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Abstract - The aim of this paper is to review the state of the art 

of Field Programmable Gate Array (FPGA) technologies and 

their contribution in industrial control applications. Authors 

start by addressing various research fields where FPGAs are 

useful. The features of these devices are then presented 

followed by their corresponding design tools. To illustrate the 

benefit of using FPGAs in the case of complex control 

applications, a sensorless motor controller has been treated. 

This controller is based on the Extended Kalman Filter. Its 

development has been made according to a dedicated design 

methodology which is also discussed. Another example of 

illustration is the Neural Network Systems. To show the 

interest of FPGAs in this field, some case studies have been 

presented.       

Index terms – Field Programmable Gate Array, Industrial 

Control Applications, System on Chip, Design Tools, Design 

methodology, Sensorless Motor Controller, Extended Kalman 

Filter, Neural Network Systems 

 

I- INTRODUCTION 

Nowadays, to make the difference on the market, new 

industrial control systems have to be highly performing, 

very flexible and reliable. 

At the same time, the cost is a key issue. In order to 

reduce it, time-to-market has to be shortened, the price of 

controller device has to be cheap and its energy 

consumption as well as the one the controlled system 

reduced.  

This cost reduction is all the more challenging that these 

new industrial control systems must be based on ever 

increasing sophisticated control algorithms which need a lot 

of computing resources and need reduced execution time. 

To cope with all these challenges, designers can rely on 

more and more mature digital electronics technologies that 

come along now with friendly software development tools. 

To implement efficient real-time industrial control 

systems, designers have the choice between two main 

families of digital device technologies. 

The first family is based on a pure software platform. 

The associated devices are microcontrollers and Digital 

Signal Processor controllers (DSP controllers). These 

components integrate a performing microprocessor core 

along with several peripherals which are necessary to 

control the targeted system in real-time and to communicate 

with the industrial environment.  

The difference between microcontrollers [1] and DSP 

controllers [2] is, for a given surface of silicon, the ratio 

between the processing unit and the communication and 

control peripherals. The microcontrollers include a general 

purpose 16-bit or 32-bit Reduced Instruction Set Computer 

(RISC) and a wide variety of peripherals, while DSP 

controllers integrate a high performing processor core based 

on an hardware accelerator computing block (Multiply and 

Accumulate Arithmetic Logic Unit MAC ALU) and few 

peripherals. However, the limits between these two concepts 

are vanishing since the RISC unit of microcontrollers is 

more and more powerful and the number and the types of 

peripherals in DSPs are increasing.  

The main advantages of this approach are the maturity of 

these technologies, the quality of the associated 

development tools as well as their low price. The main 

limitations are the difficulty to take advantage of the 

potential parallelism offered by the control algorithm to be 

implemented and as a consequence, the limitation of the 

performances in terms of throughputs and achievable 

bandwidth. 

The alternative family of available digital devices for 

implementing industrial control systems is the Field 

Programmable Gate Arrays technology (FPGAs) [3]. These 

devices consist of pre-designed elementary cells and 

interconnections that are fully programmable by the end 

user to build specific hardware architectures that match the 

requirements of the final targeted application.  

The variety of the designed FPGA-based controllers is 

large. As shown in section II, current FPGAs allow the 

implementation of efficient 32-bit RISC processors. As a 

consequence, FPGAs can be first viewed as programmable 

microcontrollers where designers can combine one or 

several RISC processors with dedicated peripherals and 

computing hardware accelerators. From this perspective and 

due to their ever increasing density, modern FPGAs can be 

seen as true System-on-Chip (SoC) digital platforms. 

To the other side of the range, designers can also design 

pure specific hardware architectures for stringent 

applications in terms of performances. Thus, the design and 

the real-time implementation of control loop with sampling 

frequency above one MHz are now possible thanks to this 

approach as well as the implementation of massive parallel 

treatments. 

Like microcontrollers and DSPs, FPGAs were born in 

the eighties and are now a mature technology. FPGA design 

tools are also very friendly. As mentioned before, FPGAs 

are suited for high speed demanding applications. Indeed, 

designers can develop a fully hardware architecture which is 

dedicated to the control algorithm to implement. Hence, by 

preserving the potential parallelism of the algorithm, the 

resulting hardware architecture allows matching the 

expected processing speed specifications.  

The main limitation of this technology is the cost. 

FPGAs are still more expensive compared to their DSP and 

microcontroller competitors although this claim has to be 

revised. Indeed, FPGA may be more expensive than a 

microcontroller but not the cost per implemented function. 

Another drawback concerns the difficulty to integrate 

within current FPGAS mixed Analog/Digital peripherals 

like A/D and D/A converters. Once again, this limitation is 

vanishing with the recent introduction on the market of 

FPGAs that integrate A/D converters [4]. 

The success of a recent Special Section devoted to the 

use of FPGAs to control Industrial Control Systems [5]-[6] 



has demonstrated the great interest of this technology among 

the research community. 

Indeed, the ceaseless increasing density of FPGAs along 

with their high degree of flexibility pushed designers to use 

them for controlling a large range of industrial applications. 

The most significant are now reminded. 

A. FPGA-based controllers for embedded industrial and 

robotic applications 

Automotive and aircraft embedded systems are very 

challenging applications for digital electronics [7]. For these 

systems, safety is of prime importance. Thus, in [8] and [9] 

authors have proposed several techniques to tackle this issue 

and enhance reliability of the FPGA-based controllers.  

Another aspect of safety is the possibility for vehicle 

manufacturers and their suppliers to cope with the 

obsolescence of critical embedded systems. Electronic 

devices have now a very limited life time and it is 

mandatory to still find in the market fully secure FPGA-

based Intellectual Property (IP) module to replace them 

when they are now longer available [10]. The current trend 

for modular architecture within the FPGA-based embedded 

controller has also pushed designer to reinforce Intellectual 

Property by the use of sophisticated encryption techniques 

[11].  

Another concern for automotive and aircraft embedded 

systems is the design and real-time implementation of high 

data rate and reliable protocols for in-vehicle networks such 

as FlexRay or SpW [12]-[13].  

Regarding handheld embedded systems, the key issue is 

the reduction of power consumption [14]-[15]. The notion of 

power budget is now considered during the design process. 

In this field, several studies have evolved. In [16], a deep 

understanding of the source of power consumption and 

guidelines for its minimization are presented.  

FPGA devices are also welcome for managing the 

communication distributed applications via the efficient 

real-time Ethernet protocol [17]-[18]. 

Finally, mention that FPGAs are highly appreciated in 

the field of robotics. Sensor-based construction of efficient 

geometric structures via the generalized Voronoi diagram 

(GVD) have been implemented with success in FPGAs for 

mobile robots [19-20]. In [21], a coarse-grain parallel 

deoxyribonucleic acid (PDNA) algorithm for optimal 

configurations of an omnidirectional mobile robot with a 

five-link robotic arm is presented.  

In [22] and [23] examples are presented of FPGA-based 

controllers for haptique and tele-operation robotics. 

 

B. FPGA-based controllers for power electronics and drive 

applications 

A detailed analysis of the benefits of using FPGA-based 

controllers in power electronics and drive applications can 

be found in [24]. Just the salient features of this analysis are 

reminded here. Nowadays, the more limiting factor of 

current or voltage control loop of a power converter is the 

limitation of the switching frequency due to switching 

losses. Thus, the choice of the sampling frequency is most 

of the time conditioned by the maximum available switching 

frequency. Based on this analysis, two different groups can 

be identified: 

- High demanding applications  

- Constrained switching frequency applications. 

This first group concerns applications where the use of 

FPGA-based controllers is mandatory due to stringent 

constraints in terms of time or parallelism. 

The parallelism constraint case concerns the control of 

static converters where power is distributed in order to 

reduce the stress of the power switches. In these cases, 

concurrency is high since several power channels have to be 

driven in parallel. A good example of highly parallel 

operations can be found in [25] where a combined 

multiphase multilevel (5 phases, 5 levels) Space Vector 

Pulse Width Modulation (SVPWM) strategy was 

implemented with success in a low cost FPGA.  

The time constraint case concerns applications where the 

sampling frequency is very high (at least equal or above 100 

kHz) like for low voltage switch mode power supplies 

(SMPS). For such applications, the used switching 

frequency is equal or above 1MHz FPGA-based controllers 

are in this case mandatory [26]-[28]. 

Another high demanding application concerns hardware 

and power Hardware-In-the-Loop applications (HIL). In 

[29], authors present a FPGA-based real-time digital 

simulator of a 3-level 12-pulse Voltage Source Inverter 

(VSI) fed induction machine drive. It is worth to be 

mentioned that the VSI model is computed at a fixed time-

step of only 12.5ns, allowing a realistic representation of the 

IGBT nonlinear switching characteristics and power losses. 

The second group consists in applications where 

sampling is not critical due to switching frequency 

limitation. For this kind of applications, the use of a 

software-based controller is possible. However, even in this 

case, using FPGA can be of great interest since this way, 

control processing time can be drastically reduced, up to a 

fraction of the sampling period. This rapidity has an 

immediate influence on the quality of the control 

performances, especially when direct control is chosen [30]. 

Thus, the behavior of the proposed digital controller is very 

closed to its analog counterpart. Besides, due to the ever 

increasing density of the FPGA components, one can now 

implement complex algorithms within a few microseconds. 

A sensorless controller based on the Extended Kalman Filter 

(EKF) will be discussed later on (section III) to illustrate 

this trend. Other improvements due to rapidity of the 

controller are, 

- The reduction of complexity: In [31] a simple fault tolerant 

controller for wind energy conversion systems is presented. 

It is based on the combination of time and magnitude 

thresholds which allows reducing significantly the time for 

default detection (less than 10µs) where standard solutions 

need at least one quarter of the fundamental period. 

- Synchronization between the current sampler and the 

PWM carrier. In [32], an FPGA-based implementation of a 

Switched Reluctance Motor (SRM) current control without 

anti-aliasing filters is presented. Indeed, by choosing to 

sample current in the center of a symmetrical modulation, an 

exact measure of the average current is obtained without any 

additional filter.  

- Shared control resources: It consists in controlling several 

similar plants with a unique controller. Thus, in [33], 

authors have proposed an FPGA-based controller that is able 

to control up to 4 AC-drives with a sampling period of only 

50µs. Other interesting multi-axis controllers are given in 

[34]. 



- Oversampling strategies which are mainly used for 

improving the quality of the measurement of quantities. For 

instance, in [35], authors present a quasi-ideal direct 

measuring of the mean value of the current feedback.  

- Adding of new control functionalities: From this 

perspective, a real-time processing extension that naturally 

comes to mind is the implementation of a predictive control 

strategy like the one presented in [34] for synchronous 

motor drives. Another exciting challenge is the addition of 

health-monitoring processing. Very promising works have 

already been proposed for SMPS applications, like in [36] 

where an on-line identification strategy through cross-

correlation was successfully implemented. In the same vein, 

diagnosis algorithms can also be implemented. To this 

purpose, [37] and [38] have proposed wavelet-based 

diagnosis algorithms for respectively induction motor 

broken-rotor-bar detection and fault detection and 

classification in transmission lines.  

This paper is aimed to explain the importance of FPGA-

based solutions in the design of industrial control systems. 

The second section recalls the main features of the available 

FPGA technologies. Then, in the third section, an in-depth 

of a complex FPGA-based controller example is treated. It 

consists in a FPGA-based sensorless controller for 

synchronous motor using an Extended Kalman Filter (EKF). 

All the steps of the design are described and comparisons 

are given in terms on software and hardware 

implementations. Section IV is devoted to Artificial Neural 

Network (ANN) based FPGA-Systems. There is a growing 

interest for implementing ANN within FPGA mostly 

because their inherent parallelism. Two case studies are 

presented: a highly compact PWM generator and an 

electronic nose. Finally, conclusions are given and future 

trends given. 

II- PRESENTATION OF FPGAS 

Since their first introduction to the market in 1985 by the 

Xilinx Company, FPGA hardware technologies have 

attracted an always increasing interest and have significantly 

disrupted the early digital development process trends. 

Indeed, these devices belong to the so called semi-custom 

ASICs (Application Specific Integer Circuits). The latter 

low cost devices consist of pre-designed (by the 

manufacturer) elementary cells and interconnections that 

can be programmed and interconnected by the user. This has 

the credit to allow rapid-prototyping solutions and make the 

design process more flexible and cheaper. This is not the 

case of full-custom ASICs that are manufactured for a 

specific application and cannot be re-programmed by the 

user. 

A. Generic structure of an FPGA. 

As presented in Fig. 1, the basic structure of an FPGA 

consists of a sea of Logic Blocks (LBs), of an 

interconnection network and configurable I/O blocks. 

Because of their very high level of integration, in the recent 

FPGA devices are also included memory blocks, hardwired 

DSP blocks, clock manager blocks and communication 

blocks [41]. 

 
Fig. 1. Generic structure of an FPGA  

Depending on the expected function to implement, each 

LB is configured to perform combinatorial and/or sequential 

operations. For the combinatorial operations, a set of Look-

Up-Tables (LUTs) are included. This is the same for the 

sequential operations with a set of D-Flip-Flops. An LB is 

also able to perform a local storage function (distributed 

RAM memory), shift register (SR), multiplexer, and 

adder/subtractor operations. The interconnection network is 

also programmable by the user so as to interconnect as many 

LBs as necessary.   
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Fig. 2. Evolution of the FPGA density  

 

On the other hand, the internal structure of LBs differs 

from an FPGA family to another. For this reason, a 

normalized FPGA density metric has been accepted. Indeed, 

a common Logic Cell (LC) has been defined. It consists of a 

4-bit LUT, a D-Flip-Flop, a carry chain (for arithmetic 

operations) and a multiplexer, [39]-[42]. Fig. 2 presents the 

evolution of FPGAs in terms of density (i.e. number of the 

available LCs) since 1985. The waveform has been obtained 

after a comparison of the commercialized FPGA devices 

within each year.  

The configurable I/O blocks allow the interfacing 

between the internal architecture and the external 

environment. 

In order to optimize FPGA resources, hardwired DSP 

blocks (arithmetic blocks) including multipliers, adders and 

accumulators are included. For the same purpose, memory 

blocks (RAM, ROM, Flash RAM) are also integrated.  

The integrated clock manager blocks allow the 

management of the clocking resources. They are commonly 

based on Phase-Locked-Lools (PLLs). The latter support 

several features such as frequency multiplication and 

division, propagation delay compensation and phase shift 

correction.  

The current FPGA devices include also communication 

blocks that consist generally of transmission and reception 

buffers. Various communication protocols are supported, 

including among others USB, Ethernet, CAN, PCI, SPI and 

I2C protocols. 
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To provide high integration density, high speed and low 

power consumption, FPGAs have been the subject of a 

considerable progress in terms of copper process 

technology. Recent devices are now reaching down to 40 

nm copper process (28nm has been recently announced by 

Xilinx and Altera vendors) [39], [40]. Fig. 3 shows the 

evolution of the process technology since 1985.  
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Fig. 3. Evolution of the FPGA process copper technology 

The internal structure, the operating mode and the 

configuration of these FPGA elements differ depending on 

the device family and technology. There are various 

configuration technologies including, SRAM, EPROM, 

EEPROM, Fuse, Antifuse and Flash technologies. Because 

of their popularity, only the SRAM and the Flash 

technologies will be discussed. 

Besides the evolution of these FPGA technologies and in 

order to meet flexibility and high integration capability, the 

novel FPGA devices give the possibility to implement an 

increasing diversity of cores. Indeed, in addition to the 

previously presented FPGA cores and as it will be discussed 

afterwards, FPGA can integrate one or several processors 

and even analog peripherals [45]-[53]. They are then 

considered as System-On-Chips (SoCs) or System-on-

Programmable-Chips (SoPCs) solutions.  

B. FPGA internal technologies and architectures 

1- SRAM based FPGAs 

The configuration of an SRAM-based FPGA is entirely 

made using a set of dedicated SRAM blocks. These blocks 

are organized as a specific configuration layer. This 

programming strategy is volatile and a reconfiguration of 

the devices is required after the device is switched off. The 

most popular SRAM-based FPGA families are Xilinx and 

Altera families, [39], [40]. Among the commercialized 

FPGA devices, one can stress the high performance 

VIRTEX (Xilinx) and STRATIX (Altera) FPGAs and the 

low cost SPARTAN (Xilinx) and CYCLONE (Altera) 

FPGAs. In the field of industrial control applications, cost is 

a key-issue. As a consequence, the low cost families are 

preferred. Thus, only the latest Xilinx SPARTAN-6 and 

Altera Cyclone-4 FPGA families will be presented. 

Xilinx SPARTAN-6 FPGA: As shown in Fig. 4, this 

SRAM-based FPGA incorporates a sea of CLBs 

(Configurable Logic Blocks) and an interconnection 

network [39]. Roughly speaking each CLB is equivalent to 

12.8 LCs.  

A CLB contains a pair of slices, the SLICEX and 

SLICEL/SLICEM. Each slice can be configured to perform 

combinatorial functions using four 6-bit LUTs and 

sequential functions using eight D Flip-Flops. The SLICEM 

can also be configured to perform a distributed RAM block 

for data storage [39]. Consequently, there are 50% of 

SLICEX, 25% of SLICEM and 25% of SLICEL inside the 

SPARTAN-6 device (see Fig. 4).  

 
Fig. 4. SRAM-based SPARTAN-6 FPGA 

Altera CYCLONE-4 FPGA: The structure of the 

Cyclone-4 FPGA is presented in Fig. 5. In this case, the 

logic cells are named Logic Elements (LE). Roughly 

speaking each LE of an Altera FPGA is equivalent to one 

LC.  

 
Fig. 5. SRAM-based CYCLONE-4 FPGA 

The LEs are gathered in 16-group blocks called Logic 

Array Blocks (LAB). A LE consists of a 4-bit LUT that can 

perform either combinatorial or arithmetic operations and a 

D-Flip-Flop for sequential operations. The interconnection 

blocks are organized in 2 levels; local interconnection 

network and global network, [40].  
Table I: SRAM-based FPGA - some specifications 

 SPARTAN 6 CYCLONE 4 

Number of LCs 147443 (11519 CLBs) 150000 

I/Os 576 532 

DSP blocks 180 DSP blocks 360 Multipliers 

Clocking performances: 

PLL output frequency range 
400-1080 MHz 600-1300 MHz 

Memory size (RAM, ROM) 6179 Kb (RAM blocks 

and distributed RAM) 
6480 Kb (RAM 

blocks) 

Process technology 45 nm 60 nm 

Table I presents some important specifications regarding 

the SRAM-based FPGAs (SPARTAN-6 and CYCLONE-4). 

It indicates the maximum available characteristics 

depending on the FPGA series. 

2- Flash based FPGA 

In the case of Flash technology, the configuration is 

based on flash connections that keep the configuration state 

when the power is off. Each connection contains two 

transistors that share a floating gate and stores the 

programming information, [4]. This technology is the most 

useful technology in aircraft and space systems since it 

guaranties the configuration against the SEU (Single Event 

Upset) radiations. In the proposed survey, the Actel Fusion 

Flash-based FPGA is presented. Its internal logic cells 

consist of VersaTiles (VTs). The latter can implement either 

a combinatorial (3-bit LUT) or a sequential (D Flip Flop) 

functions. Fig. 6 gives an overview of the Fusion FPGA 

structure. 
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      Fig. 6. Flash-based Fusion FPGA 

Table II highlights some of the internal resources and 

performances of the described Flash-based Fusion FPGA. 
Table II: Flash-based Fusion FPGA- some specifications 

 Fusion 

Number of VersaTiles Up to 38.5 K 

Number of I/Os Up to 252 

DSP blocks (arithmetic blocks)  0 

Clocking performances:  

PLL output frequency range 
350 MHz 

Memory size (RAM/FIFO, 

ROM, Flash) 

270 Kb (RAM); 1 Kb 

(ROM);  8 Mb (Flash) 

Process technology 130 nm 

C. FPGA System on Chip (SoC) trends 

1- Processor unit 

As mentioned in the introduction, SoC approaches 

present new design features allowing the combination of 

software and hardware designs. Two categories of processor 

cores are considered, the “non-synthesizable” cores and the 

“synthesizable” cores.  

The non-synthesizable (also called hard processor cores) 

have a custom VLSI layout (in dedicated silicon) that is 

integrated within the FPGA. As a general rule, a hard 

processor core offers higher clock speeds with less 

flexibility. For example, Altera provides an ARM9 

processor core embedded in its EPXA10 series that is 

marketed as an Excalibur™ device [40]. The Xilinx Virtex-

5 integrates also a hardwired PowerPC 440 processor cores 

on-chip [39]. Recently, Actel has proposed the first 

hardwired Cortex-M3 processor core integrated into its 

Fusion FPGA family [4]. 

The synthesizable (Soft cores), such as Altera’s Nios II, 

Xilinx’s MicroBlaze processors and Actel’s ARM7 or 

Cortex-M1, use existing FPGA logic cells to implement the 

processor core. The particularity of such approach is the 

flexibility that allows the designer to configure and specify 

the number, the types of peripherals, the memory width… 

However, these cores have slower clock rates. 

2- Analog peripherals  

In addition to the processor unit, Actel’s Fusion family 

offers a new level of integration by allowing designer to 

implement a mixed signal treatment (analog and digital). It 

integrates a 12-bit programmable Successive Approximation 

Register ADC (SAR-ADC). The SmartFusion device 

integrates two ADCs. These features make this FPGA SoC 

device suitable for control applications [44]. 

3- Multiprocessing architectures in a single chip 

In case of complex digital applications, very high 

demanding performances can be achieved via the use of 

heterogeneous multiprocessing architectures in a single chip 

(MPSoCs). Indeed, such alternative provides high level of 

scalability compared to monolithic cores, in particular in 

terms of power and performance [45]-[48]. Important issues 

in MPSoC design are the communication infrastructure and 

task mapping. In fact, most of these complex designs are 

based on dedicated channels or shared buses due to their low 

cost.  

Unfortunately, scalability is restricted by serialization for 

multiple bus access requests. A promising approach for this 

issue is the Networks on Chip (NoCs) concept. The latter 

provides reusability, well-controlled global wire delay and 

efficient global communication [48]-[52]. In this context, 

the use of a system language like SystemC can be of 

interest. This allows simulating the complete multi-

processor system and the communication strategy at the 

cycle-accurate and signal-accurate level. 
Table III: Features of processor cores for SoCs [39], [40], [4], [63] 

Features 

SoC 
Xilinx 

Virtex-5 

Actel 

Fusion 1 

Altera 

Startix III 

Texas 

Intruments1 

CPU PowerPC 

440 

Cortex-M1 NIOS II/f DSP C28x 

Frequency (MHz) 400 60 290 150 

Bit Number 32 b 16/32 b 32 b 32 b 

Pipeline stages RISC 

superscalar
7-stage 

pipeline 

RISC, 3-

stage 
pipeline 

RISC, 6-

stage 
pipeline 

DSP, 8-

stage 
pipeline 

 

 
 Multiplier 

Hardware 

32x32 
multiplier 
(single cycle) 

Synthesizabl

e32x32 
multiplier 
(3 cycle for 

standard 

multiplier and 33 

cycle for small 

multiplier) 

Hardware 

32x32 
multiplier 
(single cycle) 

Hardware 

32x32 
multiplier 

(single 

cycle)  

 
ADC 

Mode   SAR -12b  Pipeline-
12b 

Rate  600 Ksps  12.5 Msps 

pipeline  30  16 

Logic cells Usage  4353 1020  

Synthesizable No Yes Yes No 

Configurability ++ ++ ++ -- 

Performance ++ + + ++ 

Legend: ++ good; + Moderate; -- Poor 

For these applications, the embedded Real Time 

Operating System (RTOS) becomes essential. In fact, RTOS 

offers a rich set of services which provides a basic support 

to the application and represents in a great part the way in 

which software is safely reused in an embedded system. 

Examples of used RTOS are Embedded Linux, MicroC/OS-

II… [53]. 

Table III presents a comparison between several SoC 

solutions: a standard DSP controller device, a PowerPC hard 

core, a Cortex-M1 and NIOS II/f soft core. 

 

D. Design tools 

In parallel to the FPGA features evolution, the design 

tools have become mature as well. Today, FPGA vendors 

provide a fairly complete set of tools that allow high quality 

design process starting from the hardware description, using 

VHDL or Verilog languages, to the final bitstream 

generation [39]-[42]. A simplified synoptic of the FPGA 

design process is presented in Fig. 7.  

 
Fig. 7. Simplified synoptic of the FPGA design process 
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Generally, design tools include hardware design and 

verification tools (VHDL/Verilog editor, synthesizer, 

place/route and physical implementation tools), vendor 

libraries in addition to simulation and debugging tools. 

Some examples are the Integrated Software Environment 

(ISE) tools from Xilinx, Quartus tools from Altera and 

Libero Integrated Design Environment (LiberoIDE) tools 

from Actel. All of them provide flexible and complete 

design features with additional associated tools for 

simulations (e.g. ModelSim tools) and for debugging (e.g. 

ChipScope tools from Xilinx). 

 
Fig. 8. Typical FPGA SoC design flow 

Furthermore, to suit SoC trends, FPGA vendors provide 

software development tools (editor, compiler, assembler, 

linker and debugger), software vendor IPs and processor 

customization tools. For example, Xilinx provides 

Embedded Development Kit (EDK) platform, Altera 

provides Embedded Design Suite (EDS) platform and Actel 

provides SoftConsole platform. Fig. 8 presents a standard 

design flow for developing SoC applications.  

This design flow consists of two main procedures: the 

software design Flow and the hardware design Flow. It 

offers a user-friendly interface that allows the designer to 

customize the processor for a specific project. After its 

configuration, the processor core is generated in the form of 

an HDL file (in the case of Altera and Actel tools) or a 

netlist file (in the case of Xilinx tools). Then, this file can be 

associated to custom user logic and integrated within the 

hardware design flow to be synthesized, placed and routed. 

The FPGA can be configured with the resulting bistream 

file. Then, the program which will be integrated on the soft 

processor cores can be compiled with the associated library 

files and C header files. A C/C++ compiler targeted for this 

processor is also provided for the development system. 

III- FPGA-BASED DESIGN OF AN INDUSTRIAL CONTROLLER  

CASE STUDY: SENSORLESS MOTOR CONTROLLER BASED ON 

AN EXTENDED KALMAN FILTER 

FPGA technology allows the development of hardware 

architectures within a flexible programmable environment. 

This feature gives designer an additional degree of freedom 

compared to software implementations based on 

microcontrollers and DSPs [42], [43]. This is because 

FPGAs are outperforming these software solutions by 

exploiting the inherent parallelism of the algorithm. 

Consequently, designer can develop a hardware architecture 

that is fully dedicated to the algorithm to implement. Thus, 

the execution time is drastically reduced. Regarding an 

industrial control application, the reduction of the execution 

time makes the control quasi-instantaneous. The control 

bandwidth is then enhanced. 

On the other hand, the development of a dedicated 

hardware architecture can be seen as intuitive and not 

adapted to the implementation of more and more complex 

controllers. This is the reason why the use of a well-

structured design methodology is quite important. Such a 

methodology should consist of a set of steps and rules to be 

followed in order to make the design process more 

manageable and less intuitive.    

In this section, the FPGA-based design of an industrial 

controller is discussed. In order to show the benefit of using 

FPGA for complex controllers, a sensorless motor controller 

is presented. This controller uses an Extended Kalman Filter 

(EKF) to estimate the rotor speed and position of the used 

synchronous motor. This development is made according to 

the design methodology, [42]-[44], overviewed in Fig. 9.  

     
Fig. 9. FPGA-based controller design methodology 

The particularity of this methodology consists in 

providing a top-down design process that starts from the 

preliminary system specification to the final experimental 

validation. In addition, a notable distinction between the 

development of the algorithm and its digital implementation 

is made. This distinction has the credit of making the 

algorithm totally independent of the used digital device. For 

instance, once the developed algorithm is achieved, either a 

hardware solution (FPGA) or a software solution (DSP) can 

be chosen. Furthermore, this distinction can lead to a 

separation between the needed designer qualifications. For 

example, the algorithm development may be realized by 

control engineers and the FPGA development by a micro-

electronics expert.  

From a more technical point of view, the proposed 

design methodology includes optimization assumptions that 

ought to be achieved so as to adapt the algorithm complexity 

to the available FPGA resources. As it will be discussed 

later, this optimization is done during the algorithm 

development process and during the FPGA architecture 

development one. For the first case, this consists in reducing 

the computational cost of the algorithm (reduction of the 

number of processed operations). As for the second case, 

this consists in studying the data dependency of the 

algorithm and finding out the potential factorizations that 

lead to the use of a minimum of operators that process a 

maximum of operations. This optimization can be achieved 

by applying for example the so-called Algorithm 

Architecture Adequation (A
3
) methodology [30].  

A. Preliminary system specification 

In this first step, the preliminary specification of the 

whole sensorless control application is made. To this aim, a 
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hardware specification and an algorithm benchmarking are 

achieved. 

 
Fig. 10. Sensorless control system 

The hardware specification consists in choosing, 

depending on the load conditions, the AC motor to be 

controlled and the appropriate power supply system. In 

addition, the sensors, the digital control unit and the ADC 

interfaces are defined. The algorithm benchmarking consists 

in choosing the control strategy and in specifying the 

sensorless method.  

In the proposed application, the controlled AC drive 

consists of a salient Synchronous Motor (SM) fed by a 

Voltage Source Inverter (VSI). The sensorless controller is 

based on an Extended Kalman Filter (EKF) which estimates 

the rotor position and speed [54]-[62]. An overview of the 

implemented control system is presented in Fig. 10. 

The EKF estimation is based on the normalized d-q 

stochastic system model (relations 1-3). This model is 

derived under the “infinite inertia” hypothesis [54]-[62].         
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Where f and H are the state space and the output 

matrices.  xn is the normalized state space vector. un and yn 

are respectively the normalized system input and output 

vectors. (isd ,isq) and (vsd ,vsq) are respectively the d-q stator 

currents and stator voltages. (Lsd ,Lsq) are the stator 

inductances and Rs is the stator resistance. θe and ωe are 

respectively the rotor position and speed. VB, IB, ωB, θB are 

the base values for normalisation. n is the normalization 

index. The model and measurement disturbances are 

statistically described by the zero-mean Gaussian noises w 

and v respectively characterized by covariance matrices Q 

and R.  

In the following, we are going to present the EKF basics. 

To start with, relation (4) presents the discrete-time 

stochastic state space model of the observed system. fd is the 

discrete time state space matrix and k is the sampling index. 

Table IV summarizes the EKF equations. 
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Table IV: EKF Algorithm 
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The implemented stator current controller is based on 

Anti-windup PI regulators [30], [53]. This PI controller 

calculates the d-q voltage references according to the 

measured and reference currents. After a coordinate 

transformation, the 3-phase voltage references are 

processed. Then the used Carrier-Based Pulse Width 

Modulation (CB-PWM) generates the PWM signals for the 

VSI. The speed controller is made up using a Proportional-

Proportional Integral (P-PI) regulator that is deeply studied 

in [53].  

As far as rotor current is concerned, a hysteresis 

controller and a buck converter have been implemented in 

order to maintain the rotor current equal to a constant value 

[30]. The voltage interface aims to generate the 3-phase 

stator voltages after a multiplication of the per-unit voltages 

(from the controller) by the measured DC link voltage. 

B. Algorithm development 

The algorithm development process consists of a set of 

steps during which the designer makes the functional 

validation and prepares the algorithm for digital 

implementation.  

1- Modular partitioning 

The modular partitioning consists in dividing the whole 

sensorless algorithm into independent and reusable modules 

with different levels of granularity. For the chosen example, 

the extracted modules are those presented in Fig. 10.  

2- Continuous-time functional validation 

Once the control system is designed and the algorithm 

partitioning is made, a continuous-time (s-domain) 

functional simulation is achieved using Matlab/Simulink 

tools. This step is aimed to simulate and verify the 

functionality of the complete control system.  

3- Digital realization 

During this step, the first task consists in making a 

digital synthesis of the aimed control closed loop. Two 

approaches are considered, the direct synthesis approach and 

the digital re-design approach. The first one consists in 

configuring the controller and synthesizing the used 

regulators in a fully discrete-time z-domain. The re-design 

approach consists in synthesizing regulators in the 
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continuous s-domain and then making the convenient 

transformation to the discrete-time domain (ZOH, Tustin, 

Euler). 

The speed and current regulators have been synthesized 

using the re-design approach using the Tustin 

transformation. The EKF has been synthesized using the 

direct synthesis approach but its prediction module is based 

on the re-designed system model. For the latter, the Euler 

transformation method is used. The chosen sampling 

frequency is set to 10 KHz.  

The obtained digital controller and observer can be 

considered as digital filters that are now to be realized. Their 

structures are then specified (direct form, cascade form, 

transpose form …).  

The following task is the choice of the fixed point data 

format. This choice can be made in two stages [64]. The first 

one is the choice of the fixed-point format of the coefficients 

by studying the stability of the closed-loop. The second 

stage concerns the choice of the fixed-point format for the 

variables. To this purpose, the limit-cycle at steady state and 

the signal-to-noise ratio are both considered.  

A simpler but more intuitive method for choosing the 

fixed-point format is by trial-and-error fixed-point 

simulations. Indeed, designer can develop the fixed-point 

model and then make a comparison with the floating point 

initial model. The format that leads to a minimum 

quantification error is then maintained. Another and still 

more intuitive way to choose the format is the use of 

Matlab/Simulink fixed-point tool. At the end of each 

simulation, this tool collects information about the 

processed data and displays their maximum, minimum 

values. It also indicates when overflows occur. Then, these 

data ranges help designer to choose the appropriate fixed 

point format.    

In the proposed application, the s[22Q20] fixed-point 

format is used for the EKF estimation,  the s[17Q16] format 

for the speed controller and the s[13Q12] format for the 

current controller. This representation is labeled as 

s[(i+f)/Qf] for signed data. (i+f) is the total data size, i is the 

number of bits of the integer part and f is the number of bits 

of the fractional part. 

4- Algorithm optimization  

As mentioned before, an optimization is to be performed 

in order to reduce the number of operations. This 

optimization is quite mandatory in the case of the FPGA 

solution since the size of the developed architecture is 

conditioned with the complexity of the algorithm. For 

instance, a complex control algorithm, where many greedy 

operations like multiplications have to be processed, needs a 

rigorous and smart simplification without losing the required 

performances.  

In order to illustrate the importance of optimizing the 

complexity of the developed algorithm, the matrix-based 

Kalman compensator is focused on (Table IV). Assuming 

that Pk/k-1 and Pk/k are symmetrical and Q and R are diagonal, 

such matrix treatment can be replaced advantageously by 

scalar treatment with a significant reduction of the number 

of operations and processed variables [62]. This is clearly 

demonstrated by the table V, where the complexity in terms 

of arithmetic operations is evaluated. 
Table V: complexity of the Kalman compensator 

    Initial Kalman 

compensator 

Optimized Kalman 

compensator 

Multiplications 318 149 
Additions 244 107 

Subtractions 16 11 
Inversions 1 1 

 

However, depending on the available hardware 

resources, the obtained complexity could remain inadequate 

to the FPGA implementation. As a result, an optimization of 

the FPGA-based architecture is also required. This point will 

be discussed during the FPGA-based architecture design. 

5- Discrete-time and fixed-point simulation 

After having developed the aimed digital control 

algorithm and having specified the suitable sampling 

frequency and the FWL, designer has to make a final 

functional verification by simulating the developed 

algorithm in the discrete-time and fixed-point domain with 

the help of Matlab/Simulink tools. In the case of the chosen 

example, the obtained simulation results are shown in Fig. 

11 where the waveforms of the measured and estimated 

rotor speed and position are given. 

 
Fig. 11. Validation of the EKF  

Estimation of the speed (a) and position (b) 

C. FPGA-based architecture design 

In the case of having chosen the FPGA target to 

implement the developed algorithm, designer initiates the 

development of the corresponding FPGA-based architecture. 

To make the design process less constraining, an interesting 

solution consists in generating automatically the FPGA-

based architecture from Matlab/Simulink, using dedicated 

toolboxes proposed by FPGA manufacturers [65]. However, 

in case of complex algorithms, this solution can lead to un-

optimized architecture that may be inadequate to the 

available FPGA resources. This is the reason why, in the 

proposed design methodology, designer has to develop and 

code himself the FPGA-based architecture with the help of 

the following steps (Fig. 9).  

1- Architecture optimization – A
3
 methodology 

The optimization of the FPGA-based architecture is 

based on the A
3
 methodology. Presented in [30], the latter 

consists in studying the parallelism of the algorithm so as to 

find the potential factorization. The aim is to use a minimum 

of operators that process a maximum of operations. Two 

graphical representations are introduced: the Data Flow 

Graph (DFG) and the Factorized DFG (FDFG). This last 

includes specific nodes called, F (“Fork”), J (“Join”), D 

(“Diffuse”) and I (“Iterate”). These nodes are used to delimit 

the factorization borders [30].  

By studying the optimized EKF algorithm (EKF 

compensator), it has been observed that the treatment is 

based on an elementary Dot-Product function (relation 11) 

that is used several times. Then, the A
3
 methodology can be 

applied.   
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Fig. 12. Developed DFG and FDFG 

Fig. 12(a) shows the DFG of the developed Dot-Product. 

The multiplications can be performed in parallel mode 

which is not the case of additions. Thus, the factorization 

process can be applied to the multiplier operator and the 

obtained FDFG is presented in Fig. 12(b). Since this 

function is used several times, the EKF compensator can 

also be factorized. The obtained FDFG is then presented in 

Fig. 13. 

 
Fig. 13. Developed FDFG – Factorization of a thicker grain operator 
2- Architecture design 

According to the obtained FDFG, the FPGA-based 

architecture is designed by replacing the FDFG nodes (F, J 

and I) by their corresponding operators. Thus, the node F is 

replaced by a multiplexer, J and I replaced by registers. The 

hardware architecture of each of the developed modules 

(according to the adopted partitioning) is then composed of 

a data path and a control unit that are both synchronized 

with the global clock signal. 

The data path contains the used operators and data buses 

between them. The treatment scheduling is ensured by the 

control unit which is a simple Finite State Machine (FSM). 

The latter is activated via a Start pulse signal. When the 

computation time process is over, an End pulse signal 

indicates the end of the treatment. As an example, Fig. 14 

presents the FPGA architecture corresponding to the FDFG 

of Fig. 12(b). 

 
Fig. 14.  Example of a designed FPGA architecture 

3- Functional simulation  

After having developed the VHDL design, the 

simulation is started. In our case, ModelSim tools have been 

used. The obtained simulation results can also be compared 

to those obtained during the Matlab/Simulink environment. 

Fig. 15 shows the obtained results for the presented 

application. 

 
Fig. 15. Functional validation of the FPGA-based sensorless controller 

4- Design synthesis and time/area performances analysis  

Once the global FPGA architecture is functionally 

validated, the next step is the analysis of the time/area 

performances. This is obtained after having synthesized the 

developed design (using the dedicated synthesis tools). This 

synthesis indicates the consumed FPGA resources and the 

maximum frequency of the operating clock. This maximum 

frequency allows the calculation of the global execution 

time.  

Table VI summarizes the obtained synthesis results of 

the whole sensorless controller (including the EKF, speed 

and currents regulators). From these results, the time/area 

performances are extracted. The minimum execution time is 

given. All these data are listed for different FPGA device 

solutions including low cost and high performance Xilinx 

FPGAs. 
Table VI: Synthesis results for the full FPGA-based sensorless controller 
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tex_min  5,130 µs 3,214 µs 2,873 µs 2,712 µs 

D. Experimentation 

1- Hardware In the Loop (HIL) validation 

In order to verify a first operating attempt, it is highly 

recommended to start the experimentation by the HIL 

validation. The latter can be considered as an intermediate 

between a fully computer-based development validation 

(simulation tools and FPGA design tools) and a fully 

experimental validation (actual system platform). The HIL 

procedure is carried out through a physical implementation 

of the developed FPGA-based architecture to be validated. 

The latter has to be associated with a real-time emulation of 

the plant. In addition, a communication controller has to be 

implemented in order to transfer the stimuli and the probed 

data. This communication is made with a Host-PC in which 

a comparison between the obtained HIL results and the 

simulation results is made. 

The developed EKF-based sensorless controller has been 

implemented and associated with an emulated plant model 

(synchronous motor model, VSI model and the mechanical 

load model). Fig. 16 highlights the synopsis of the achieved 

HIL test.  

 
Fig. 16. HIL procedure 

 
Fig. 17. HIL validation of the EKF estimation 

When using a Xilinx FPGA target, the HIL procedure is 

made using the ChipScope analyzer [39]. The latter is used 

to probe the internal signals in one hand and to configure the 

design in the other hand. The data transfer is made using the 

JTAG interface. The obtained results are depicted in Fig. 17. 

The validation is then made by comparing them to the 

simulation results (Fig. 11 and Fig. 15). 

2- Experimental validation 

The experimental validation has been achieved with the 

platform presented in Fig. 18. For experimental constraints, 

the used digital control unit is based on a Xilinx XUP 

Virtex_2P board. The treatment is synchronized with a 50 

MHz clock signal. The total execution time is then equal to 

6µs. Fig. 19 presents the waveforms of the speed and 

position estimation. These experiments are carried out with 

a 800W four poles synchronous machine. 

 
Fig. 18. Prototyping platform 

 
E. System on Chip FPGA design 

For benchmarking reasons, we have also implemented 

the sensorless controller in software based on the 

synthesizable MicroBlaze [39] processor core. The 

Peripheral Local Bus (PLB) is used to connect this processor 

with the used peripherals (GPIO, timers, PWM, Interrupt 

controllers, user-defined data acquisition module…).  

 
This software design is fully carried out using assembly 

macros and C-coded functions. To augment the ALU 

performances of these functions, the optional “hardware 

multiply” and “hardware divide” are included. The EDK 

tool automatically generates the memory map of the 

hardware platform and assigns default drivers to the 

processor and each of its peripherals. The execution routine 

of the proposed algorithm is depicted in Fig. 20.  

The MicroBlaze is synchronized with a 100 MHz clock 

and the sampling period (interruption cycle) is set to 100 µs. 

The execution time of the whole sensorless controller has 

been evaluated to 85µs. The surface occupation of the 

design is 11 % of the used Virtex 5 XC5VLX50T FPGA. 

Note that external 12-bit ADCs are used for data acquisition. 

In order to make a comparison to a standard software 

solution, the same sensorless controller has been 

implemented in a TI TMSF2808 DSP device (100MHz, 

32Bit, 12-bit ADC, 2x16-bit multiplier, 16Ko RAM 

memory, [63]). The same execution routine is preserved and 

the total execution time has been evaluated to 66 µs [61]. 

The functions are fully C-coded. One can stress from the 

obtained timing results that standard software devices 

remain more adapted for a full software implementation. 

This is mainly due to the design tools that are more mature. 
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The way of coding and the quality of the compilation tools 

are also determinant points. 

For these reasons and in order to benefit from the 

flexibility of SoC approaches and the high control 

performances achievable with hardware designs, it is 

interesting to combine both software and hardware 

treatments. For this aim, it is highly recommended to adopt 

co-design methodologies so as to make an intelligent 

partitioning between the software treatment and the 

hardware treatment. 

IV- FPGA CONTROLLERS BASED ON ARTIFICIAL 

INTELLIGENCE 

 

Traditionally, mathematical models were developed to 

evaluate the functionality of global engineering systems. 

However, the practical development of each part of the 

system needs then to be separately addressed. This often 

involves the use of different software platforms, the design 

itself being developed in a different environment. Recent 

advances in CAD tools have brought the functional 

description of design and practical hardware implementation 

closer.  

The use of modern Electronic Design Automation 

packages for electronic systems design facilitates easy 

implementation of complex control algorithms and Artificial 

Intelligence (AI) into hardware. Hence, a wide range of 

complex and intelligent controller designs have been 

recently developed, with applications in industry [66-70]. A 

significant number of them target FPGAs, due to the rapid 

prototyping features and the flexibility offered by FPGAs, 

especially through the recent availability of microprocessor 

or DSP cores, allowing hardware software co-design and 

implementation [71].  

A relevant paper in this context deals with custom 

architectures for Fuzzy and Neural Networks controllers 

[72]. It presents efficient architecture approaches to develop 

controllers using specific circuits, using HDLs and 

synthesizing them to get the FPGA configuration bit-stream. 

Some more specific areas using FPGAs for the 

implementation of complex controllers based on Artificial 

Intelligence are highlighted below.  

 

A. Neural Networks implemented in FPGA 

 

According to an European Network of Excellence (ENE) 

report [73], the future implementation of hardware neural 

networks is shaped in 3 ways: i) by developing advanced 

techniques for mapping neural networks onto FPGA, ii) by 

developing innovative learning algorithms which are 

hardware-realizable, iii) by defining high-level descriptions 

of the neural algorithms in an industry standard to allow full 

simulations and fabrication and to produce demonstrators of 

the technology for industry. Such new designs will be of use 

to industry if the cost of adopting them is sufficiently low. 

Hardware-based neural networks are important to industry 

as they offer low power consumption and small size 

compared to PC software and they can be embedded in a 

wide range of systems. Software libraries exist for 

traditional Artificial Neural Network (ANN) models 

(Matlab). The industry-standard form is however 

VHDL/Verilog or C++ parameterized modular code, 

allowing customization. 

A wide range of research papers on Neural Networks 

based Controllers were published in prestigious journals. 

Some were collated in special issues on Transactions of 

Industrial Electronics [74, 75].  

An interesting trend, which confirms the ENE report [73], is 

given by the recent development and implementation results 

of a parameterized FPGA-based architecture for feed-

forward multi layer perceptrons with backpropagation 

learning algorithm (FF-MLPs) presented in [76]. The 

proposed architecture makes possible native prototyping and 

design space exploration in hardware. 

Others papers [77,78] exploit the learn ability of ANNs. 

Paper [76] presents an adaptive low-speed-damping 

controller for a stepper motor which removes nonlinear 

disturbance at low speeds and paper [78] shows a self-tuning 

PID FPGA-based motion controller using RBF NN for a X-

Y table. 

 

B. Fuzzy Logic Based Control Systems  

 Today, fuzzy logic based control systems, or simply, 

Fuzzy Logic Controllers (FLCs) can be found in a growing 

number of products, from washing machines to speedboats, 

from air condition units to hand-held autofocus cameras. 

The success of fuzzy logic controllers is mainly due to their 

ability to cope with knowledge represented in a linguistic 

form instead of representation in the conventional 

mathematical framework. Control engineers have 

traditionally relied on mathematical models for their 

designs. However, the more complex a system, the less 

effective the mathematical model.  

FPGAs constitute an appropriate target for the 

implementation of fuzzy-logic controllers, facilitated by the 

flexibility of the design environment, enabling direct 

implementation of the circuit’s abstract model. A high 

number of works have been published on fuzzy logic-based 

control systems. One paper presents a method employing 

hardware/software co-design techniques according to an ‘a 

priori’ partition of the tasks assigned to the selected 

components. This feature makes it possible to tackle the 

control system prototyping as one of the design stages. In 

this case, the platform considered for prototyping has been a 

development board containing a standard microcontroller 

and an FPGA. Experimental results from an actual control 

application validate the efficiency of this methodology [79]. 

A paper, advocates a novel approach to implement the 

fuzzy logic controller for speed control of electric vehicle by 

using FPGA [80]. Another paper [81] presents an 

implementation of a FLC on a reconfigurable FPGA system, 

while a different paper explores the use of FPGA 

technologies to implement FLCs. Two different approaches 

are described. The first option is based on the logic synthesis 

of the boolean equations describing the controller input-

output relations. The second approach uses dedicated 

hardware to implement the fuzzy algorithm according to a 

specific architecture based on a VHDL cell library [82]. A
 

FPGA based fuzzy sliding-mode controller, which combines 

both
 
the merits of fuzzy control and sliding-mode control, is 

proposed in [83], to control the mover position of a linear 

induction motor
 
(LIM) drive to compensate the uncertainties 

including the frictional force.
 
 

Paper [84] presents an H-bridge multilevel converter 

governed by an integrated fuzzy logic controller/modulator 

designed with VHDL and implemented in FPGA.  

A design environment for the synthesis of embedded FLC 

on FPGAs, which provides a novel implementation 

technique has been developed in [85]. It allows accelerating 



the exploration of the design space of fuzzy control 

modules, as well as a codesign flow that eases their 

integration into complex control systems. Even an FLC 

based ant colony optimization (ACO) application has been 

proposed in [86] for improving designs efficiency and 

control performance, as well as ACO hardware 

implementation. 

C. Intelligent Data Acquisition Devices (DAQ) 

Intelligent DAQ devices use National Instruments (NI) 

LabVIEW reconfigurable FPGAs to implement custom 

high-performance data acquisition on commercial off-the-

shelf (COTS) hardware. Instead of a predefined subset of 

DAQ functionality, the intelligent DAQ uses an FPGA-

based system timing controller to make all analog and 

digital I/Os configurable for application-specific operation. 

By programming the FPGA, the custom high-performance 

DAQ tasks can easily be implemented. Additionally, 

because of the parallel architectures of FPGAs, the high-

performance task implementation is achieved without 

performance degradation [87]. DMA provides a direct link 

for data on the FPGA to RAM on the host machine, 

improving data-logging efficiency and making data 

immediately available for analysis and visualization. This 

high-speed data transfer provides real-time visibility into 

parameters and variables within the FPGA. 

Furthermore, adding an FPGA circuit to a DAQ platform 

interfaced by the NI Labview graphical system design tool 

gives the ability to perform early signal pre-processing and 

offers new valuable abilities like reconfigurability – first 

step towards a self reconfigurable device ready to respond in 

real time to any external or intrinsic changes [88]. On the 

other hand, Labview may be used as a graphical 

programming environment for FPGA targeted designs. The 

new LabVIEW FPGA environment enables application 

domain experts without prior knowledge of hardware 

description languages (HDLs) to program reconfigurable 

hardware devices. Such method is used in paper [89], 

illustrating how LabVIEW FPGA supports a flexible, 

reliable and cost-effective hardware design considering an 

ultra-high speed control application with complex timing 

synchronization. Other applications may be found in paper 

[90], in which an isolated wind energy conversion system 

based on the cascaded H-bridge multilevel inverter topology 

is considered or paper [91] which presents a high frequency 

radars controller designed in NI LabVIEW FPGA or even 

space applications as in paper [92]. A powerful combination 

of the parallel signal processing using neural networks 

implemented in FPGA with Labview as interface for an 

intelligent DAQ can be found in paper [93]. The output is an 

implementation of a neural network based estimator of the 

load machine speed for two-mass drive system on FPGA. 

 

D. Evolvable hardware 

Evolvable hardware offers much for the future of 

complex system design. Evolutionary techniques not only 

give the potential to explore larger solution spaces, but when 

implemented on hardware allow system designs to adapt to 

changes in the environment, including failures in system 

components. Evolutionary algorithms have been developed 

and applied to intrinsic hardware evolution, aiming to 

produce an evolutionary system that can be readily 

implemented on COTS hardware. An FPGA-based 

controller for a mobile robot has been developed by Prof. 

Andy Tyrrell and his team at University of York, UK. The 

controller consists of look-up tables, which perform the 

mapping from sensor data to actuator, evolved using an 

effective evolutionary algorithm [94]. Paper [95] presents 

how a self-generated architecture may be used to build-up a 

secret physical cipher unit with dynamic security properties. 

Another application can be found in [96], where a run-time 

adaptable evolvable hardware classifier system is proposed 

or in [97], in which a FPGA based customizable general-

purpose GA engine has been reported. A novel bio-inspired 

self-test technique for the implementation of evolvable fault 

tolerant systems, which mimics a Unitronic (unicellular 

electronic) artificial system, is presented in [98]. The system 

is implemented in FPGA like a bio-inspired cellular array 

and made up of structurally identical cells with self-

diagnostic and self-healing capability. 

 

V- NEURAL NETWORK BASED FPGA SYSTEMS –  

CASE STUDIES 

Artificial Neural Networks (ANNs) are also an 

interesting research field where FPGAs have been 

successfully used. Many recent publications ([9], [99], 

[100], [101]) consider the FPGA as an effective 

implementation solution of control algorithms for industrial 

applications. Hardware implemented ANNs have an 

important advantage over computer simulated ones by fully 

exploiting the parallel operation of the neurones, thereby 

achieving high speed of information processing.  

A. Case study 1: FPGA NN Hardware Implementation 

Algorithm 

Some VLSI algorithms achieve efficient NN 

implementation.  An algorithm for compact neural network 

hardware implementation, by using a combination of AND 

gates, OR gates and Threshold Gates (TG), leads to compact 

hardware structures. However, it cannot be used for direct 

FPGA implementation because TGs are not available in 

FPGA logic cells [102]. In order to minimize both ASIC and 

FPGA hardware implementation of ANNs composed of 

neurones with step activation functions, the solution is to 

treat each neurone as a Boolean function and to implement it 

separately. This leads to minimize the implementation 

complexity. The most useful property of such a Boolean 

function is that if its truth table is constructed as a matrix 

with as many dimensions as neurone inputs, then the truth 

table has only one large group of ‘1’ and one large group of 

‘0’. The solid group of ‘1’ is not visible when the Gray 

codification is used and thus classical Quine-McClusky 

algorithms or Karnaugh maps cannot efficiently be used. 

The proposed algorithm [103] uses a different approach and 

generates a multilayer pyramidal hardware structure, where 

layers of AND gates alternate with layers of OR gates. The 

bottom layer consists of incomplete NOT gates, a structure 

to be optimised later by eliminating redundant logic gates 

groups. 
However, the method is effective only when the numbers 

of inputs and bits on each input are low, otherwise a 

classical circuit may be more efficient. The algorithm itself 

contains three steps: ANN mathematical model digitisation, 

conversion of the digitised model into a logic gate structure, 

and hardware optimisation by elimination of redundant logic 

gates. A set of C++ programs automates algorithm 

implementation, generating optimised VHDL code. This 

strategy bridges the gap between ANN design software and 

hardware design packages (Xilinx). Although the method is 



directly applicable only to neurones with step activation 

functions, it can be extended to sigmoidal functions. 

The sample in Fig. 21 shows a neurone with 12 input 

weights and positive threshold level. The weights are sorted 

in descending order and a recursive implementation starts. 

The first three weights are larger than the threshold, so 

inputs 4, 7, 1 will drive an OR gate along with the 

subneurones built using the other subgroups [104]. The 

algorithm was automated using C++ programs that generate 

a netlist description of the circuit, optimize it and then 

generate the VHDL code. In terms of the software, there is 

no limitation of the ANN size. The characteristics of the 

ANN are introduced in the C++ program as a matrix text file 

(.csv format). Thus, a feed forward ANN with 3 

subnetworks (Fig. 22), generating the PWM switching 

pattern for an inverter, was designed [103]. 

In contrast with training algorithms, constructive ones 

determine both the network architecture and the neurone 

weights and are guaranteed to converge in finite time. The 

numerical values of all neurone weights and thresholds were 

calculated using a geometric constructive solution known as 

Voronoi diagrams. For this work, the complex plane is 

divided into triangular Voronoi cells. The master program 

allows user control over main parameters: i) Number of 

Voronoi cells, ii) Number of sectors dividing the 360 

degrees interval for argument analysis, iii) Number of bits 

used to code the components of the two complex inputs iv) 

Maximum fan-in for the VHDL logic gate model. The 

desired performance / complexity ratio is adopted. In this 

case, 5 bits to code each component of the two complex 

inputs gives enough precision (delays less than 100 ns), 

resulting in a total number of logic gates of 1329 on 

14+6=20 layers, which fits Xilinx XC4010XL FPGA.  

 
Fig. 21: Digital mathematical model to gate conversion 

 
Fig. 22:  ANN structure and testbench for operation speed testing 

Angle: analyses the argument of current difference vector. 

Position: analyses the argument and value of the voltage. 
Control Signals: generates three PWM binary outputs. 

  

When the number of inputs and bits on each input is low 

(precision appropriate for drives), this method is more 

effective than a classical digital circuit design implemented 

in FPGA. For a high number of bits/controller inputs, the 

NN approach can be less effective than a classical circuit. 

The explanation is that in the NN approach the complexity 

of the resulting circuit raises exponentially with these 

numbers, whereas in a traditional approach, the complexity 

increases quadratically. The case study presented in this 

paper was implemented as part of an induction motor 

controller in a 10,000 gates equivalent FPGA, as opposed to 

a classical digital vector control circuit, for controlling the 

same motor, which uses 99% of a 40,000 gate equivalent 

FPGA [105].  

B. Case study 2: FPGA NN based electronic nose  

Another interesting example is related to neural 

networks design applied to an FPGA based artificial 

olfactory system [106]. The method presented leads to the 

conceptual development of an extendable hardware 

implementable neural library of a feed-forward back 

propagation network (FF-BP) with on-chip learning. Neural 

modules, which can emulate in hardware the FF-BP 

computing functions, are grouped into a neural library and 

can in principle be used to create any FF-BP NN topology 

by setting the NN characteristics as number of neurons and 

layers. The case study shows an ANN used as a pattern 

recognition module in an artificial olfaction system, which is 

capable to identify four coffee brands [107]. An extended 

analysis has been carried out regarding the recognition rates 

versus training data features and data representation. 

The adopted approach replaces the classical solution of 

defining the application by using a high level language, it 

will be more useful and user friendly to create a pattern 

recognition system, in our case an ANN, by means of 

configurable modules grouped into a specific library. The 

immediate advantage of this approach is given by the 

possibility to implement different ANNs in hardware in the 

early research phases of the ANN development. Also, it 

gives the opportunity to establish, through simulation, the 

best resolution for data representation (Fig. 23). The 

research was carried out on developing a neural library set 

for a Feed-Forward Back Propagation (FF-BP) topology. 

The library is designed to support on-chip learning, giving 

therefore premises of self configuration capabilities in terms 

of pruning or enlarging the neural network’s size in order to 

obtain a fully optimized neural network for a specific 

application. The results are used to develop an intelligent 

platform with learning and adaptive properties. Building 

such a platform presumes the creation of predefined libraries 

of different Artificial Neural Networks (ANN) components, 

which finally may be used to create any neural network.  

A system for identifying different olfactory chemical 

compounds (4 different coffee brands) was developed as 

application [106]. The system recognizes different patterns 

(olfactory signature of organic molecules) using neural 

networks as pattern recognition, hardware implementable in 

programmable logic circuits such as FPGA. 



 
Fig. 23. Proposed method for hardware implemented ANN design 

 

Discovering the optimal topology of an ANN for a 

particular application remains an important issue, especially 

for highly competent classifiers such as FF-BP neural 

networks. It most cases, so far, the appropriate choice of the 

network features, the training methodology to be used, and 

the best network topology have been identified by repetitive 

simulations and modifications of the project code. 

Therefore, a library with ANN components, ready to be 

hardware implemented, represents a step forward towards a 

more user friendly design environment. An extendable 

hardware implementable neural library has been developed, 

considering a FF-BP network topology with on-chip 

learning. The implementation goal is achieved using the 

Mathworks’ Simulink environment for functional 

specification and System Generation, to generate the VHDL 

code according to the chosen FPGA device features. 

In order to discuss the functions that have to be 

implemented, it is important to specify the architecture of 

the MLP networks: the neurons are organized in at least 3 

layers: one input layer, one output layer and one or more 

intermediate, hidden layers. The network is fully connected, 

i.e. all the outputs of a layer are connected by synapses to all 

inputs of the following layer. Only the hidden and the output 

layers include processing units, whereas the input layer is 

used just for data feeding. The parallelism adopted is a node 

one and requires managing all the neurons from the same 

layer at the same time. Therefore, the control blocks that 

command the behaviour of the neuron elements are common 

for all neurons of a layer.  

Another main component of the artificial neuron, and 

usually a bottleneck for its speed performance, is the 

sigmoid activation function. Its hardware implementation 

implies important hardware resource utilization [108]. In 

order to reduce such consumption is useful to adopt different 

approximations (depending of the available hardware 

resources) with minimum errors. The principal classical 

methods to digitally implement an activation function are 

Look-up tables and truncation of the Taylor series 

expansion. Also, there are approximations with smaller 

errors, but they use floating-point multiplications, thus a 

practical VLSI implementation becomes far too complicated 

[109, 110]. 

In order to create the library modules of the sigmoid 

firing function, using System Generator/Simulink blocks, 

hardware implementations for the following approximation 

functions have been produced. The implementation reports 

conclude that that the best approximation method is the 

PLAN function, when the number of the neurons that use 

sigmoid function as fire function is larger than the number 

of the BRAM blocks available in the FPGA circuit. When 

the number of neurons is lower than the total BRAM blocks 

available in the FPGA circuit, the best way to approximate 

the sigmoid function is the Lookup Tables method. 

 
The process parallelism adopted implies that all the 

neurons within the same layer are controlled at the same 

time. The blocks are described using VHDL language and 

implemented using a block that converts a VHDL design 

into a System Generator/Simulink block. The computation 

results show that the largest NN which can be implemented 

into the 4VSX35 circuit is a FF-BP neural network with 

maximum of 120 neurons distributed as: 80 in the hidden 

layer and 40 in the output layer. 

The FF-BP neural network design environment 

developed was used to create a pattern recognition module 

for an artificial olfactory system capable to recognize 

different types of coffee. The olfactory system consists of 

(Fig. 24):  
 

- seven gas sensors chosen to react to a wide spectrum of 

odours (TGS842, TGS826_1, TGS826_2, TGS2600, 

TGS2601, TGS2602, TGS2620),  

- temperature sensor (LM35),  

- humidity sensor (SY-HS-230) - (all sensors are mounted 

into a gas test chamber),  

- test chamber,  

- three pumps for gas carrying,  

- circuits for sensors conditioning and pumps command,  

- data acquisition board (PCI-MIO-16E-1),  

- pattern recognizing module hardware implemented in 

FPGA (Virtex-4 SX MB - 4VSX35),  

- user interface developed in Labview 8.2. 

 

The data acquisition module was created in Labview 

environment using a virtual instrument (VI) customized to 

execute the following tasks: to acquire data generated by all 

9 sensors, to pre-process the acquisitioned signals (filtering, 

drift cancellation) and to save data as text file format (.lvm 

file). Therefore, the modules that compound the VI consist 

of: pumps control module, data acquisition control module, 

sub-VIs control time module, pre-processing signal module, 

C grade conversion module of the signal generated by the 

temperature sensor and %RH conversion module of the 

signal generated by the humidity sensor. 

 

 

Fig. 24. The architecture of the adopted artificial olfaction system 



 
 

The data has been extracted using the scenario presented 

in Fig. 25. It roughly comprises three processes. The first is 

the baseline calculation (the average voltage drop on sensors 

resistance when the reference gas, air, is applied). The 

second and third stages presume measurement with a fixed 

sampled frequency over a defined time, absorption and 

respectively desorption time, of the voltage drop on sensors 

resistance when the enriched odour is applied. A regular 

absorption / desorption operation, which presents the results 

of time settings vs. voltage drop on sensor resistor is shown 

in Fig. 25. 

To conclude the second case study presented, it can be 

stated that a novel neural design strategy has been 

developed, which benefits of reduced design time over 

classical field orientation approaches, leading to a low 

complexity and easy to implement pattern recognition 

module. A particular application of the pattern recognition 

system for an olfactory system was investigated and results 

presented show efficient hardware implementation in FPGA 

circuit. The neural network used as pattern recognition 

system was designed using a hardware-software co-design 

environment, in a manner that facilitates control over the 

hardware implementation complexity, and was downloaded 

into a Xilinx FPGA circuit.  
 

The achievement presented in this case study refers to a 

holistic modelling/design method, using modules created 

into hardware-software co-design environment (Matlab-

System Generator–ISE) and grouped in a specific NN 

library. These modules emulate in hardware any FF-BP 

network topology behaviour, giving the opportunity to design 

hardware implementable FF-BP neural networks, at a higher 

level. As a specific application, a FF-BP network has been 

used as pattern recognition module for an artificial olfactory 

system, capable to recognize 4 coffee types. Also, the 

influence over the recognition rates of data representation 

resolution and data training dimensionality has been 

analysed. The observations have been used to determine the 

neural network which has the best recognition rates with 

minimum hardware resource utilization. 
 

V- CONCLUSIONS AND FUTURE TRENDS 

The aim of this paper was to present the FPGA 

technologies and highlight their use in industrial control 

applications. It has been underlined that these hardware 

solutions can perfectly address the nowadays challenges in 

this field such as high control performances, low cost, 

reliability, power consumption and immunity to radiations.  

The contribution of these hardware devices was then 

discussed. The case of embedded systems, and industrial 

control systems were focused on. For the embedded 

systems, it has been stated that FPGAs are becoming an 

interesting option in many applications like robotics, 

networking, automotive and aircraft. Indeed, FPGAs are 

bringing many benefits in terms of safety, rapidity and 

power consumption.     

In the case of control applications, It has been shown 

that FPGA-based controller can be an efficient option for 

both the high demanding applications and the constrained 

switching frequency applications. The first group 

corresponds to high switching frequency applications, high 

level of parallelism applications and HIL applications. 

Regarding the second group for which the switching 

frequency is limited, it has been shown that we can take 

advantage of the rapidity of FPGAs to boost the 

performances of the controller.  

Authors have firstly made a generic presentation of the 

FPGAs. Their internal structure and their configuration 

technologies were described. A discussion about the design 

tools was also made. 

In the industrial control domain, the control algorithms 

become more and more complex. To illustrate the interest of 

FPGAs in such complex controller, authors have presented 

an example of application which consists of a sensorless 

motor controller. To estimate the rotor position and the 

speed of the used synchronous machine, an Extended 

Kalman Filter was used. The development of the FPGA-

based sensorless controller was then made according to a 

design methodology which is required especially for such 

complex algorithms.  

Another relevant field which was discussed is the Neural 

Network (NN) systems. The use of FPGAs in such 

applications is highly interesting since the parallelism of the 

NN algorithms is preserved. For an illustration purpose, 

authors have resented case studies.  

In the near future, the complexity of the digital control 

systems will continue to grow and the tasks devoted to the 

control algorithm will no longer be limited to regulation but 

have to manage EMI, communications, health monitoring, 

diagnosis and fault-adaptive on line control. As a 

consequence and from an algorithm point of view, signal 

processing functions for power applications will be the 

center of intensive researches. From this perspective, FPGA-

based controller represents a very attractive solution too. 

Finally, we shall end by shortly introducing the main 

challenges in terms of architecture, this aspect being closely 

related to the algorithm and at the same time offers in itself 

a degree of creativity. Among the most exciting trends we 

can quote the introduction of the floating point computing 

evaluation for FPGA-based solutions. What is its cost in 

terms of hardware resources? Is it necessary for industrial 

control applications where the dynamic range of variables 

and the complexity of the control algorithm are still limited? 

Another interesting field of research is the co-design 

approach, with questions like how to make an optimized 

partitioning between the software part of the controller 

architecture and its hardware part?, [111]. Another issue 

concerns mixed integration. Indeed, as seen before and due 

to their rapidity FPGA-based controllers are now 

introducing only a small delay in the loop and because of 

their high density rate can easily work with a high accuracy 

(high number of bits). This makes the controller quasi-

transparent moving the limitations of time and accuracy 

towards the interfaces like ADCs and the drivers.  

Another challenging point is the system integration. 

Indeed, in embedded systems (e.g. aircraft, space, 

automotive) the surface occupation of the systems is a key 

issue. To this purpose, it is advantageous to used digital 

 

Fig. 25. Voltage variation with baseline time, baseline calculation time, 

absorption time and desorption time 



solutions that ensure a high level of integration. Here again, 

the use of FPGA SoC devices is quite promising. Along the 

trend, novel device technologies that also integrate mixed 

analog/digital features in the same device are now available.  

Finally, we shall finish this enumeration by reminding 

that SRAM-based FPGA architecture can be reconfigured 

on the fly. This feature has also to be explored having in 

mind fault detection and reconfiguration controller or 

optimized architecture [112]. In this case, the choice of the 

operating system is crucial. 
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