this case, the original square root factor has
disappeared, simplifying once again the computations.
Notice also, the regularity of the operations to be executed,
Aij(θ) variables are all sine functions and both dot product
(one per row) have exactly the same computing structure.
This property gives the designer more possibilities of
factorization when building the final architecture (§ IV.C).

- Search for optimized fixed-point formats: As just
mentioned earlier, when developing designs with FPGAs, a
search for the best trade-off between the size of the fixed-
point format of each control variable and the respect of the
control specifications is needed. To this purpose, a
methodology is presented in [66], which is based on the
control system L1 or l1 norms for computing the appropriate
number of bits to represent each quantity of a controller
(coefficients and variables). This methodology is applied
with success to the implementation of a magnetic bearing
FPGA-based control system. In this example, it is also
proved that a delta form realization requires less hardware
than a shift-form realization and provides a closer
approximation to the original analog compensator.

In order to represent all the data values with a sufficient
computation accuracy, Menard et al. propose in [67] a
methodology for an automatic determination of the fixed-
point specification. Firstly, the dynamic range of each data
of the control algorithm is evaluated with the help of the
Interval Arithmetic theory to define the minimal number of
bits needed to represent the data integer part. Then, the
accuracy is evaluated on the basis of an analytical approach.
In the digital signal processing domain, the most common
used criterion for evaluating the fixed-point specification
accuracy is the Signal-to-Quantization-Noise-Ratio (SQNR).
The originality of this approach is that it proposes an
analytical evaluation of the SQNR expression for linear
systems and non-recursive non-linear systems.

B. Design methodology based on reuse modules

For complex designs, modular conception is generally
used to reduce the design cycle. This methodology is based
on hierarchy and regularity concepts. Hierarchy is used to
divide a large or complex design into sub-parts called
modules that are more manageable. Regularity is aimed to
maximize the reuse of already designed modules [68].

With the increasing progress of CAD tools, the
improvement in terms of development time reduction lies
more in the capacity of the designer to know how to classify
and reuse his model module, than in a perfect knowledge of
his CAD tools. Nowadays, the manufacturers and the
designers of circuits even propose to recover in free [69] or

restricted access [6]-[8], several design models, also called
Intellectual Property IP modules. Besides, the complexity of
some modules, such as processor-cores [70], can be
important. This design approach is based on the reusability
of IP modules [71].

A module can be defined as an element of a library,
available to the designer, which can be directly inferred
without having to design it [52]. Therefore, the reuse
methodology consists in selecting, throughout the synthesis
process, elements of a library that are useful for the design in
progress. These modules, extracted of the design flow, are
distributed between various levels of abstraction. The
procedure is very similar to those used in DSP
developments, with soft-macros [72]. Fig. 4 presents two
types of reuse or IP module libraries that can be constituted,
one at behavioral level and the other one at RTL level.

Fig. 4. Reuse and IP module libraries.

C. Algorithm Architecture “Adequation” Methodology

To be efficient, the modular design approach must be
based on reliable modules. However, in many cases, desired
modules do not already exist and they have to be built. It is
therefore crucial, when designing them, to be helped by an
efficient methodology that allows taking into account the
numerous constraints of such systems.

The goal of the Algorithm Architecture “Adequation” (or
A3 methodology), when applied to FPGAs, is to find out an
optimized hardware architecture for a given application
algorithm, while satisfying time/area constraints [73].
“Adequation” is a French word meaning efficient matching.
Note that it is different from the English word “adequacy”
which involves only a sufficient matching. A3 is based on
graph models to exhibit both the potential parallelism of the
algorithm and the available parallelism of the proposed
architecture. The implementation is formalized in terms of
graph transformations. The (a,b,c) to (d,q) transformation
case is treated in order to illustrate the effectiveness of this
methodology.

- Data Flow Graph: Having finalized the algorithm
refinement procedure, the Data Flow Graph (DFG) of the
algorithm is directly derived from (3). The DFG
establishes all the potential parallelisms of the algorithm.
Fig. 5 shows the data flow graph corresponding to the
coordinate transformation algorithm. Each node represents

an operation and each edge represents a dependency of
data between two operations.

Fig. 5. DFG of the coordinate transformation algorithm.

- Design of the A3 optimized architecture: The repetitive
patterns of the DFG presented in Fig. 5 can then be
advantageously factorized by using the A3 methodology [73]
in order to match the required hardware constraints. This
leads to several data-path possibilities. Operations are now
replaced by operators. Indeed, each operator included in a
data-path has a cost since it consumes hardware resources.
In the case of the coordinate transformation algorithm, four
different ALU data-paths can be derived from the A3
factorization process, as it is shown in Fig. 6.

Fig. 6. ALU data-paths of the coordinate transformation.

Notice that, for simplicity reason, only the transformation
and computation parts of this algorithm have been treated in
this example. A3 methodology could be also applied with

A22(θ)

Reg Reg Reg Reg Reg Reg

A11(θ) A12(θ) Xa Xb A21(θ)

x x x x

- + - +

Reg Reg

Xq Xd

A22(θ)

Reg Reg Reg Reg Reg Reg

A11(θ) A21(θ) Xa Xb A12(θ)

Mux Mux

x

Demux

x

Demux

Reg Reg Reg Reg

- +

Reg

Xq

- +

Reg

Xd ALU-1 ALU-2

A22(θ)

Reg Reg Reg Reg Reg Reg

A11(θ) A21(θ) Xa Xb A12(θ)

Mux Mux

x

Demux

x

Demux

Reg Reg Reg Reg

- +

Reg

Xq

- +

Reg

Xd

Mux

Xb

Reg Reg Reg Reg Reg Reg

A11(θ) A21(θ) A12(θ) A22(θ) Xa

Mux Mux

x

Demux

Reg Reg Reg Reg

- +

Reg

Xq

- +

Reg

Xd ALU-3 ALU-4

n[s 0 n-1]

x x x x

Xa

Xb

A21(θ) A11(θ)
A22(θ) A12(θ)

- +

Xq

n[s 0 n-1]

n[s 0 n-1]
n[s 0 n-1] n[s 0 n-1] n[s 0 n-1]

- +

Xd

n[s 0 n-1] n[s 0 n-1] n[s 0 n-1] n[s 0 n-1]

n[s 0 n-1] n[s 0 n-1]

Reuse and IP
Behavioral Model

Blocks

LibraryLibrary

RTL or Synthesize
Level

Physical
Level

Behavioral
Level

System
Level

LibraryLibrary
Reuse and IP

RTL or Synthesize
Model Blocks

success to sine function generation, also included in the
(a,b,c) to (d,q) transformation algorithm. Then, the different
data-paths are compared taking into account their
performance in terms of latency, speed and size area in order
to get the best tradeoff between all these constraints. In order
to compare these data-paths, corresponding architectures are
synthesized in behavioral VHDL and implemented into the
same target (Xilinx, SPARTAN 2 XC2s100 PQ208). As it is
shown in Fig.7, three resolutions were studied (12-bits, 14-
bits and 16-bits). As expected, ALU-1 is the greediest
solution in terms of consumption of hardware resources but
at the same time, it is the fastest one. On the other hand,
ALU-4 is the slowest data-path solution but it presents the
most optimized solution in terms of the consumption of
hardware resources. In fact, it represents only one third of
ALU-1 architecture. ALU-2 and ALU-3 present a
compromise solution between computation time and
hardware resources requirements. So, the designer can
choose the most suitable architecture solution according to
the hardware requirements and expected control
performance.

Fig. 7. Performance of the different ALU after synthesis.

V. CONTRIBUTIONS AND LIMITS OF FPGAS USED IN

ELECTRICAL SYSTEM CONTROLLERS

A. Domain of use of the FPGAs

When designing industrial electronics circuits, several
criteria have to be considered. Some of the most significant
are: the cost, the power consumption (essential in the case of
embedded systems), the application performance and above
all, the suitability for the chosen hardware technology to
match the requirements of the algorithm to implement.

This last point will be developed for the case of the
control of electrical systems. As mentioned in the
introduction, currently the two main hardware solutions for
implementing a controller are DSPs and FPGAs. Therefore,
according to the nature of the algorithm to implement (i.e. its
DFG), the designer has to choose between these two
possibilities. The graph in Fig. 8 illustrates in a qualitative
way the reasons of such a choice.

The x-axis of this graph represents timing constraints of
the algorithm. These constraints mainly rely on the type of
data dependency. The higher this dependency is, the more
sequential the algorithm is. It is then obvious that software
solution (DSPs) is perfectly adapted to this case. On the
other hand, if the DFG reveals many possibilities of
parallelism (low data dependency and competition between
operations), it is then the hardware solution (FPGAs) which
becomes the most interesting.

Fig. 8. DSP and FPGA domains of use.

However, timing constraints are not sufficient to fully
characterize an algorithm - its complexity is also a key-
element. This is the reason why it is reported on the y-axis of
the graph. Algorithm complexity is evaluated in two ways:
the number of operations and their regularity. Indeed, an
algorithm presenting a significant number of operations is
not necessarily complex if the majority of these operations
are identical. It is then easy to design an efficient ALU that
is optimized for the treatment of these specific operations.

In the field of digital control of electrical systems,
algorithms are almost all included in the intersection area of
these two technologies. However, in many cases, the
implementation in a DSP is preferred. According to us, the
reason is historical. Software solutions are older and they do
not frighten the designers because they are based on
programming. However, this apprehension of circuit designs
is less and less founded given the progress of design
methodologies and CAD tools. When using HDLs, FPGA
implementations are also relying on portable code.
Moreover, the reduction of the execution time of an
algorithm in the case of a DSP implementation is only
obtained by a long work of optimization of the
corresponding assembler code. Such an optimization is no
less consuming in terms of development time than the time
needed for the design of an efficient architecture when using
the A3 methodology. However, gain in this last case is often
spectacular in terms of execution time. Of course, other
aspects must also been considered, such as accuracy issue.

DSP

FPGA

(a) (b)

(c)

(d)

Algorithm Timing constraints

A
lg

or
ith

m
 c

om
pl

ex
ity

(a) : high data dependency
(b) : high level of parallelism of the algorithm
(c) : few functions and / or homogenous functions
(d) : lot of functions and / or heterogeneous functions

0 10 20 30 40 50 60 70 80 90 100 0

50

100

150

Number of used SLICE blocks in %

(Latency/Maximum clock frequency) in ns

+ (12 bits)
O (14 bits)
x (16 bits)

ALU4

ALU2 & ALU3

ALU1

B. Benefits of using FPGAs for Control of Electrical
Systems

As a complement of the former section, authors are now
trying to outline the benefits of using FPGAs for controlling
industrial electrical systems, driven by a power converter. A
typical example consists in the current control for PWM
inverters. The demonstration is based on the ability of
FPGA-based controllers to execute quasi-instantaneously
their tasks, as shown in Fig. 9. In this figure, TADC represents
the analog-to-digital signals time conversion, TC is the
execution time of the control algorithm and Ts is the
sampling period that is usually taken equal to the switching
period of the power converter or to half of it.

Fig. 9. Timing distribution (a) General purpose microcontroller, (b)

DSPcontroller, (c) FPGA-based controller

Fig. 9.a corresponds to the use of a general purpose

microcontroller. In this case, the main limitation factor is the
computing power of this component. Sampling period is
fixed according to this limit, leading to one and a half
switching period of delay (one period due to the
computation delay and a half-period delay which
corresponds to the usual statistical delay due to the PWM
signals application). This reduces the bandwidth of the
closed loop system and in some cases, may destabilize the
controlled process. Signal waveforms are also very poor
[74]. Finally, it should be mentioned that direct control of
power converters (sliding mode, bang-bang control) are not
recommended in this case.

Fig. 9.b corresponds to the case of a DSP controller
implementation. This case gives much better results than the
former one. Indeed, thanks to their adapted architecture,
these components allow controlling the current of an
electrical machine or a load in a few dozens of micro-
seconds. As a consequence, the lack of rapidity of the
controller is no longer the limiting factor of the closed-loop
system. Limitations take their origin in the switching losses
of the power converter, leading to a sampling frequency of
around 10-20kHz for medium range power systems. When

carefully designed, the delay can be reduced to an half
switching period (≈ 50µs), which greatly improves the
dynamic performance. Direct control of the power
converters can be achieved but expected results are of less
quality than those obtained via an analog controller.

Fig. 9.c corresponds to an FPGA-based controller. Due
to their ability to transcript on the hardware architecture all
the potential parallelisms of the control algorithm, FPGAs
can only take a fraction of the switching period to execute in
real-time a full complex algorithm. A direct consequence of
this extreme rapidity is the consummation of a large number
of the internal resources of the chip, increasing in the same
time the cost [33]. However, by using optimization
techniques such as A3 [73] and/or pipelining, the designer
can easily build a balanced architecture, which respects the
area limitation and preserves the rapidity of execution of the
control algorithm (≈ 1-2µs for AC motor drive control).
Therefore, the obtained computing time TC for FPGA-based
controllers is far below the one reached with a programmed
solution.

Such instant reactions make FPGA-based controllers
very close in their behaviors to their analog counterparts.
They preserve their advantages (no calculation delay, higher
bandwidth) without their drawbacks (parameters drifting,
poor level of integration). Hence, this quasi-analog property
could be sufficient to promote this technology for
implementing more and more industrial digital control
systems.

However, a more careful look at Fig. 9c, shows
important time left within each sampling period, when the
controller has finished its computing tasks and has only to
handle the PWM signals generation. As a consequence, only
a little part of the FPGA is active during this time, leaving
the component largely underexploited. This important
observation has been made by some authors in the past, even
if very few clearly highlight it [75]. In most cases, it leads
them to propose several interesting improvements that we
are now trying to classify.

- Over-sampling: A first approach consists in over-

sampling techniques as proposed in [25], where the authors
integrate the current in a PFC controller at a frequency 4
times higher than the sampling frequency, yielding more
accurate results for this current regulation. The care taken to
simplify the computation (reduction of the number of
multipliers) is also to be mentioned. In [76], Chapuis et al.
propose a quasi-analog digital DTC, where the torque
regulation is updated every 2µs; a protection module is
added, which prevents switching on the same inverter leg.

- Predictive control: In [77], Ling et al. propose the

implementation of a complete Model Predictive Control
strategy applied to an aircraft example. It is to be noticed
that the algorithm is using floating point arithmetic, which is
still rare when working with FPGAs.

- Current measurement improvements: In [78], Fratta et

al. propose an ideal PWM ripple filter, obtained by over-

(a)

(b)

(c)

(k-1)Ts (k)Ts (k+1)Ts

(k-1)Ts

TADC

(k)Ts

(k+1)Ts

(k+1)Ts

TC

(k)Ts

(k-1)Ts

sampling the measurements of the controlled current, then
computing its average value inside a time sliding-window
and re-introducing it in the current loop. Careful
comparisons are also made with an alternative DSP
implementation.

In [79], authors present an FPGA-based implementation
of an SRM current control which allows avoiding anti-
aliasing filters. Indeed, by choosing the perfect instant of
sampling, a true average current may be measured.

- Control of multi-systems with the same controller: In

[80], Garcia et al. have implemented an FPGA-based
controller for a 16 phases DC/DC converter. The targeted
application is automotive. This kind of example is very
demanding: as it is low voltage, the sampling frequency can
be very high and the controller has to manage up to 16
interleaved channels. Such power segmentation is also
required in aircraft applications for reliability reasons. These
examples can be considered as typical niche applications for
FPGAs.

In [43], Tazi et al. proposed the control of up to 4 AC
motors with the same FPGA vector current controller, with a
sampling period of 50µs.

Finally, as FPGAs can handle very fast computing and

the main limitation of the power converter being the
switching losses of the transistors, some authors have
proposed some improvements to the classical PWM strategy
in order to reduce the switching period. It consists in the
single switch commutation technique that avoids the
application of a deadtime when a commutation occurs. Thus,
using this technique, one can implement a faster current loop
(up to 40kHz for medium power) [81].

C. Dynamic Reconfiguration of FPGAs

Reconfigurations of control algorithms in run-time can
be done by software with DSPs. Conversely, SRAM-based
FPGAs allow dynamical reconfiguring of hardware
architectures. This possibility has already been largely
explored in computer vision applications [82]. Besides, as
explained in [83], reconfiguring induction motor control
algorithms in run-time, depending on the operating point of
the machine, can improve significantly the performance of
the whole system. Authors had also experimented with
success a first dynamically reconfigurable architecture
dedicated to the tests of evolving PWM strategies [84].
Another interesting use of dynamic reconfiguration consists
of reconfiguring the control system when a major failure
occurs [85]. The reconfiguration is then necessary to still
control the plant evolution or at least to cancel the process in
safety conditions.

However, the dynamic reconfiguration of hardware
configuration, which can be partial or total, is still largely
underexploited in the field of industrial control systems. A
major reason is the poor reconfiguration speed [7]. This may
change in the near future.

VI. FPGAS IN INTELLIGENT AND COMPLEX CONTROL
SYSTEMS

The use of modern Electronic Design Automation

packages for electronic systems design facilitates easy
implementation of complex control algorithms and Artificial
Intelligence (AI) into hardware. Hence, a wide range of
complex and intelligent controller designs have been
recently developed, with applications in industry. A
significant number of them target FPGAs, due to the rapid
prototyping features and the flexibility offered by FPGAs,
especially through the recent availability of microprocessor
or DSP cores, allowing hardware software co-design and
implementation. Some areas using FPGAs for the
implementation of complex controllers are highlighted
below and a case study of an AI (fuzzy logic) controller will
be dealt with in more detail in a separate section.

A. Neural Networks implemented in FPGA

According to a recent report of an European Network of
Excellence [86], the near and long-term future
implementations of hardware-based neural networks will be
shaped in three ways: i) by developing advanced techniques
for mapping neural networks onto FPGAs, ii) by developing
innovative learning algorithms which are hardware-
realizable, iii) by defining high-level descriptions of the
neural algorithms in an industry standard to allow full
simulations to be carried out and to allow fabrication by the
most appropriate technique and to produce demonstrators of
the technology for industry.

Such designs will be of use to industry if the cost of
adopting this new technology is sufficiently low for the
company and if the technology is made accessible to them.
The cost of implementing new technology in an ASIC falls
each year. Europe lags behind Japan and the USA in the
application of intelligent techniques, especially in consumer
electronics. Considerable expertise in the design of neural
networks and their application to industry is available in
universities throughout the European Union. Strong
collaboration exists in this field, especially between
universities, as expressed through existing ESPRIT
programs such as NEuroNet [86].

Hardware-based neural networks are important to
industry as they offer a small-size and low-power
consumption compared to software running on a
workstation. Therefore such neural network controllers can
be embedded in a wide range of systems both large and
small. The benefits of neural networks to industry have been
recognized especially in Japan, where a number of consumer
goods are making use this technology. A recent prominent
product has been a microwave oven (Sharp), which uses a
neural module developed in the UK. Other consumer
applications of related technology include fuzzy logic
modules in cameras and in vacuum cleaners. Solutions
should be tailored to the needs of industry by providing a
choice of implementations from software modules, through
FPGAs and semi-custom chips to full-custom VLSI.

Libraries of neural functions should be made available in
software and libraries of cells (digital, mixed and analog) for
hardware. Software libraries exist for the traditional neural
network models, for example for use with MATLAB.
 For industry to take up university-based designs, these
designs must be in an industry-standard form, for example
VHDL or C++ functional code, they should be modular and
they should be parameterized to allow customization to the
industry’s needs. The following European companies are
known to have investigated the use of hardware-based neural
networks: Ericsson (UK, Sweden), Philips Research
(Holland), Siemens (Germany, UK), 3M Laboratories
Europe GmbH Neuss, XIONICS Document Technologies
GmbH Dortmund, Robert Bosch GmbH Reutlingen,
Spectrum Microelectronics Siek (Germany), Fiat (Italy),
Domain Dynamics Ltd (UK) [86]. Specific application areas
include the control of telecommunications networks, speech
processing and recognition, speaker identification and
micro-electromechanical systems. The industry which
already applies neural technology, or is likely to benefit
from it, is already pan-European. For example, Siemens has
activities in both Germany and the UK, Ericsson has
activities in Sweden and in most European states and the UK
hosts Ericsson's VLSI Design Centre. The main areas of
application are [86]:
• Communications systems, demodulators, intelligent

antennas, semiconductors for the space environment.
• Object identification, image compression, HDTV,

medical and biometric image analysis, thermal image
processing systems, materials analysis.

• Character recognition, speaker identification, speech
recognition and enhancement, handwriting recognition.

• Information retrieval, exploratory data analysis, quality
control, function learning, automatic control, economic
prediction, electrical consumption prediction,
knowledge extraction, intelligent controls, automatic
verification of VLSI and WSI circuits.

• Stochastic learning algorithms, Content Addressable
Memory, massively parallel processors, pulse-stream
computation.

Some directions for implementation [86] are:
• VLSI digital and analog hardware, analog

implementation of neural networks, pulse-stream
systems, on-chip weight perturbation algorithms

• On-chip learning, reinforcement training, feed-forward
training, stochastic training

• Distributed and heterogeneous processor architectures,
fault tolerant systems, optical neural techniques

• Analog and mixed hardware implementations of neural
networks using time-continuous or coherent pulse-width
modulation techniques,

• Massively parallel computers, silicon implementations
of neural networks, neuro-fuzzy systems.

A wide range of research papers on Neural Networks
based Controllers were published in prestigious journals.
Some (like [87]) were collated in special issues on
Transactions of Industrial Electronics [88], [89]. Recently,

other papers on Neural Networks are more frequently
present in regular issues of this journal ([90]-[94]).

B. Fuzzy Logic Based Control Systems

 Today, fuzzy logic based control systems, or simply,
Fuzzy Logic Controllers (FLCs) can be found in a growing
number of products, from washing machines to speedboats,
from air condition units to hand-held autofocus cameras. The
success of fuzzy logic controllers is mainly due to their
ability to cope with knowledge represented in a linguistic
form instead of representation in the conventional
mathematical framework. Control engineers have
traditionally relied on mathematical models for their designs.
However, the more complex a system, the less effective the
mathematical model. This fundamental concept provided the
motivation for fuzzy logic and is stated by Lofti Zadeh as the
Principle of Incompatibility [95]. There are five main
elements in a fuzzy logic controller: Fuzzification module
(Fuzzifier), Knowledge base, Rule base, Inference Engine,
Defuzzification module (Defuzzifier). Automatic changes in
the design parameters of any of the five elements create an
adaptive fuzzy controller. Fuzzy control systems with fixed
parameters are non-adaptive. Other non-fuzzy elements
which are also part of the control system include sensors,
analog-digital converters, digital-analog converters and
normalization circuits. There are two types of normalization
circuits: one maps the physical values of the control inputs
onto a normalized universe of discourse and the other maps
the normalized value of the control output variables back
onto its physical domain.

FPGAs constitute an appropriate target for the
implementation of fuzzy-logic controllers, facilitated by the
flexibility of the design environment, enabling direct
implementation of the circuit’s abstract model. A high
number of works have been published on fuzzy logic-based
control systems. One paper presents a method employing
hardware/software co-design techniques according to an ‘a
priori’ partition of the tasks assigned to the selected
components. This feature makes it possible to tackle the
control system prototyping as one of the design stages. In
this case, the platform considered for prototyping has been a
development board containing a standard microcontroller
and an FPGA. Experimental results from an actual control
application validate the efficiency of this methodology [96].

A paper, advocates a novel approach to implement the
fuzzy logic controller for speed control of electric vehicle by
using FPGA [97]. The speed of the motor has to be
controlled, which in turn controls the vehicle dynamics to
run the vehicle. So, the main aim is to determine the motor
speed, which drives the vehicle. In this respect, parameters
such as acceleration, braking, energy status, gear and terrain
are considered. This system, which functions as a closed
loop system, also takes the motor speed as a reference along
with the above-mentioned parameters to estimate the
variation of the motor speed [97].

A paper [98] presents an implementation of a fuzzy logic
controller (FLC) on a reconfigurable FPGA system. Another
paper explores the use of FPGA technologies to implement

FLCs. Two different approaches are described. The first
option is based on the logic synthesis of the boolean
equations describing the controller input-output relations.
The second approach uses dedicated hardware to implement
the fuzzy algorithm according to a specific architecture
based on a VHDL cell library [99]. A FPGA based fuzzy
sliding-mode controller, which combines both the merits of
fuzzy control and sliding-mode control, is proposed in [100],
to control the mover position of a linear induction motor

(LIM) drive to compensate the uncertainties including the
frictional force. The uncertainties are lumped in the sliding-
mode controller and the upper bound of the lumped
uncertainty is necessary in the design of the sliding-mode
controller but it is difficult to obtain in advance in practical
applications. Therefore, a fuzzy sliding-mode controller is
investigated, in which a simple fuzzy inference mechanism is

utilized to estimate the upper bound of the lumped
uncertainty. An FPGA is adopted to implement the indirect

field-oriented mechanism and the developed control
algorithms for possible low-cost and high-performance
industrial applications.

C. Hardware Implementation of Fuzzy and Neural Network
Controllers

A paper on problems of hardware implementation of
neural networks (NN) in the re–programmable structures
was written by A. Klepaczko et al. [101]. New class of these
devices, which integrate in one silicon wafer entire SoC,
facilitates NN construction and their application. The
cooperation of Micro–Controller Unit (MCU) and FPGA
helps to overcome space and interconnection limitations.
The paper aims to prove that large multi–layer neural
networks are achievable by associating programmable logic
array with a micro–controller, which supports space and
speed-efficient designs, in comparison to systems realized
only in an FPGA device or simulated only by MCU. Much
attention has been devoted to the practical application of the
NN in the System for European Water Monitoring
(SEWING) [101].

Another work is focused on custom architectures for
Fuzzy and Neural Networks controllers [102]. It presents
efficient architecture approaches to develop controllers
using specific circuits, using HDLs and synthesizing them to
get the FPGA configuration bit-stream.

D. Intelligent Data Acquisition Devices (DAQ)

Intelligent DAQ devices use National Instruments
LabVIEW reconfigurable FPGAs to implement custom high-
performance data acquisition on commercial off-the-shelf
(COTS) hardware. Instead of a predefined subset of DAQ
functionality, the intelligent DAQ uses an FPGA-based
system timing controller to make all analog and digital I/Os
configurable for application-specific operation. By
programming the FPGA, the custom high-performance DAQ
tasks can easily be implemented. Additionally, because of
the parallel architectures of FPGAs, the high-performance
task implementation is achieved without performance
degradation [103]. With the new direct memory access

(DMA) capabilities in the LabVIEW 8 FPGA Module, data
from within the execution of the FPGA device can be
retrieved at speeds up to 50 MB/s, depending on the target
hardware and host processor. DMA provides a direct link for
data on the FPGA to RAM on the host machine, improving
data-logging efficiency and making data immediately
available for analysis and visualization. This high-speed data
transfer provides real-time visibility into parameters and
variables within the FPGA [103].

E. Evolvable hardware

Evolvable hardware offers much for the future of
complex system design. Evolutionary techniques not only
give the potential to explore larger solution spaces, but when
implemented on hardware allow system designs to adapt to
changes in the environment, including failures in system
components. Novel evolutionary algorithms are being
developed and applied to intrinsic hardware evolution [104].
A major objective of this work is to produce an evolutionary
system that can be readily implemented on COTS hardware.
As an example of the new system, an FPGA-based controller
for a mobile robot has been developed by Prof. Andy Tyrrell
and his team at University of York, UK. The controller
consists of look-up tables, which perform the mapping from
sensor data to actuator, evolved using an effective
evolutionary algorithm. The experimental results on a
Khepera robot show that the method can successfully evolve
a robot controller for autonomous navigation to avoid
collision in an unknown or changing environment even if
sensor faults occur prior to evolution or after a successful
member of a population has been evolved. [104].

F. Controller designs for smart structural systems

The design of controllers for smart structural systems
usually proceeds without regard for their eventual
implementation, thus resulting either in serious performance
degradation or in hardware requirements that squander
power, complicate integration and drive up cost. The level of
integration assumed by the smart patch further exacerbates
these difficulties and any design inefficiency may render the
realization of a single-package sensor-controller-actuator
system infeasible. The research carried out automates the
controller implementation process and relieves the design
engineer of implementation concerns like quantization,
computational efficiency and device selection. FPGAs are
specifically targeted as a hardware platform because these
devices are highly flexible, power efficient, and
reprogrammable. The proposed controller design
methodology is implemented on a simple cantilever beam
test structure using FPGA hardware [105].

G. FPGAs used in Motion Control Interface

New Ethernet-based FPGA-based controllers for motion
control are reported [106]. They include all hardware
functions, such as timing, synchronisation and processing of
cyclic and noncyclic data on the basis of two integrated

Ethernet MACs. Cores for two controllers are available,
based on the low-cost Spartan-3 Xilinx FPGA platform. The
SERCON100 master and slave controllers are available,
both integrated in a FT256 BGA housing so that a common
hardware design can be realized. This makes a very
powerful, low-cost standard hardware platform available,
which reduces implementation efforts and also ensures a
high acceptance by suppliers [106].

VII FPGA-BASED DTC CONTROLLER

In this section, the authors present FPGA-based
implementations of Direct Torque and Stator Flux Control
(DTC) and Direct Torque and Rotor Flux Control (DTRFC)
with the use of Space Vector Modulation (SVM) for
induction motor drives. Indeed, due to their similar
structures but also their differences, these two algorithms are
good examples to show the effectiveness of an FPGA-based
functional modular approach to implement sensorless
control induction motor drives. Therefore, the chosen
solution is based on a custom hardware architecture
designed by assembling a set of functional building blocks.
These blocks are tested and organized in a library of
Intellectual Property (IP) modules for easy re-use [107].
Each block is geared towards a specific algorithm function
(Flux estimator, Hysteresis controller, etc.). A special
attention is given to the algorithm refinement, which allows
finding the optimum fixed-point data word length for each
internal variable of the algorithm. Finally, experimental
results are shown, which validate the proposed approach.

A. Principles of the proposed control algorithms

DTC and SVM-DTRFC algorithms have high torque
dynamic performances. In a first approximation, the SVM-
DTRFC algorithm can be considered as derived from the
well-known DTC algorithm [108]. While the basic DTC
technique is to directly select stator voltage vectors
according to the differences between reference and actual
torque and between reference and stator flux linkage, SVM-
DTRFC strategy is based on torque and rotor flux control
[109]. Moreover, in this case the Voltage Source Inverter
(VSI) is controlled indirectly by using SVM in a similar way
with what was proposed in [110]. This technique allows a
smoother behavior of the torque regulation at steady-state
operation than basic DTC.

Fig.10. Block diagram of the DTC technique

The block diagrams of DTC and SVM-DTRFC are
presented in Fig. 10 and Fig. 11 respectively.

B. Design of modular architectures

The discretization of the normalized control algorithms is
performed with the forward-difference (FD) approximation.
A full description of these algorithms can be found in [111].
Then, algorithm refinement procedure is carried out.

Fig.11. Block diagram of SVM-DTRFC strategy

In order to increase module reutilization, a modular and

standard design principle is applied. The functional
algorithm decomposition leads to a set of specific sub-
algorithms or modules, which are summarized in table I:

TABLE I: Functional Algorithm Decomposition

 Transformation

blocks Estimation blocks Control blocks

DTC
-(a,b,c) to (d,q) - Stator flux

(Magnitude, Angle)
- Torque

- Hysteresis
- Switching table

SVM-
DTRFC

- (a,b,c) to (d,q) - Rotor flux
(Magnitude, Angle)
- Torque
- voltage vector

- Hysteresis
- Switching
function
- SVM

As it can be seen from table I, there are several common
blocks used by both control algorithms. For each block,
appropriate Data Flow Graph (DFG) has been established.
Fig.12 illustrates the DFG of the α-axis stator flux estimator.

Fig.12. DFG of the α-axis stator flux estimator.

As for the magnitude and the angle of the stator or rotor
flux vector, they are estimated using CORDIC [64]. A
MATLAB program is used to search for the best choice in
terms of accuracy and number of CORDIC steps. It has been
found that 10 CORDIC steps are enough for this application.
As mentioned earlier, an interesting metric for evaluating the
precision of the digital algorithms developed with fixed-
point arithmetic is the Signal to Quantization Noise Ratio
(SQNR) [67].

Φsα(k)

x

+

z-1

-

x

vsα(k)

K2a

K1a

isα(k)

b1

b2

b3

b4

VSI

Rotor flux and torque
estimation

I.M

Voltage
vector

generation

Φr

T

Φr

*

*
Switching
function

-

-

θ ia,ib E

va

vb

Cf

CT

vc

SVM
T

sc

sb

sa

 VSI

Stator flux and torque
estimation

I.M

Switching
Table

Φs

T

Φs

T*

* Cf

CT

-

-

θ ia,ib E

sa

sb

sc

As an example, a set of evaluations performed with the
α-axis stator flux estimator are described, for which the DFG
is presented in Fig.12. The results are given in table II for a
SQNR constraint of 80 dB. It is shown that the first solution,
where all the signals have the same word-length (1st row),
can be optimized using [67], while respecting the SQNR
constraint (2nd row).

Table II: Optimal word length

Word length
isα b1 b2 b3 b4 Φsα

SQNR
(dB)

24 24 24 24 24 24 84.2
16 16 16 22 22 16 80.5

Simulation is then achieved under Simulink with the

Xilinx System Generator (SG) fixed-point toolbox. Fig.13
illustrates a simulated version of the DTC algorithm by SG
toolbox. Good performance was obtained using the optimum
fixed-point formats established by the analytic approach
[67]. The sampling frequency is fixed to 20KHZ.

Fig.13. Diagram of the DTC controller (built with Xilinx SG toolbox)

The development of each module in terms of architecture

is based on standardization principles. These principles are
regularity, understandability and reusability of already
designed components. A Register Transfer Level (RTL)
library of standard Intellectual Property (IP) blocks is
developed [107]. A detailed description of the flux and
torque estimator module is now given as example:

- Description of the module: This module implements a
torque and stator and rotor flux vector estimators for a three
phase induction motor. The data path is obtained with the
help of the A3 methodology [73]. As it can be seen in Fig.
15, the factorization process is applied to the greediest
operators (multipliers).

- Module properties: Scalable module based on generic
VHDL is developed. Module latency is 23 clock cycles
(40MHz). Hardware used resources are 29 % of a Spartan
XC2s100 FPGA [7].

- Module Interface:

Fig.14. Top view of the RTL model

The resulted (RTL) model of the estimator architecture,
presenting the VHDL entity, is shown in Fig.14.

C. Experimental results

Experiments are carried out with a 1kW, 4 poles
induction motor. These two algorithms have been
implemented on a low cost FPGA device (XC2S100), Table
III reports the very short execution time for each FPGA-
based control algorithm. Fig. 16 (a) and Fig. 16 (b) present
torque step-responses using respectively DTC and SVM-
DTRFC algorithms.

Table III
Processing time for FPGA-based control algorithms

FPGA-based architectures Processing time (µs)
DTC 1.15
SVM-DTRFC 1.42

Fig.15 Estimator architecture factorized by the use of A3 methodology

Fig.16. Experimental results torque step response 0Nm to 4Nm,
sTs µ50= , (a) DTC, (b) DTRFC

5 10 15 20 25 30 35 40 0

1

2

3

4

5

t(ms)

T
 (

N
.M

)

(b)

6 8 10 12 14 16 18 20 22

1
1.5

2
2.5

3
3.5

4

4.5

0.5
0

t(ms)

T
 (

N
.M

)

(a)

Flux and torque
Estimator

is,α

is,β

vs,α

vs,β

Φs,α

Φs,β

T

Φr,β

Φr,α

start
clk

End

Φsα(k)

x

+ +

en4

en2 en3 en0 en1

Sel0
vsα(k)

Φrα(k)

x

- +

en5 en4 en7 en6

en8

en3 en2

Sel0

Sel2

Sel0

Ka1
Sel0

+ -

+ +

en4

+ -

isα(k)

vsβ(k) isβ(k) Ka2 Kb1 Kb2

Φsβ(k)

Drb2 Dra2 K3a K3b
Sel0

Dra1

- +

en0 en1

- +

Φrβ(k) T (k)

en8 en8

isα(k)

isβ(k)

Stator Flux
Estimator

Rotor Flux and
torque Estimator

Torque dynamic is almost the same for both control
algorithms (1ms). It is to be noted that, in the case of SVM-
DTRFC, torque ripples are significantly reduced. Interested
readers can compare these performances to those obtained
with a DSP-controller target [112]. However, direct
comparisons between FPGA and DSP controllers in terms of
performance must be lead carefully. Indeed, to be totally
fair, among others, both targets must be of the same
generation, the design effort must be similar, and control
features - accuracy and sampling period - must be identical
too. The authors do not aim to perform such a comparison in
this paper, or to open a debate about the preference of using
one or another of these technologies. The paper is focused
on reviewing the use of FPGAs in industrial control.

VIII F UZZY LOGIC CONTROLLER FOR STAND ALONE

SYNCHRONOUS GENERATORS

This case study describes the analysis and design of an
electronic control system allowing variable speed operation
of diesel driven stand alone synchronous generators [45],
[1]. The system is shown in Fig. 17. A control scheme that
can isolate the final output frequency of the system from the
effects of speed variations is simulated and designed. The
proposed design aims to improve the efficiency of diesel
engine driven generators by allowing optimum speed
operation. Fuel economy and environmental protection are
achieved. The a.c. generated voltage is rectified into d.c.
power and then converted back into a.c. using a Pulse Width
Modulation (PWM) inverter before being applied to the
load. This configuration is widely used in variable speed
wind energy conversion systems [1], [113]. A suitable fuzzy
logic control system is designed to control the fuel valve of
the diesel engine based on the DC link voltage input. The
overall function of the control system is to ensure that the
output voltage of the system maintains the desired
magnitude and frequency over a range of varying rotational
speed and loading conditions. Due to the difficulty in
obtaining a precise model for the engine-generator set, fuzzy
logic is used in the control system, as it does not require an
accurate mathematical model. A typical fuzzy control system
can be divided into four main sections.

i. Fuzzifier - compares the input variables of the controller
with a predefined set of membership functions and assigns
the appropriate membership values. Thus, the fuzzifier
converts crisp input signals into fuzzy values.
ii. Fuzzy Inference Machine - links the controller to a set of
fuzzy rules.
iii. Fuzzy Rule Base - is a set of intuitive or linguistic rules,
which forms the basis of the control strategy.
iv. Defuzzifier - performs a function opposite to that of the
fuzzifier: it converts the control system’s fuzzy output into a
single crisp value that can be applied as control signal.
 In the actual Fuzzy Logic Control (FLC) module [45],
the Vdc voltage and the rate of change of Vdc are used as
input variables. The output is the fuel flow rate control
signal. The steps in designing the FLC are:
i. Identify the variables.
ii. Formulate Fuzzy Rules and Fuzzy Associative Memory
Table. The FVSG has 25 fuzzy rules that map the input
states to 25 output conditions (C1 to C25). General form is:

Rk : IF x1 is A k
1 and x2 is A k

2 , THEN Ck
where: Rk (k = 1, 2, …, 25) is the kth rule of the fuzzy

system and x1 and x2 are the input variables, A i
k (i = 1,2 ; k

= 1, 2, …, 25) is the kth fuzzy set defined in the ith input
space, Ck is the output condition inferred by the kth rule.
iii. Define membership function for input variables

(fuzzification).
iv. Define membership function for fuzzy output sets.

v. Defuzzification. The defuzzification process chosen for
this controller is the weighted average method [45].

 The FLC design is achieved in VHDL, which allows easy
description of the fuzzy implication techniques. For
example: PB (Positive Big) = max (C1, C2, C6) is described:
 PB <= 0 when c1=0 and c2=0 and c6=0
 else c1 when (c1>=c2 and c1>=c6) else
 c2 when (c2>=c1 and c2>=c6) else c6;
In this example, the rules state that the output signal u is
Positive Big (PB) when output condition is C1, C2 or C6.

Fig. 17. Fuzzy Logic Controlled power system

Synchronous
Generator

Diesel Engine

Fuzzy Control

V DC

Fuel Control

RECTIFIER PWM INVERTER

C

STAND-ALONE
GENERATOR 3 phase

output

FPGA Controller

PWM Control

Fig. 18 VHDL Simulation Results

The d.c. output voltage is simulated during a step

increase of the load current. The results in Fig. 18 show that
the fuzzy logic control system is successfully correcting the
tendency to fall of the output voltage Vdc. The system is
therefore able to cope with variations in Vdc resulting from
variable load and variable speed of operation. After the
complete system was modeled and simulated using VHDL,
the circuit design of the controller was synthesized and
implemented into a Xilinx XC4010 FPGA for rapid
prototyping. By adjusting the speed of the engine to the
operating conditions, fuel consumption can be reduced while
the same torque can be produced. Fig. 19 shows the voltage
response when the controller is connected to the system. The
desired DC voltage is set at 250 V.

0

100

200

300

0 5 10 15 20 25 30 35 40 45

time [sec]

d
.c

. v
o

lt
ag

e
[v

o
lt

]

Fig. 19. Voltage response with control system.

The graph shows that the controller is successful in

stabilizing the generator system. Although there is a voltage
drop of about 14% when the load resistance is decreased,
this effect is counteracted by the controller, and the voltage
level recovers to a steady value. The main achievements of
this system are:
• The configuration allows the final output voltage to be

independent of the generator speed, thus allowing the
system to operate at the most efficient speed at all times.

• The control system maintains the output voltage at the
desired magnitude and frequency against changes in Vdc
which arise from changes in speed and/or load.

 The system provides a suitable platform for the study of
efficient diesel engine driven variable speed generators.

IX. CONCLUSIONS AND PERSPECTIVES

The aim of this paper is to present the contributions of

FPGAs to the control of industrial systems. After a short
description of FPGAs and their CAD tools, the authors have
focused on the design methodology issue. Indeed, due to the
simultaneous increase of the control algorithm complexity
and the chip density, using an efficient design methodology
is essential in this context. To this purpose, a modeling
technique is proposed for the holistic investigation of power
electronic systems. This is based on System Level Modeling
Languages or Hardware Description Languages and allows
rapid FPGA prototyping of the control systems. The digital
controller designs are developed from idea, through the
design and simulation stages, to complete systems in a short
time and in close interaction with the optimized holistic
model of the complex engineering industrial system to be
controlled. Further advantages are provided such as:
multiple choices for the implementation target technology, a
reliable framework for design verification, high confidence
in the correct first time operation and wide compatibility of
the design (as IP block) with respect to multiple existing
modern CAD tools. The latter allows the integration of
digital electronic controller models in complex system
models.
After that, three main design rules are presented. The main
characteristics of the proposed architecture design
methodology are: the algorithm refinement, the modularity,
and the systematic search for the best compromise between
the control performances and the architectural constraints
(see A3 section). Then, an overview of contributions and
limits of FPGAs has been proposed and comparisons with
traditional DSP software solutions are also made. This
section is followed by a short survey of FPGA-based
intelligent controllers for modern industrial systems. Finally,
full and timely examples are presented to illustrate the

0

200

400

600

800

1000

1200

1400

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381

ILOAD =10A

ILOAD =20A
Voltage (normalized)

benefits of FPGA implementation when using the proposed
design approach. They include the Direct Torque Control for
induction motor drives and the control of a synchronous
stand-alone generator using fuzzy logic. It is demonstrated
that in both cases a low cost FPGA-based controller can
greatly improve the control performance, especially due to
the reduction of execution time, while keeping a high level
of flexibility.

In the near future, the complexity of the control systems
will continue to grow. The tasks devoted to the control
algorithm will no longer be limited to regulation but will
have to manage diagnosis and fault-adaptive on line control.
In this context, the research effort on the theory and the
applications of dynamic reconfiguration is crucial.

Another interesting direction of research is based on the
following observation: a control algorithm, when
implemented in an FPGA, can have a very short execution
time due to the high degree of parallelism of its architecture.
At the same time, the constraints imposed by the power
electronic components imply a sampling period that is, for
many applications, much higher than the execution time. The
resulting “wasted time” could be advantageously employed.
Several examples of relevant FPGA utilizations in this
context are presented in section V.B. They consist of
predictive control, over-sampling strategies, multi-plants
control, etc. All these very promising control paradigms
must still be improved.

Another perspective on FPGA design is to propose a
prototyping development system of a fully integrated
controller from VLSI technology and SoC design that can
include digital control and its analog interface (sensors,
ADC, power drivers, etc.) [8]. Finally, the co-design [114]
issue must be addressed, since the borders between software
and hardware are rapidly vanishing (one can already
implement up to 4 PowerPCs inside a single FPGA [6]). The
main problem in this case is to propose automatic rules of
partitioning, based on relevant quantitative indicators.
However, it can be estimated that holistic modeling
methodologies will be of great help for such tasks and also
for rapid controller prototyping in the very near future.

ACKNOWLEDGMENT

Acknowledgements are due to Dr. J. G. Khor, Mr. L.
Charaâbi and Mr. W. Naouar for their research on some of
the case studies presented.

REFERENCES

[1] M.N. Cirstea, A. Dinu, J. Khor, M. McCormick, Neural and Fuzzy
Logic Control of Drives and Power Systems. Oxford: Elsevier
Science, 2002.

[2] D.L. Perry, VHDL, McGraw-Hill, 2004.
[3] C. Cecati, “Microprocessors for power electronics and electrical

drives applications,” IEEE Industrial Electronics Society
Newsletter, vol. 46, n°3, pp. 5-9, Sept. 1999.

[4] S. Brown, “FPGA architectural research: a survey,” IEEE Design &
Test of Computer Magazine, vol. 13, pp. 9-15, 1996.

[5] Internet sites dedicated to FPGAs. Available on line at: www.fpga-
faq.com , www.fpgajournal.com

[6] Altera Data Book, 2006. Available on line at: www.altera.com
[7] Xilinx Data Book, 2006, Available on line at: www.xilinx.com
[8] Actel Data Book, 2006, Available on line at: www.Actel.com
[9] D.H. Lee; A. Choi; J.M. Koo; J.I. Lee; B.M. Kim, “A wideband DS-

CDMA modem for a mobile station,” IEEE Trans. Consum.
Electron., vol. 45, pp. 1259-1269, Nov 1999.

[10] P. Pirsch, N. Demassieux., W. Gehrke., “VLSI Architectures for
Video Compression – a survey,” Proceedings of the IEEE, vol. 83,
pp.220-246, Feb. 1995.

[11] S.J. Ovaska, O. Vainio, “Evolutionary-programming-based
optimization of reduced-rank adaptive filters for reference
generation in active power filters,” IEEE Trans. Ind. Electron., vol.
51, n° 4, pp. 910-916, Aug. 2004.

[12] R.X. Chen; L.G. Chen; L. Chen, “System design consideration for
digital wheelchair controller,” IEEE Trans. Ind. Electron., vol. 47,
n°4, pp. 898-907, Aug. 2000.

[13] K. Sridharan, T.K. Priya, “The Design of a Hardware Accelerator for
Real-Time Complete Visibility Graph Construction and Efficient
FPGA Implementation,” Industrial Electronics, IEEE Trans. Ind.
Electron., vol. 52, n°4, pp. 1185-1187, Aug. 2005.

[14] T.N. Chang, B. Cheng, P. Sriwilaijaroen, “Motion Control Firmware
for High-Speed Robotic Systems,” IEEE Trans. Ind. Electron., vol.
53, n° 5, pp. 1713-1722, Oct. 2006.

[15] T.H.S. Li, C. Shih-Jie, C. Yi-Xiang, “ Implementation of human-like
driving skills by autonomous fuzzy behavior control on an FPGA-
based car-like mobile robot,” IEEE Trans. Ind. Electron., vol. 50, n°
5, pp. 867-880, Oct. 2003.

[16] M. Gabrick, R. Nicholson, F. Winters, B. Young, J. Patton, “FPGA
Considerations for Automotive Applications,” in Proc. SAE Conf.,
2006, CD-ROM.

[17] J.J. Wang; R.B. Katz, J.S. Sun, B.E. Cronquist, J.L. McCollum,
T.M. Speers, W.C. Plants, “ SRAM based re-programmable FPGA
for space applications,” IEEE Trans. Nuclear Science, vol. 46, pp.
1728-735, Dec. 1999

[18] H.Y. Lui, C.H. Lee, R.H. Patel, “Power budget Power estimation and
thermal budgeting methodology for FPGAs,” in Proc. Custom
Integrated Circuits Conf., 2004, pp. 711-714.

[19] S. Velusamy, W. Huang; J. Lach, M. Stan, K. Skadron, MAPLD
“Monitoring temperature in FPGA based SoCs,” in Proc. Computer
Design Conf., 2005, pp. 634-637.

[20] N.P. Ligocki, A. Rettberg, M. Zanella, A. Hennig, A.L. de Freitas
Francisco, “ Towards a modular communication system for FPGAs,”
in Proc. Electronic Design, Test and Applications Workshop, 2004,
pp. 71-76.

[21] D.E. Johnson, K.S. Morgan, M.J. Wirthlin, M.P. Carey, P.S.
Graham, “Persistent Errors in SRAM-based FPGAs,” in Proc.
MAPL Conf., 2004, CD-ROM.

[22] E. Kiel, Lenze, Aerzen, “Control Electronics in Drive Systems Micro
Controller, DSPs, FPGAs, ASICs from State-Of-Art to Future
Trends,” in Proc. PCIM Conf., 2002, CD-ROM.

[23] Y.Y. Tzou, H.J. Hsu: “FPGA Realization of Space-Vector PWM
Control IC for Three-Phase PWM Inverters,”. IEEE Trans. Power
Electronics, vol. 12, n° 6, pp. 953-963, Nov. 1997.

[24] H. Abu-Rub, J. Guzinski, Z. Krzeminski, H.A. Toliyat, “Predictive
current control of voltage-source inverters,” IEEE Trans. Ind.
Electron., vol. 51, n°3, pp. 585-593, June 2004.

[25] A. de Castro, P. Zumel, O. Garcia, T. Riesgo, J. Uceda, “Concurrent
and simple digital controller of an AC/DC converter with power
factor correction based on an FPGA,” IEEE Trans. Power Electron.,
vol. 18, n° 1, Part 2, pp. 334-343, Jan. 2003.

[26] M. Aime, G. Gateau, T. Meynard, “Implementation of a Peak
Current Control Algorithm within a Field Programmable Gate
Array,” IEEE Trans. Ind. Electron., to be published in vol. 53, n°6,
Dec. 2006.

[27] G. Gateau, A.M. Lienhardt, T. Meynard, “Digital Sliding Mode
Observer Implementation using FPGA,” IEEE Trans. Ind. Electron.,
to be published in 2007.

[28] J. Mahlein, J. Igney, J. Weigold, M. Braun, O. Simon, “Matrix
converter commutation strategies with and without explicit input
voltage sign measurement,” IEEE Trans. Ind. Electron., vol. 49,
n°2, pp. 407-414, April 2002.

[29] P.W. Wheeler, J. Clare, L. Empringham, “Enhancement of matrix
converter output waveform quality using minimized commutation
times,”; IEEE Trans. Ind. Electron., vol. 51, n°1, pp. 240-244, Feb.
2004.

[30] R. Garcia-Gil, J.M. Espi, E.J. Dede, E. Sanchis-Kilders, “A
bidirectional and isolated three-phase rectifier with soft-switching
operation,” IEEE Trans. Ind. Electron., vol. 52, n°3, pp. 765-773,
June 2005.

[31] J. Acero, D. Navarro, L-A. Barragán, I. Garde, J-I. Artigas, J-M.
Burdío, “FPGA-Based Power Measuring for Induction Heating
Appliances Using Sigma-Delta A/D Conversion,” IEEE Trans. Ind.
Electron., to be published in 2007.

[32] V. Dinavahi, R. Iravani, R. Bonert, “Design of a real-time digital
Simulator for a D-STATCOM system,” IEEE Trans. Ind. Electron.,
vol. 51, n°5, pp. 1001-1008, Oct. 2004.

[33] E. Monmasson, J.C. Hapiot, M. Granpierre, “A digital control
system based on field programmable gate array for AC drives,”
EPE Journal, vol. 3, n° 4, Nov. 1993, pp. 227-234.

[34] Y-A. Chapuis, C. Girerd, F. Aubépart, J-P. Blondé and F. Braun,
“Quantization problem analysis on ASIC-based Direct Torque
Control of an induction machine,” in Proc. IEEE-IECON’98 Conf.,
1998, pp.1527-1532.

[35] X. Lin-Shi, F. Morel, A. Llor, B. Allard, J.M. Retif, “Implementation
of Hybrid Control for Motor Drives,” IEEE Trans. Ind. Electron., to
be published in 2007.

[36] G. Edelbaher, K. Jezernik, E. Urlep, “Low-speed sensorless control
of induction Machine,” IEEE Trans. Ind. Electron., vol. 53, n°1, pp.
120-129, Dec. 2005.

[37] A Aounis, An Investigation into Induction Motor Vector Control
Based on Reusable VHDL Digital Architectures and FPGA Rapid
Prototyping. PhD Thesis, De Montfort University, UK, 2002.

[38] N.R.N. Idris, A.H.M. Yatim, “Direct torque control of induction
machines with constant switching frequency and reduced torque
ripple,” IEEE Trans. Ind. Electron., vol. 51, n°4, pp. 758-767, Aug.
2004.

[39] H. Abu-Rub, J. Guzinski, Z. Krzeminski, H.A. Toliyat, “Advanced
control of induction motor based on load angle estimation,” IEEE
Trans. Ind. Electron., vol. 51, n°1, pp. 5-14, Feb. 2004.

[40] A.K. Jain, N. Mohan, “Dynamic Modeling, Experimental
Characterization, and Verification for SRM Operation With
Simultaneous Two-Phase Excitation,” IEEE Trans. Ind. Electron.,
vol. 53, n°4, pp. 1238-1249, June 2006.

[41] R. Dubey, P. Agarwal, M.K. Vasantha, “Programmable Logic
Devices for Motion Control - A Review,” IEEE Trans. Ind.
Electron., to be published in vol. 53, n°6, Dec. 2006.

[42] I. Ena, H. Nishi, K. Ohnishi, “Improvement of Performances in
Bilateral Teleoperation by using FPGA,” IEEE Trans. Ind. Electron.,
to be published in 2007.

[43] K. Tazi, E. Monmasson and J.P. Louis, “Description of an entirely
reconfigurable architecture dedicated to the current vector control
of a set of AC machines,” in Proc. IEEE-IECON’99 Conf., 1999,
pp. 1415-1420.

[44] A. Dinu, FPGA Neural Controller for Three Phase Sensorless
Induction Motor Drive Systems. PhD Thesis, De Montfort
University, UK, 2000.

[45] J. Khor, Intelligent Fuzzy Logic Control of Generators. PhD Thesis,
De Montfort University, UK, 1999.

[46] E. Galvan, A. Torralba, L.G. Franquelo, “ASIC implementation of a
digital tachometer with high precision in a wide speed range,” IEEE
Trans. Ind. Electron., vol. 43, pp.:655-660, Dec. 1996.

[47] S. Trimberger, “A Reprogrammable gate array and applications,”
Proceedings of the IEEE, vol. 81, pp. 1030-1041, July 1993.

[48] W. Wolf, FPGA-Based System Design. Prentice Hall, 2004.
[49] P.J. Ashenden, The Designer’s Guide to VHDL. Morgan Kaufmann

1995
[50] S. Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis.

Prentice Hall 1996.
[51] IEEE Standard VHDL Language Reference Manual, Std 1076-1993,

IEEE, 1993
[52] A.A. Jerraya, H. Ding, P. Kission, M. Rahmouni, Behavioral

Synthesis and Component Reuse with VHDL. Kluwer Academic
Publishers, 1998.

[53] T. Riesgo, Y. Torroja, E. De la Torre, “Design methodologies based
on Hardware Description Languages,” IEEE Trans. Ind. Electron.,
vol. 46, pp. 3-12, Feb. 1999.

[54] E. Christen; K. Bakalar, “VHDL-AMS-a hardware description
language for analog and mixed-signal applications,” IEEE Trans.
Circuits and Systems II: Analog and Digital Signal Processing, vol.
46, pp. 1263 –1272, Oct. 1999.

[55] F. Aubepart, C. Girerd, Y.A. Chapuis, P. Poure, F. Braun, “ASIC
implementation of Direct Torque Control for induction machine:
functional validation by power and control simulation,” in Proc.
PCIM’98 Conf., 1998, pp. 251-260.

[56] M. Cirstea, “Electronic Systems Integrated Modelling and
Optimized Digital Controller Prototyping – a Novel (HDL)
Approach,” IEEE Ind. Electron. Society Newsletter, vol. 52, n°3, pp.
11-13, Sept. 2005.

[57] F. Ricci, H. Le-Huy, “An FPGA-based rapid prototyping platform
for variable-speed drives,” in Proc. IEEE IECON’02 Conf., 2002,
pp. 1156-1161.

[58] DSPACE, 2006 Data Book. Available on line at:
http://www.dspaceinc.com

[59] L. Charaâbi, E. Monmasson, I. Slama-Belkhodja, “Presentation of
an efficient design methodology for FPGA implementation of
control system application to the design of an antiwindup PI
controller,” in Proc. IEEE IECON’02 Conf., 2002, pp. 1942-1947.

[60] S. Nabi, M. Balike, J. Allen and K. Rzemien, “An Overview of
Hardware-In-the-Loop Testing Systems at Visteon,,” in Proc. SAE
Conf., 2004, pp. 13-22,.

[61] H. Hanselmann, “Advances in Desktop Hardware-In-the-Loop
Simulation,” in Proc. SAE Conf., 1997, CD-ROM.

[62] M. Gomez, “Hardware in the Loop Simulation, Embedded Systems,”
Design on line magazine, Available on line at:
http://www.embedded.com/story/OEG20011129S0054.

[63] Z. Salcic, C. Jiaying, N. Sing Kiong, “A floating-point FPGA-based
self-tuning regulator,” IEEE Trans. Ind. Electron., vol. 53, n°2,
pp.693-704, April 2006.

[64] R. Andraka, “A survey of CORDIC algorithms for FPGAs,” in
Proc. ACM/SIGDA Conf., 1998, pp. 191-200.

[65] S.A. White, “Applications of Distributed Arithmetic to Digital
Signal Processing: A Tutorial Review,” IEEE ASSP Mag., pp. 4-21,
July 1989.

[66] F. Zhengwei, J.E. Carletta, R.J. Veillette, “A methodology for
FPGA-based control implementation,” IEEE Trans. Control Systems
Technology, vol. 13, n°6, pp. 977-987, Nov. 2005.

[67] D. Menard and O. Sentieys. “Automatic Evaluation of the Accuracy
of Fixed-point Algorithms,” in Proc. IEEE/ACM Conference on
Design, Automation and Test in Europe, 2002, CD-ROM.

[68] T. Trimberger, J.A. Rowson, C.R. Lang, and J.P Gray “A structured
design methodology and associated software tools,” in Proc. IECS
Conf., 1981.

[69] Free access IP Module Internet site. Available on line at:
http://www.opencores.org/

[70] H. Calderon, C. Elena, S. Vassiliadis, “Soft Core Processors and
Embedded Processing: a survey and analysis,” in Proc. Safe ProRisc
Workshop, 2005, CD-ROM.

[71] K. Kebbati, Y.A. Chapuis, F. Braun, “IP modules for motor control
FPGA/ASIC integration,” in Proc. IFIP Conf., 2001, pp. 385-390.

[72] Texas Instruments DSC Group, “A software modularity strategy for
Digital Control System motor”, SPRU485A, August 2001,Revised
October 2003.

[73] T. Grandpierre, C Lavrenne and Y. Sorel, “Optimized rapid
prototyping for real-time embedded heterogeneous multiprocessor,”
in Proc. CODES’99 7th International Workshop on Hardware/
Software Co-Design Conf., 1999, CD-ROM.

[74] E. Monmasson, J.C. Hapiot, M. Granpierre "Analysis of a current
controller for AC drives entirely based on FPGAs," in Proc. ICEM,
Conf., Sept. 1994, vol. 3, pp. 1-5.

[75] S. Berto, A. Paccagnella, M. Ceschia, S. Bolognani, M. Zigliotto,
“ Potentials and pitfalls of FPGA application in inverter drives - a
case study,” in Proc. IEEE ICIT Conf., 2003, vol. 1, pp. 500-505.

[76] Y.A. Chapuis, J.P. Blonde, F. Braun, “FPGA Implementation by
Modular Design Reuse Mode to Optimize Hardware Architecture
and Performance of AC Motor Controller Algorithm,” in Proc. of
11th EPE-PEMC Conf., 2004, CD-ROM.

[77] K.V. Ling, S.P. Yue and J.M. Maciejowski, “Model Predictive
Control on a Chip,” in Proc. IEEE ACC Conf., 2006, CD-ROM.

[78] A. Fratta, G. Griffero, S. Nieddu, “ Comparative analysis among
DSP and FPGA-based control capabilities in PWM power
converters,” in Proc. IEEE IECON Conf., 2004, vol. 1, pp. 257-262.

[79] F. Blaabjerg, P.C. Kjaer, P.O. Rasmussen, C. Cossar, “ Improved
digital current control methods in switched reluctance motor drives,”
IEEE Trans. Power Electron., vol. 14, n°3, pp. 563-572, May 1999.

[80] O. Garcia, P. Zumel, A. de Castro, J.A. Cobos, J. Uceda, “ An
automotive 16 phases DC-DC converter,” in Proc. IEEE PESC
Conf., 2004, vol. 1, pp. 350-355.

[81] J. Chen; P.C. Tang, “A sliding mode current control scheme for
PWM brushless DC motor drives,” IEEE Trans. Power Electron.,
vol. 14, n°3, pp. 541-551, May 1999.

[82] K. Bondalapati, V.K. Prasanna, “Reconfigurable computing
systems,” Proceedings of the IEEE , vol. 90, pp. 1201-1217, Jul.
2002.

[83] E. Monmasson; B. Robyns; E. Mendes, B. De Fornel, “Dynamic
reconfiguration of control and estimation algorithms for induction
motor drives,” in Proc. IEEE ISIE Conf., 2002, pp. 828 –833.

[84] E. Monmasson, H. Echelard, J.P. Louis, “Reconfiguration
dynamique d'algorithmes MLI,” Revue Internationale de Génie
Electrique, vol. 5, pp. 123-134, March 2002 (in French).

[85] N. Chujo, T. Hashiyama, T. Furuhashi, S. Okuma, "Reconfigurable
Controllers," in Proc. IPEC Conf., 2000, CD-ROM.

[86] NEuroNet Roadmap, “Future Prospects for Neural Networks,”
 http://www.kcl.ac.uk/neuronet/about/roadmap/hardware.html
[87] B. M. Wilamowski, R. C. Jaeger, and M. O. Kaynak, “Neuro-Fuzzy

Architecture for CMOS Implementation”, IEEE Trans. Ind.
Electron., vol. 46, no.6, pp. 1132-1136, December 1999.

[88] Special Section on “Neural Networks for Robotics”, IEEE Trans.
Ind. Electron., vol. 44, no. 6, Dec. 1997.

[89] Special Section on “Fusion of Neural Nets, Fuzzy Systems and
Genetic Algorithms in Industrial Applications”, IEEE Trans. Ind.
Electron., vol 46, no. 6, pp. 1049-1136, Dec. 1999.

[90] C.-Y. Huang, T.-C. Chen, and C.-L. Huang: "Robust Control of
Induction Motor with a Neural-Network Load Torque Estimator and
A Neural-Network Identification”, in IEEE Trans. Ind. Electron.,
vol. 46, no.5, pp. 990-998, Oct. 1999.

[91] J. Catala I Lopez, L. Romeral, A. Arias, and E Aldabas, “Novel
Fuzzy Adaptive Induction Motor Drive”, IEEE Trans. Ind.
Electron., vol. 53, no.4, pp. 1170-1178, Aug. 2006.

[92] F.-J., Lin and P.-H. Shen, “Robust Fuzzy Neural Network Sliding-
Mode Control for Two-Axis Motion Control System”, IEEE Trans.
Ind. Electron., vol. 53, no.4, pp. 1209-1225, Aug. 2006.

[93] J. Chia-Feng, C. Jung-Shing, “Water bath temperature control by a
recurrent fuzzy controller and its FPGA implementation,” IEEE
Trans. Ind. Electron., vol. 53, n°3, pp. 941-949, June 2006.

[94] Y. Chin Tsu, W. Wan-De, L.Yen Tsun, “FPGA realization of a
neural-network-based nonlinear channel equalizer,” IEEE Trans.
Ind. Electron., vol. 51, n°2, pp. 472-479, April 2004.

[95] L.A., Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Trans. Syst., Man &
Cybern., vol.3, pp. 28-44, June 1973..

[96] S. Sanchez-Solano, R. Senhadji, A. Cabrera, I. Baturone, C. J.
Jimenez, A. Barriga, "Prototyping of Fuzzy Logic-Based Controllers
Using Standard FPGA Development Boards," in Proc. 13th IEEE
International Workshop on Rapid System Prototyping (RSP'02),
2002, CD-ROM.

[97] S. Poorani, T.V.S. Urmila Priya, K. Udaya Kumar, S.
Renganarayanan: “FPGA Based Fuzzy Logic Controller For Electric

Vehicle,” Journal of the Institution of Electrical Engineers,
Singapore, vol. 45, n°5, 2005.

[98] D. Kim: “An implementation of fuzzy logic controller on the
reconfigurable FPGA system,” IEEE Trans. Ind. Electron., vol. 47,
n°3, pp.703-715, June 2000.

[99] E. Lago, M. A. Hinojosa, C. J. Jiménez, A. Barriga, S. Sánchez-
Solano, “Implementation Of Fuzzy Controllers”, in Proc. DCIS
Conf., 1997, pp. 715-720.

[100] F.J. Lin, D.H. Wang, P.K. Huang, “FPGA-based fuzzy sliding-mode
control for a linear induction motor drive,” IEE Proceedings,
Electric Power Appl., vol. 152, n°5, p. 1137-1148, Sept. 2005.

[101] A. Klepaczko, A. Napieralski, R. Kielbik, J. M. Moreno, “Hardware
Implementation of Programmable Neural Networks,” Nanotech, vol.
3, pp. 115-118, 2003.

[102] A. Nelson, T. Marcelo, “Custom Architectures for Fuzzy and Neural
Networks Controllers,” JCS&T, vol. 2, no. 7, Oct. 2002.

[103] M. Trimborne, “Optimizing Intelligent DAQ Devices with NI
LabVIEW 8”, National Instruments News, pp. 8-9, Feb. 2006.

[104] C. Ortega, A.M. Tyrell: “A Hardware Implementation of an
Embryonic Architecture Using Virtex FPGAs”, in Proc. of
International Conference on Evolvable Systems: From Biology to
Hardware Conf., Pages: 155 – 164, 2000.

[105] J.S. Kelly et al., “Design and implementation of digital controllers
for smart structures using field programmable gate arrays”, Smart
Mater. Structures, n°6, pp. 559-572, 1997.

[106] Sercos North America: “Motion control interface comes as FPGA
code”, Engineeringtalk, August 2005.

[107] W. Naouar, L. Charaabi, E. Monmasson, I. Slama-Belkhodja,
“Realization of a Library of FPGA Reconfigurable IP-Core
Functions for the Control of Electrical Systems,” in Proc. EPE-
PEMC Conf., 2004, CD-ROM.

[108] I. Takahachi, and T. Nogushi, “A new quick response and high
efficiency control strategy of an induction motor,” IEEE Trans. Ind.
Appl., vol. 28, n°5, pp. 820-827, Sept/Oct 1986.

[109] A. A. Naassani, E. Monmasson, et J. P. Louis, “Synthesis of Direct
Torque and Rotor Flux Control Algorithms by Means of Sliding
Mode Theory,” IEEE Trans. Ind. Electron., vol. 51, n°3, pp. 785-
799, June 2005.

[110] E. Monmasson, A.A. Naassani, J.P. Louis, “Extension of the DTC
concept”, IEEE Trans. Ind. Electron., vol. 48, n°3, pp.715-717, June
2001.

[111] L. Charaâbi, E.Monmasson, A. Naassani, I. Slama-Belkhodja,
“FPGA-based implementation of DTSFC and DTRFC algorithms,”
in Proc. IEEE IECON Conf., 2005, CD-ROM.

[112] L. Charaâbi, E.Monmasson, A. Naassani, I. Slama-Belkhodja, M.H.
Belmimoun, “Choosing FPGA or DSP for control algorithms. The
case of the DTC,” in Proc.Electrimacs Conf., 2005, CD-ROM.

[113] Simoes, et. al., “Design and Performance Evaluation of a Fuzzy-
Logic-Based Variable Speed Wind Generation System,” IEEE
Trans. Ind. Appl., vol. 33, no. 4, pp. 956-965, 1997.

[114] G. De Michell, R.K. Gupta, “Hardware/software co-design,”
Proceedings of the IEEE, vol. 85, n°3, pp.349-365, March 1997.

AUTHOR BIOGRAPHIES

Eric Monmasson (M’97, SM’06) was born in Limoges, France, in 1966.
He received the Ing. and Ph.D. degrees from the Ecole Nationale
Supérieure d’Ingénieurs d’Electrotechnique d’Electronique d’Informatique
et d’Hydraulique de Toulouse (ENSEEIHT), Toulouse, France, in 1989 and
1993, respectively. He is currently a Professor and Head of the Institut
Universitaire Professionnalisé de Génie Electrique et d’Informatique
Industrielle (IUP GEII), Cergy-Pontoise University (UCP), Cergy-Pontoise,
France. His current research interests, in the Laboratoire Systèmes et

Applications des Technologies de l’Information et de l’Energie (SATIE,
UMR CNRS 8029), are the advanced control of electrical motors and
generators and the use of FPGAs for industrial control systems. Pr.
Monmasson is a member of the steering committee of the European Power
Electronics Association and of the n°1 Technical Committee of the
IMACS. He is also a referee for IEEE Transactions, IEE Proceedings,
RIGE and Guest Associate Editor for IEEE Transactions on Industrial
Electronics (Special Issue on FPGA in Industrial Control Systems). He is
the author or co-author of 3 chapter books and more than 80 scientific
papers.

Marcian N. Cirstea (M’97-SM’04) is Head of Design and Technology
Department at Anglia Ruskin University in Cambridge, UK, after
previously working for De Montfort University and Nottingham Trent
University, UK. His research focus is on digital circuit design, control
systems for power electronics, holistic modeling of electronic systems,
fuzzy logic and neural networks. He is Senior Member of IEEE, founder
and Chair of the ‘Electronic Systems-on-a-chip’ Technical Committee of
the IEEE Industrial Electronics Society, Member of IEE, Chartered
Engineer (CEng). Dr. Cirstea is a referee for Elsevier, IEEE Transactions,
IEE Proceedings and Associate Editor for IEEE Transactions on Industrial
Electronics. He has published several technical books and about 85
refereed scientific papers. Three of his IEEE conference papers have
received awards. He has delivered four international courses / tutorials on
VHDL Digital Controller Design Applied to Power Electronic Systems
Modeling and FPGA Controller Prototyping.

