
FPGAs in Industrial Control Applications

Eric Monmasson, Senior Member, IEEE, Lahoucine Idkhajine, Member, IEEE,

Marcian N. Cirstea, Senior Member, IEEE, Imene Bahri, Student Member, IEEE, Alin Tisan, Member, IEEE, and

Mohamed Wissem Naouar, Member, IEEE

Abstract - The aim of this paper is to review the state of the art

of Field Programmable Gate Array (FPGA) technologies and

their contribution in industrial control applications. Authors

start by addressing various research fields where FPGAs are

useful. The features of these devices are then presented

followed by their corresponding design tools. To illustrate the

benefit of using FPGAs in the case of complex control

applications, a sensorless motor controller has been treated.

This controller is based on the Extended Kalman Filter. Its

development has been made according to a dedicated design

methodology which is also discussed. Another example of

illustration is the Neural Network Systems. To show the

interest of FPGAs in this field, some case studies have been

presented.

Index terms – Field Programmable Gate Array, Industrial

Control Applications, System on Chip, Design Tools, Design

methodology, Sensorless Motor Controller, Extended Kalman

Filter, Neural Network Systems

I- INTRODUCTION

Nowadays, to make the difference on the market, new

industrial control systems have to be highly performing,

very flexible and reliable.

At the same time, the cost is a key issue. In order to

reduce it, time-to-market has to be shortened, the price of

controller device has to be cheap and its energy

consumption as well as the one the controlled system

reduced.

This cost reduction is all the more challenging that these

new industrial control systems must be based on ever

increasing sophisticated control algorithms which need a lot

of computing resources and need reduced execution time.

To cope with all these challenges, designers can rely on

more and more mature digital electronics technologies that

come along now with friendly software development tools.

To implement efficient real-time industrial control

systems, designers have the choice between two main

families of digital device technologies.

The first family is based on a pure software platform.

The associated devices are microcontrollers and Digital

Signal Processor controllers (DSP controllers). These

components integrate a performing microprocessor core

along with several peripherals which are necessary to

control the targeted system in real-time and to communicate

with the industrial environment.

The difference between microcontrollers [1] and DSP

controllers [2] is, for a given surface of silicon, the ratio

between the processing unit and the communication and

control peripherals. The microcontrollers include a general

purpose 16-bit or 32-bit Reduced Instruction Set Computer

(RISC) and a wide variety of peripherals, while DSP

controllers integrate a high performing processor core based

on an hardware accelerator computing block (Multiply and

Accumulate Arithmetic Logic Unit MAC ALU) and few

peripherals. However, the limits between these two concepts

are vanishing since the RISC unit of microcontrollers is

more and more powerful and the number and the types of

peripherals in DSPs are increasing.

The main advantages of this approach are the maturity of

these technologies, the quality of the associated

development tools as well as their low price. The main

limitations are the difficulty to take advantage of the

potential parallelism offered by the control algorithm to be

implemented and as a consequence, the limitation of the

performances in terms of throughputs and achievable

bandwidth.

The alternative family of available digital devices for

implementing industrial control systems is the Field

Programmable Gate Arrays technology (FPGAs) [3]. These

devices consist of pre-designed elementary cells and

interconnections that are fully programmable by the end

user to build specific hardware architectures that match the

requirements of the final targeted application.

The variety of the designed FPGA-based controllers is

large. As shown in section II, current FPGAs allow the

implementation of efficient 32-bit RISC processors. As a

consequence, FPGAs can be first viewed as programmable

microcontrollers where designers can combine one or

several RISC processors with dedicated peripherals and

computing hardware accelerators. From this perspective and

due to their ever increasing density, modern FPGAs can be

seen as true System-on-Chip (SoC) digital platforms.

To the other side of the range, designers can also design

pure specific hardware architectures for stringent

applications in terms of performances. Thus, the design and

the real-time implementation of control loop with sampling

frequency above one MHz are now possible thanks to this

approach as well as the implementation of massive parallel

treatments.

Like microcontrollers and DSPs, FPGAs were born in

the eighties and are now a mature technology. FPGA design

tools are also very friendly. As mentioned before, FPGAs

are suited for high speed demanding applications. Indeed,

designers can develop a fully hardware architecture which is

dedicated to the control algorithm to implement. Hence, by

preserving the potential parallelism of the algorithm, the

resulting hardware architecture allows matching the

expected processing speed specifications.

The main limitation of this technology is the cost.

FPGAs are still more expensive compared to their DSP and

microcontroller competitors although this claim has to be

revised. Indeed, FPGA may be more expensive than a

microcontroller but not the cost per implemented function.

Another drawback concerns the difficulty to integrate

within current FPGAS mixed Analog/Digital peripherals

like A/D and D/A converters. Once again, this limitation is

vanishing with the recent introduction on the market of

FPGAs that integrate A/D converters [4].

The success of a recent Special Section devoted to the

use of FPGAs to control Industrial Control Systems [5]-[6]

has demonstrated the great interest of this technology among

the research community.

Indeed, the ceaseless increasing density of FPGAs along

with their high degree of flexibility pushed designers to use

them for controlling a large range of industrial applications.

The most significant are now reminded.

A. FPGA-based controllers for embedded industrial and

robotic applications

Automotive and aircraft embedded systems are very

challenging applications for digital electronics [7]. For these

systems, safety is of prime importance. Thus, in [8] and [9]

authors have proposed several techniques to tackle this issue

and enhance reliability of the FPGA-based controllers.

Another aspect of safety is the possibility for vehicle

manufacturers and their suppliers to cope with the

obsolescence of critical embedded systems. Electronic

devices have now a very limited life time and it is

mandatory to still find in the market fully secure FPGA-

based Intellectual Property (IP) module to replace them

when they are now longer available [10]. The current trend

for modular architecture within the FPGA-based embedded

controller has also pushed designer to reinforce Intellectual

Property by the use of sophisticated encryption techniques

[11].

Another concern for automotive and aircraft embedded

systems is the design and real-time implementation of high

data rate and reliable protocols for in-vehicle networks such

as FlexRay or SpW [12]-[13].

Regarding handheld embedded systems, the key issue is

the reduction of power consumption [14]-[15]. The notion of

power budget is now considered during the design process.

In this field, several studies have evolved. In [16], a deep

understanding of the source of power consumption and

guidelines for its minimization are presented.

FPGA devices are also welcome for managing the

communication distributed applications via the efficient

real-time Ethernet protocol [17]-[18].

Finally, mention that FPGAs are highly appreciated in

the field of robotics. Sensor-based construction of efficient

geometric structures via the generalized Voronoi diagram

(GVD) have been implemented with success in FPGAs for

mobile robots [19-20]. In [21], a coarse-grain parallel

deoxyribonucleic acid (PDNA) algorithm for optimal

configurations of an omnidirectional mobile robot with a

five-link robotic arm is presented.

In [22] and [23] examples are presented of FPGA-based

controllers for haptique and tele-operation robotics.

B. FPGA-based controllers for power electronics and drive

applications

A detailed analysis of the benefits of using FPGA-based

controllers in power electronics and drive applications can

be found in [24]. Just the salient features of this analysis are

reminded here. Nowadays, the more limiting factor of

current or voltage control loop of a power converter is the

limitation of the switching frequency due to switching

losses. Thus, the choice of the sampling frequency is most

of the time conditioned by the maximum available switching

frequency. Based on this analysis, two different groups can

be identified:

- High demanding applications

- Constrained switching frequency applications.

This first group concerns applications where the use of

FPGA-based controllers is mandatory due to stringent

constraints in terms of time or parallelism.

The parallelism constraint case concerns the control of

static converters where power is distributed in order to

reduce the stress of the power switches. In these cases,

concurrency is high since several power channels have to be

driven in parallel. A good example of highly parallel

operations can be found in [25] where a combined

multiphase multilevel (5 phases, 5 levels) Space Vector

Pulse Width Modulation (SVPWM) strategy was

implemented with success in a low cost FPGA.

The time constraint case concerns applications where the

sampling frequency is very high (at least equal or above 100

kHz) like for low voltage switch mode power supplies

(SMPS). For such applications, the used switching

frequency is equal or above 1MHz FPGA-based controllers

are in this case mandatory [26]-[28].

Another high demanding application concerns hardware

and power Hardware-In-the-Loop applications (HIL). In

[29], authors present a FPGA-based real-time digital

simulator of a 3-level 12-pulse Voltage Source Inverter

(VSI) fed induction machine drive. It is worth to be

mentioned that the VSI model is computed at a fixed time-

step of only 12.5ns, allowing a realistic representation of the

IGBT nonlinear switching characteristics and power losses.

The second group consists in applications where

sampling is not critical due to switching frequency

limitation. For this kind of applications, the use of a

software-based controller is possible. However, even in this

case, using FPGA can be of great interest since this way,

control processing time can be drastically reduced, up to a

fraction of the sampling period. This rapidity has an

immediate influence on the quality of the control

performances, especially when direct control is chosen [30].

Thus, the behavior of the proposed digital controller is very

closed to its analog counterpart. Besides, due to the ever

increasing density of the FPGA components, one can now

implement complex algorithms within a few microseconds.

A sensorless controller based on the Extended Kalman Filter

(EKF) will be discussed later on (section III) to illustrate

this trend. Other improvements due to rapidity of the

controller are,

- The reduction of complexity: In [31] a simple fault tolerant

controller for wind energy conversion systems is presented.

It is based on the combination of time and magnitude

thresholds which allows reducing significantly the time for

default detection (less than 10µs) where standard solutions

need at least one quarter of the fundamental period.

- Synchronization between the current sampler and the

PWM carrier. In [32], an FPGA-based implementation of a

Switched Reluctance Motor (SRM) current control without

anti-aliasing filters is presented. Indeed, by choosing to

sample current in the center of a symmetrical modulation, an

exact measure of the average current is obtained without any

additional filter.

- Shared control resources: It consists in controlling several

similar plants with a unique controller. Thus, in [33],

authors have proposed an FPGA-based controller that is able

to control up to 4 AC-drives with a sampling period of only

50µs. Other interesting multi-axis controllers are given in

[34].

- Oversampling strategies which are mainly used for

improving the quality of the measurement of quantities. For

instance, in [35], authors present a quasi-ideal direct

measuring of the mean value of the current feedback.

- Adding of new control functionalities: From this

perspective, a real-time processing extension that naturally

comes to mind is the implementation of a predictive control

strategy like the one presented in [34] for synchronous

motor drives. Another exciting challenge is the addition of

health-monitoring processing. Very promising works have

already been proposed for SMPS applications, like in [36]

where an on-line identification strategy through cross-

correlation was successfully implemented. In the same vein,

diagnosis algorithms can also be implemented. To this

purpose, [37] and [38] have proposed wavelet-based

diagnosis algorithms for respectively induction motor

broken-rotor-bar detection and fault detection and

classification in transmission lines.

This paper is aimed to explain the importance of FPGA-

based solutions in the design of industrial control systems.

The second section recalls the main features of the available

FPGA technologies. Then, in the third section, an in-depth

of a complex FPGA-based controller example is treated. It

consists in a FPGA-based sensorless controller for

synchronous motor using an Extended Kalman Filter (EKF).

All the steps of the design are described and comparisons

are given in terms on software and hardware

implementations. Section IV is devoted to Artificial Neural

Network (ANN) based FPGA-Systems. There is a growing

interest for implementing ANN within FPGA mostly

because their inherent parallelism. Two case studies are

presented: a highly compact PWM generator and an

electronic nose. Finally, conclusions are given and future

trends given.

II- PRESENTATION OF FPGAS

Since their first introduction to the market in 1985 by the

Xilinx Company, FPGA hardware technologies have

attracted an always increasing interest and have significantly

disrupted the early digital development process trends.

Indeed, these devices belong to the so called semi-custom

ASICs (Application Specific Integer Circuits). The latter

low cost devices consist of pre-designed (by the

manufacturer) elementary cells and interconnections that

can be programmed and interconnected by the user. This has

the credit to allow rapid-prototyping solutions and make the

design process more flexible and cheaper. This is not the

case of full-custom ASICs that are manufactured for a

specific application and cannot be re-programmed by the

user.

A. Generic structure of an FPGA.

As presented in Fig. 1, the basic structure of an FPGA

consists of a sea of Logic Blocks (LBs), of an

interconnection network and configurable I/O blocks.

Because of their very high level of integration, in the recent

FPGA devices are also included memory blocks, hardwired

DSP blocks, clock manager blocks and communication

blocks [41].

Fig. 1. Generic structure of an FPGA

Depending on the expected function to implement, each

LB is configured to perform combinatorial and/or sequential

operations. For the combinatorial operations, a set of Look-

Up-Tables (LUTs) are included. This is the same for the

sequential operations with a set of D-Flip-Flops. An LB is

also able to perform a local storage function (distributed

RAM memory), shift register (SR), multiplexer, and

adder/subtractor operations. The interconnection network is

also programmable by the user so as to interconnect as many

LBs as necessary.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Logic cells 100 484 1024 1296 12160 27648 51840 99216 200448 337500531200 758784 813050

1985 1987 1990 1992 1995 1998 1999 2002 2004 2006 2008 2009 2010

Fig. 2. Evolution of the FPGA density

On the other hand, the internal structure of LBs differs

from an FPGA family to another. For this reason, a

normalized FPGA density metric has been accepted. Indeed,

a common Logic Cell (LC) has been defined. It consists of a

4-bit LUT, a D-Flip-Flop, a carry chain (for arithmetic

operations) and a multiplexer, [39]-[42]. Fig. 2 presents the

evolution of FPGAs in terms of density (i.e. number of the

available LCs) since 1985. The waveform has been obtained

after a comparison of the commercialized FPGA devices

within each year.

The configurable I/O blocks allow the interfacing

between the internal architecture and the external

environment.

In order to optimize FPGA resources, hardwired DSP

blocks (arithmetic blocks) including multipliers, adders and

accumulators are included. For the same purpose, memory

blocks (RAM, ROM, Flash RAM) are also integrated.

The integrated clock manager blocks allow the

management of the clocking resources. They are commonly

based on Phase-Locked-Lools (PLLs). The latter support

several features such as frequency multiplication and

division, propagation delay compensation and phase shift

correction.

The current FPGA devices include also communication

blocks that consist generally of transmission and reception

buffers. Various communication protocols are supported,

including among others USB, Ethernet, CAN, PCI, SPI and

I2C protocols.

I/O blocks

Interconnection network

Logic blocks

Clock management blocks

Memory blocks Arithmetic (DSP)

blocks

Communication

blocks

Embedded

processor core

To provide high integration density, high speed and low

power consumption, FPGAs have been the subject of a

considerable progress in terms of copper process

technology. Recent devices are now reaching down to 40

nm copper process (28nm has been recently announced by

Xilinx and Altera vendors) [39], [40]. Fig. 3 shows the

evolution of the process technology since 1985.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Process technology (nm)

Techno (nm) 2000 1200 800 420 334 220 130 90 65 40 40 40

1985 1987 1990 1992 1995 1998 2002 2004 2006 2008 2009 2010

Fig. 3. Evolution of the FPGA process copper technology

The internal structure, the operating mode and the

configuration of these FPGA elements differ depending on

the device family and technology. There are various

configuration technologies including, SRAM, EPROM,

EEPROM, Fuse, Antifuse and Flash technologies. Because

of their popularity, only the SRAM and the Flash

technologies will be discussed.

Besides the evolution of these FPGA technologies and in

order to meet flexibility and high integration capability, the

novel FPGA devices give the possibility to implement an

increasing diversity of cores. Indeed, in addition to the

previously presented FPGA cores and as it will be discussed

afterwards, FPGA can integrate one or several processors

and even analog peripherals [45]-[53]. They are then

considered as System-On-Chips (SoCs) or System-on-

Programmable-Chips (SoPCs) solutions.

B. FPGA internal technologies and architectures

1- SRAM based FPGAs

The configuration of an SRAM-based FPGA is entirely

made using a set of dedicated SRAM blocks. These blocks

are organized as a specific configuration layer. This

programming strategy is volatile and a reconfiguration of

the devices is required after the device is switched off. The

most popular SRAM-based FPGA families are Xilinx and

Altera families, [39], [40]. Among the commercialized

FPGA devices, one can stress the high performance

VIRTEX (Xilinx) and STRATIX (Altera) FPGAs and the

low cost SPARTAN (Xilinx) and CYCLONE (Altera)

FPGAs. In the field of industrial control applications, cost is

a key-issue. As a consequence, the low cost families are

preferred. Thus, only the latest Xilinx SPARTAN-6 and

Altera Cyclone-4 FPGA families will be presented.

Xilinx SPARTAN-6 FPGA: As shown in Fig. 4, this

SRAM-based FPGA incorporates a sea of CLBs

(Configurable Logic Blocks) and an interconnection

network [39]. Roughly speaking each CLB is equivalent to

12.8 LCs.

A CLB contains a pair of slices, the SLICEX and

SLICEL/SLICEM. Each slice can be configured to perform

combinatorial functions using four 6-bit LUTs and

sequential functions using eight D Flip-Flops. The SLICEM

can also be configured to perform a distributed RAM block

for data storage [39]. Consequently, there are 50% of

SLICEX, 25% of SLICEM and 25% of SLICEL inside the

SPARTAN-6 device (see Fig. 4).

Fig. 4. SRAM-based SPARTAN-6 FPGA

Altera CYCLONE-4 FPGA: The structure of the

Cyclone-4 FPGA is presented in Fig. 5. In this case, the

logic cells are named Logic Elements (LE). Roughly

speaking each LE of an Altera FPGA is equivalent to one

LC.

Fig. 5. SRAM-based CYCLONE-4 FPGA

The LEs are gathered in 16-group blocks called Logic

Array Blocks (LAB). A LE consists of a 4-bit LUT that can

perform either combinatorial or arithmetic operations and a

D-Flip-Flop for sequential operations. The interconnection

blocks are organized in 2 levels; local interconnection

network and global network, [40].
Table I: SRAM-based FPGA - some specifications

 SPARTAN 6 CYCLONE 4

Number of LCs 147443 (11519 CLBs) 150000

I/Os 576 532

DSP blocks 180 DSP blocks 360 Multipliers

Clocking performances:

PLL output frequency range
400-1080 MHz 600-1300 MHz

Memory size (RAM, ROM) 6179 Kb (RAM blocks

and distributed RAM)
6480 Kb (RAM

blocks)

Process technology 45 nm 60 nm

Table I presents some important specifications regarding

the SRAM-based FPGAs (SPARTAN-6 and CYCLONE-4).

It indicates the maximum available characteristics

depending on the FPGA series.

2- Flash based FPGA

In the case of Flash technology, the configuration is

based on flash connections that keep the configuration state

when the power is off. Each connection contains two

transistors that share a floating gate and stores the

programming information, [4]. This technology is the most

useful technology in aircraft and space systems since it

guaranties the configuration against the SEU (Single Event

Upset) radiations. In the proposed survey, the Actel Fusion

Flash-based FPGA is presented. Its internal logic cells

consist of VersaTiles (VTs). The latter can implement either

a combinatorial (3-bit LUT) or a sequential (D Flip Flop)

functions. Fig. 6 gives an overview of the Fusion FPGA

structure.

LAB

LE1

LE2

LE16 Local

network

L
A

B

L
A

B

L
A

B

Global

network

CLB

SLICEM or

SLICEL
SLICEX

Switch

matrix
Interconnection node

6-transistor based

connection point

 Fig. 6. Flash-based Fusion FPGA

Table II highlights some of the internal resources and

performances of the described Flash-based Fusion FPGA.
Table II: Flash-based Fusion FPGA- some specifications

 Fusion

Number of VersaTiles Up to 38.5 K

Number of I/Os Up to 252

DSP blocks (arithmetic blocks) 0

Clocking performances:

PLL output frequency range
350 MHz

Memory size (RAM/FIFO,

ROM, Flash)

270 Kb (RAM); 1 Kb

(ROM); 8 Mb (Flash)

Process technology 130 nm

C. FPGA System on Chip (SoC) trends

1- Processor unit

As mentioned in the introduction, SoC approaches

present new design features allowing the combination of

software and hardware designs. Two categories of processor

cores are considered, the “non-synthesizable” cores and the

“synthesizable” cores.

The non-synthesizable (also called hard processor cores)

have a custom VLSI layout (in dedicated silicon) that is

integrated within the FPGA. As a general rule, a hard

processor core offers higher clock speeds with less

flexibility. For example, Altera provides an ARM9

processor core embedded in its EPXA10 series that is

marketed as an Excalibur™ device [40]. The Xilinx Virtex-

5 integrates also a hardwired PowerPC 440 processor cores

on-chip [39]. Recently, Actel has proposed the first

hardwired Cortex-M3 processor core integrated into its

Fusion FPGA family [4].

The synthesizable (Soft cores), such as Altera’s Nios II,

Xilinx’s MicroBlaze processors and Actel’s ARM7 or

Cortex-M1, use existing FPGA logic cells to implement the

processor core. The particularity of such approach is the

flexibility that allows the designer to configure and specify

the number, the types of peripherals, the memory width…

However, these cores have slower clock rates.

2- Analog peripherals

In addition to the processor unit, Actel’s Fusion family

offers a new level of integration by allowing designer to

implement a mixed signal treatment (analog and digital). It

integrates a 12-bit programmable Successive Approximation

Register ADC (SAR-ADC). The SmartFusion device

integrates two ADCs. These features make this FPGA SoC

device suitable for control applications [44].

3- Multiprocessing architectures in a single chip

In case of complex digital applications, very high

demanding performances can be achieved via the use of

heterogeneous multiprocessing architectures in a single chip

(MPSoCs). Indeed, such alternative provides high level of

scalability compared to monolithic cores, in particular in

terms of power and performance [45]-[48]. Important issues

in MPSoC design are the communication infrastructure and

task mapping. In fact, most of these complex designs are

based on dedicated channels or shared buses due to their low

cost.

Unfortunately, scalability is restricted by serialization for

multiple bus access requests. A promising approach for this

issue is the Networks on Chip (NoCs) concept. The latter

provides reusability, well-controlled global wire delay and

efficient global communication [48]-[52]. In this context,

the use of a system language like SystemC can be of

interest. This allows simulating the complete multi-

processor system and the communication strategy at the

cycle-accurate and signal-accurate level.
Table III: Features of processor cores for SoCs [39], [40], [4], [63]

Features

SoC
Xilinx

Virtex-5

Actel

Fusion 1

Altera

Startix III

Texas

Intruments1

CPU PowerPC

440

Cortex-M1 NIOS II/f DSP C28x

Frequency (MHz) 400 60 290 150

Bit Number 32 b 16/32 b 32 b 32 b

Pipeline stages RISC

superscalar
7-stage

pipeline

RISC, 3-

stage
pipeline

RISC, 6-

stage
pipeline

DSP, 8-

stage
pipeline

 Multiplier

Hardware

32x32
multiplier
(single cycle)

Synthesizabl

e32x32
multiplier
(3 cycle for

standard

multiplier and 33

cycle for small

multiplier)

Hardware

32x32
multiplier
(single cycle)

Hardware

32x32
multiplier

(single

cycle)

ADC

Mode SAR -12b Pipeline-
12b

Rate 600 Ksps 12.5 Msps

pipeline 30 16

Logic cells Usage 4353 1020

Synthesizable No Yes Yes No

Configurability ++ ++ ++ --

Performance ++ + + ++

Legend: ++ good; + Moderate; -- Poor

For these applications, the embedded Real Time

Operating System (RTOS) becomes essential. In fact, RTOS

offers a rich set of services which provides a basic support

to the application and represents in a great part the way in

which software is safely reused in an embedded system.

Examples of used RTOS are Embedded Linux, MicroC/OS-

II… [53].

Table III presents a comparison between several SoC

solutions: a standard DSP controller device, a PowerPC hard

core, a Cortex-M1 and NIOS II/f soft core.

D. Design tools

In parallel to the FPGA features evolution, the design

tools have become mature as well. Today, FPGA vendors

provide a fairly complete set of tools that allow high quality

design process starting from the hardware description, using

VHDL or Verilog languages, to the final bitstream

generation [39]-[42]. A simplified synoptic of the FPGA

design process is presented in Fig. 7.

Fig. 7. Simplified synoptic of the FPGA design process

Design

synthesis

VHDL/Verilog

coding + IP

blocks

FPGA I/O

assignment

Map, Place

and Route

Bitstream

generation and

device

configuration

Simulation

Functional

validation

Simulation

Post-synthesis

validation

Simulation

Post-Route

validation

Physical implementation

Versa

Tile

Flash switch

VersaTile- flash switches based configuration

Generally, design tools include hardware design and

verification tools (VHDL/Verilog editor, synthesizer,

place/route and physical implementation tools), vendor

libraries in addition to simulation and debugging tools.

Some examples are the Integrated Software Environment

(ISE) tools from Xilinx, Quartus tools from Altera and

Libero Integrated Design Environment (LiberoIDE) tools

from Actel. All of them provide flexible and complete

design features with additional associated tools for

simulations (e.g. ModelSim tools) and for debugging (e.g.

ChipScope tools from Xilinx).

Fig. 8. Typical FPGA SoC design flow

Furthermore, to suit SoC trends, FPGA vendors provide

software development tools (editor, compiler, assembler,

linker and debugger), software vendor IPs and processor

customization tools. For example, Xilinx provides

Embedded Development Kit (EDK) platform, Altera

provides Embedded Design Suite (EDS) platform and Actel

provides SoftConsole platform. Fig. 8 presents a standard

design flow for developing SoC applications.

This design flow consists of two main procedures: the

software design Flow and the hardware design Flow. It

offers a user-friendly interface that allows the designer to

customize the processor for a specific project. After its

configuration, the processor core is generated in the form of

an HDL file (in the case of Altera and Actel tools) or a

netlist file (in the case of Xilinx tools). Then, this file can be

associated to custom user logic and integrated within the

hardware design flow to be synthesized, placed and routed.

The FPGA can be configured with the resulting bistream

file. Then, the program which will be integrated on the soft

processor cores can be compiled with the associated library

files and C header files. A C/C++ compiler targeted for this

processor is also provided for the development system.

III- FPGA-BASED DESIGN OF AN INDUSTRIAL CONTROLLER

CASE STUDY: SENSORLESS MOTOR CONTROLLER BASED ON

AN EXTENDED KALMAN FILTER

FPGA technology allows the development of hardware

architectures within a flexible programmable environment.

This feature gives designer an additional degree of freedom

compared to software implementations based on

microcontrollers and DSPs [42], [43]. This is because

FPGAs are outperforming these software solutions by

exploiting the inherent parallelism of the algorithm.

Consequently, designer can develop a hardware architecture

that is fully dedicated to the algorithm to implement. Thus,

the execution time is drastically reduced. Regarding an

industrial control application, the reduction of the execution

time makes the control quasi-instantaneous. The control

bandwidth is then enhanced.

On the other hand, the development of a dedicated

hardware architecture can be seen as intuitive and not

adapted to the implementation of more and more complex

controllers. This is the reason why the use of a well-

structured design methodology is quite important. Such a

methodology should consist of a set of steps and rules to be

followed in order to make the design process more

manageable and less intuitive.

In this section, the FPGA-based design of an industrial

controller is discussed. In order to show the benefit of using

FPGA for complex controllers, a sensorless motor controller

is presented. This controller uses an Extended Kalman Filter

(EKF) to estimate the rotor speed and position of the used

synchronous motor. This development is made according to

the design methodology, [42]-[44], overviewed in Fig. 9.

Fig. 9. FPGA-based controller design methodology

The particularity of this methodology consists in

providing a top-down design process that starts from the

preliminary system specification to the final experimental

validation. In addition, a notable distinction between the

development of the algorithm and its digital implementation

is made. This distinction has the credit of making the

algorithm totally independent of the used digital device. For

instance, once the developed algorithm is achieved, either a

hardware solution (FPGA) or a software solution (DSP) can

be chosen. Furthermore, this distinction can lead to a

separation between the needed designer qualifications. For

example, the algorithm development may be realized by

control engineers and the FPGA development by a micro-

electronics expert.

From a more technical point of view, the proposed

design methodology includes optimization assumptions that

ought to be achieved so as to adapt the algorithm complexity

to the available FPGA resources. As it will be discussed

later, this optimization is done during the algorithm

development process and during the FPGA architecture

development one. For the first case, this consists in reducing

the computational cost of the algorithm (reduction of the

number of processed operations). As for the second case,

this consists in studying the data dependency of the

algorithm and finding out the potential factorizations that

lead to the use of a minimum of operators that process a

maximum of operations. This optimization can be achieved

by applying for example the so-called Algorithm

Architecture Adequation (A
3
) methodology [30].

A. Preliminary system specification

In this first step, the preliminary specification of the

whole sensorless control application is made. To this aim, a

Configure

Processor

ppppProcesso

rProcessProce
ssor

FPGA Synthesis

Tool

C/C++ Compiler

for Processor

FPGA

Place and Route

Configure

Peripherals IP

ppppProcessorP

rocessProcessor

HDL

Netlist

User

Hardware IPs

Application

Program

Hardware Design

 Flow

Software Design

 Flow

Processor core

Configuration Flow

µP
RAM

ROM

User Logic

Peripheral

drivers

RTOS

HDL
Preliminary system specification

Algorithm development

Experimentation

Modular partitioning

Continuous-time functional validation

Digital realization

Algorithm optimization

Discrete-time, fixed-point validation

Hardware In the Loop validation

Experimental validation

FPGA architecture design
Architecture optimization

Architecture design

Architecture VHDL/Verilog coding

Architecture functional simulation

Design synthesis and time/area performances analysis

FPGA physical implementation process

hardware specification and an algorithm benchmarking are

achieved.

Fig. 10. Sensorless control system

The hardware specification consists in choosing,

depending on the load conditions, the AC motor to be

controlled and the appropriate power supply system. In

addition, the sensors, the digital control unit and the ADC

interfaces are defined. The algorithm benchmarking consists

in choosing the control strategy and in specifying the

sensorless method.

In the proposed application, the controlled AC drive

consists of a salient Synchronous Motor (SM) fed by a

Voltage Source Inverter (VSI). The sensorless controller is

based on an Extended Kalman Filter (EKF) which estimates

the rotor position and speed [54]-[62]. An overview of the

implemented control system is presented in Fig. 10.

The EKF estimation is based on the normalized d-q

stochastic system model (relations 1-3). This model is

derived under the “infinite inertia” hypothesis [54]-[62].

vxHy

wuxfx

nn

nnn



),(

T

B

sq

B

sd
n

T

B

sq

B

sd
n

T

B

e

B

e

B

sq

B

sd
n

I

i

I

i
y

V

v

V

v
u

I

i

I

i
x 


























 ;;









T

n

sqB

B

sdB

B

en

B

B

enB

sq

rndsr

snd

sq

sd

snq

sq

s

snqenB

sd

sq

snd

sd

s

nn Hu
LI

V

LI

V

L

IM
i

L

L
i

L

R

i
L

L
i

L

R

uxf


























































































00

00

10

01

;

00

00

0

0

0

)(),(










Where f and H are the state space and the output

matrices. xn is the normalized state space vector. un and yn

are respectively the normalized system input and output

vectors. (isd ,isq) and (vsd ,vsq) are respectively the d-q stator

currents and stator voltages. (Lsd ,Lsq) are the stator

inductances and Rs is the stator resistance. θe and ωe are

respectively the rotor position and speed. VB, IB, ωB, θB are

the base values for normalisation. n is the normalization

index. The model and measurement disturbances are

statistically described by the zero-mean Gaussian noises w

and v respectively characterized by covariance matrices Q

and R.

In the following, we are going to present the EKF basics.

To start with, relation (4) presents the discrete-time

stochastic state space model of the observed system. fd is the

discrete time state space matrix and k is the sampling index.

Table IV summarizes the EKF equations.

knknk

knknkdnk

vxHy

wuxfx



 ),(11

Table IV: EKF Algorithm

Prediction Step

),ˆ(ˆ
11/11/   nkknkdknk uXfX

EKF Compensator

Jacobian matrix :

 

1/1ˆ 





knkxx

d

dnk
x

f
F

Covariance matrix
prediction :

QFdPFdP t

nkknknkknk   .. 1/11/

Initial condition P0

Kalman gain
calculation :

  1

1/1/ ..


  RHPHHPK t

knk

t

knknk

Updating
covariance matrix :

1/1//   knknkknkknk PHKPP

Innovation step

 1/1//
ˆˆˆ

  knknknkknkknk XHyKXX

The implemented stator current controller is based on

Anti-windup PI regulators [30], [53]. This PI controller

calculates the d-q voltage references according to the

measured and reference currents. After a coordinate

transformation, the 3-phase voltage references are

processed. Then the used Carrier-Based Pulse Width

Modulation (CB-PWM) generates the PWM signals for the

VSI. The speed controller is made up using a Proportional-

Proportional Integral (P-PI) regulator that is deeply studied

in [53].

As far as rotor current is concerned, a hysteresis

controller and a buck converter have been implemented in

order to maintain the rotor current equal to a constant value

[30]. The voltage interface aims to generate the 3-phase

stator voltages after a multiplication of the per-unit voltages

(from the controller) by the measured DC link voltage.

B. Algorithm development

The algorithm development process consists of a set of

steps during which the designer makes the functional

validation and prepares the algorithm for digital

implementation.

1- Modular partitioning

The modular partitioning consists in dividing the whole

sensorless algorithm into independent and reusable modules

with different levels of granularity. For the chosen example,

the extracted modules are those presented in Fig. 10.

2- Continuous-time functional validation

Once the control system is designed and the algorithm

partitioning is made, a continuous-time (s-domain)

functional simulation is achieved using Matlab/Simulink

tools. This step is aimed to simulate and verify the

functionality of the complete control system.

3- Digital realization

During this step, the first task consists in making a

digital synthesis of the aimed control closed loop. Two

approaches are considered, the direct synthesis approach and

the digital re-design approach. The first one consists in

configuring the controller and synthesizing the used

regulators in a fully discrete-time z-domain. The re-design

approach consists in synthesizing regulators in the

Voltage
Source

Inverter

Digital Sensorless Control Unit

PI-based Current
Controller

SM LOAD

EKF Module

e̂

Isd* = 0A Isq*

S

a

S

b

S

c

isa,
isb VDC

Voltage
interface

isa, isb

Vsa

*

Vsb

*

Vsc

*

CB-PWM

Buck
converte

r

Hysteresis
Controller

Ird*

Ird

ADC

e̂
sdî

sqî

P-PI based
Speed Controller

ωe*

Vsa Vsb Vsc

Vsa*,Vsb*, Vsc*

(1)

(2)

(3)

(4)

(6)

(5)

(7)

(8)

(9)

(10)

continuous s-domain and then making the convenient

transformation to the discrete-time domain (ZOH, Tustin,

Euler).

The speed and current regulators have been synthesized

using the re-design approach using the Tustin

transformation. The EKF has been synthesized using the

direct synthesis approach but its prediction module is based

on the re-designed system model. For the latter, the Euler

transformation method is used. The chosen sampling

frequency is set to 10 KHz.

The obtained digital controller and observer can be

considered as digital filters that are now to be realized. Their

structures are then specified (direct form, cascade form,

transpose form …).

The following task is the choice of the fixed point data

format. This choice can be made in two stages [64]. The first

one is the choice of the fixed-point format of the coefficients

by studying the stability of the closed-loop. The second

stage concerns the choice of the fixed-point format for the

variables. To this purpose, the limit-cycle at steady state and

the signal-to-noise ratio are both considered.

A simpler but more intuitive method for choosing the

fixed-point format is by trial-and-error fixed-point

simulations. Indeed, designer can develop the fixed-point

model and then make a comparison with the floating point

initial model. The format that leads to a minimum

quantification error is then maintained. Another and still

more intuitive way to choose the format is the use of

Matlab/Simulink fixed-point tool. At the end of each

simulation, this tool collects information about the

processed data and displays their maximum, minimum

values. It also indicates when overflows occur. Then, these

data ranges help designer to choose the appropriate fixed

point format.

In the proposed application, the s[22Q20] fixed-point

format is used for the EKF estimation, the s[17Q16] format

for the speed controller and the s[13Q12] format for the

current controller. This representation is labeled as

s[(i+f)/Qf] for signed data. (i+f) is the total data size, i is the

number of bits of the integer part and f is the number of bits

of the fractional part.

4- Algorithm optimization

As mentioned before, an optimization is to be performed

in order to reduce the number of operations. This

optimization is quite mandatory in the case of the FPGA

solution since the size of the developed architecture is

conditioned with the complexity of the algorithm. For

instance, a complex control algorithm, where many greedy

operations like multiplications have to be processed, needs a

rigorous and smart simplification without losing the required

performances.

In order to illustrate the importance of optimizing the

complexity of the developed algorithm, the matrix-based

Kalman compensator is focused on (Table IV). Assuming

that Pk/k-1 and Pk/k are symmetrical and Q and R are diagonal,

such matrix treatment can be replaced advantageously by

scalar treatment with a significant reduction of the number

of operations and processed variables [62]. This is clearly

demonstrated by the table V, where the complexity in terms

of arithmetic operations is evaluated.
Table V: complexity of the Kalman compensator

 Initial Kalman

compensator

Optimized Kalman

compensator

Multiplications 318 149
Additions 244 107

Subtractions 16 11
Inversions 1 1

However, depending on the available hardware

resources, the obtained complexity could remain inadequate

to the FPGA implementation. As a result, an optimization of

the FPGA-based architecture is also required. This point will

be discussed during the FPGA-based architecture design.

5- Discrete-time and fixed-point simulation

After having developed the aimed digital control

algorithm and having specified the suitable sampling

frequency and the FWL, designer has to make a final

functional verification by simulating the developed

algorithm in the discrete-time and fixed-point domain with

the help of Matlab/Simulink tools. In the case of the chosen

example, the obtained simulation results are shown in Fig.

11 where the waveforms of the measured and estimated

rotor speed and position are given.

Fig. 11. Validation of the EKF

Estimation of the speed (a) and position (b)

C. FPGA-based architecture design

In the case of having chosen the FPGA target to

implement the developed algorithm, designer initiates the

development of the corresponding FPGA-based architecture.

To make the design process less constraining, an interesting

solution consists in generating automatically the FPGA-

based architecture from Matlab/Simulink, using dedicated

toolboxes proposed by FPGA manufacturers [65]. However,

in case of complex algorithms, this solution can lead to un-

optimized architecture that may be inadequate to the

available FPGA resources. This is the reason why, in the

proposed design methodology, designer has to develop and

code himself the FPGA-based architecture with the help of

the following steps (Fig. 9).

1- Architecture optimization – A
3
 methodology

The optimization of the FPGA-based architecture is

based on the A
3
 methodology. Presented in [30], the latter

consists in studying the parallelism of the algorithm so as to

find the potential factorization. The aim is to use a minimum

of operators that process a maximum of operations. Two

graphical representations are introduced: the Data Flow

Graph (DFG) and the Factorized DFG (FDFG). This last

includes specific nodes called, F (“Fork”), J (“Join”), D

(“Diffuse”) and I (“Iterate”). These nodes are used to delimit

the factorization borders [30].

By studying the optimized EKF algorithm (EKF

compensator), it has been observed that the treatment is

based on an elementary Dot-Product function (relation 11)

that is used several times. Then, the A
3
 methodology can be

applied.

)()()()()()()(332211 tytxtytxtytxto 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Mechanical speed

(rpm)

Rotor position (rd)

Estimated

Actual

t(s)

Actual
Estimated

t(s)

(a)

(b)

(11)

Fig. 12. Developed DFG and FDFG

Fig. 12(a) shows the DFG of the developed Dot-Product.

The multiplications can be performed in parallel mode

which is not the case of additions. Thus, the factorization

process can be applied to the multiplier operator and the

obtained FDFG is presented in Fig. 12(b). Since this

function is used several times, the EKF compensator can

also be factorized. The obtained FDFG is then presented in

Fig. 13.

Fig. 13. Developed FDFG – Factorization of a thicker grain operator
2- Architecture design

According to the obtained FDFG, the FPGA-based

architecture is designed by replacing the FDFG nodes (F, J

and I) by their corresponding operators. Thus, the node F is

replaced by a multiplexer, J and I replaced by registers. The

hardware architecture of each of the developed modules

(according to the adopted partitioning) is then composed of

a data path and a control unit that are both synchronized

with the global clock signal.

The data path contains the used operators and data buses

between them. The treatment scheduling is ensured by the

control unit which is a simple Finite State Machine (FSM).

The latter is activated via a Start pulse signal. When the

computation time process is over, an End pulse signal

indicates the end of the treatment. As an example, Fig. 14

presents the FPGA architecture corresponding to the FDFG

of Fig. 12(b).

Fig. 14. Example of a designed FPGA architecture

3- Functional simulation

After having developed the VHDL design, the

simulation is started. In our case, ModelSim tools have been

used. The obtained simulation results can also be compared

to those obtained during the Matlab/Simulink environment.

Fig. 15 shows the obtained results for the presented

application.

Fig. 15. Functional validation of the FPGA-based sensorless controller

4- Design synthesis and time/area performances analysis

Once the global FPGA architecture is functionally

validated, the next step is the analysis of the time/area

performances. This is obtained after having synthesized the

developed design (using the dedicated synthesis tools). This

synthesis indicates the consumed FPGA resources and the

maximum frequency of the operating clock. This maximum

frequency allows the calculation of the global execution

time.

Table VI summarizes the obtained synthesis results of

the whole sensorless controller (including the EKF, speed

and currents regulators). From these results, the time/area

performances are extracted. The minimum execution time is

given. All these data are listed for different FPGA device

solutions including low cost and high performance Xilinx

FPGAs.
Table VI: Synthesis results for the full FPGA-based sensorless controller

Spartan 3E

xc3s1600E
Spartan 6

xc6slx150

Virtex 2P

xc2vp30
Virtex 6

Xc6vsx475

Max. clk

Frequency
54 MHz 97 MHz 167 MHz 253 MHz

Global

resources
use

-45% (3688

CLB)

-100% hw
18-bit

multipliers

-5.8% (11519

CLB)

-26 % hw 18-
bit DSP

blocks

-39% (3424
CLB)

-38% hw 18-

bit multipliers

-2.5%

(37200
CLB)

-2.5% hw

18-bit DSP
blocks

Matlab/Simulink

Speed

Position

ModelSim
Matlab/Simulink

ModelSim

ModelSim results

x

+

Sel Sel en0

en0

en0

en0

en2 en1

en3

en0

en1

en2

en3

Clk Reset

Start End

Wait

en0=1
Sel=0

Sel=1

 en2=1 Sel=2
Sel=1

en3=1

End=1

Reset

Start

en0

en3

+

en0

en4

Sel=0
 en1=1

Sel=2

 en4=1

x1
x2
x3

y1
y2
y3

x1

x2

x3 y3

y2

y1

Sel

en4

o

Data-Path

Control unit

Module

architecture

Clk Reset

I

I

I

I

J

J

Dot Product

F

F

F

F

F

F

Fdnk

Pnk-1/k-1

Knk

Pnk/k-1

Pnk/k

x1(t)

y1(t)

x2(t)

y2(t)

x3(t)

y3(t)

x1(t)

y1(t)

x2(t)

y2(t)

x3(t)

y3(t)

o(t)

M
a
tr

ic
es

 e
le

m
en

ts

M
a
tr

ic
es

 e
le

m
en

ts

+

+
Matrix

inversion

11

1/ knkP

12

1/ knkP

21

1/ knkP

22

1/ knkP
11R

22R

o = x1y1+ x2y2+ x3y3 Q

x x

x1

+

b - FDFG

x F F

J

+ F : Fork

 J : Join

x

+

y1 x2 y2 x3 y3

o

x1

x2

x3

y1

y2

y3

+
o

a - DFG

tex_min 5,130 µs 3,214 µs 2,873 µs 2,712 µs

D. Experimentation

1- Hardware In the Loop (HIL) validation

In order to verify a first operating attempt, it is highly

recommended to start the experimentation by the HIL

validation. The latter can be considered as an intermediate

between a fully computer-based development validation

(simulation tools and FPGA design tools) and a fully

experimental validation (actual system platform). The HIL

procedure is carried out through a physical implementation

of the developed FPGA-based architecture to be validated.

The latter has to be associated with a real-time emulation of

the plant. In addition, a communication controller has to be

implemented in order to transfer the stimuli and the probed

data. This communication is made with a Host-PC in which

a comparison between the obtained HIL results and the

simulation results is made.

The developed EKF-based sensorless controller has been

implemented and associated with an emulated plant model

(synchronous motor model, VSI model and the mechanical

load model). Fig. 16 highlights the synopsis of the achieved

HIL test.

Fig. 16. HIL procedure

Fig. 17. HIL validation of the EKF estimation

When using a Xilinx FPGA target, the HIL procedure is

made using the ChipScope analyzer [39]. The latter is used

to probe the internal signals in one hand and to configure the

design in the other hand. The data transfer is made using the

JTAG interface. The obtained results are depicted in Fig. 17.

The validation is then made by comparing them to the

simulation results (Fig. 11 and Fig. 15).

2- Experimental validation

The experimental validation has been achieved with the

platform presented in Fig. 18. For experimental constraints,

the used digital control unit is based on a Xilinx XUP

Virtex_2P board. The treatment is synchronized with a 50

MHz clock signal. The total execution time is then equal to

6µs. Fig. 19 presents the waveforms of the speed and

position estimation. These experiments are carried out with

a 800W four poles synchronous machine.

Fig. 18. Prototyping platform

E. System on Chip FPGA design

For benchmarking reasons, we have also implemented

the sensorless controller in software based on the

synthesizable MicroBlaze [39] processor core. The

Peripheral Local Bus (PLB) is used to connect this processor

with the used peripherals (GPIO, timers, PWM, Interrupt

controllers, user-defined data acquisition module…).

This software design is fully carried out using assembly

macros and C-coded functions. To augment the ALU

performances of these functions, the optional “hardware

multiply” and “hardware divide” are included. The EDK

tool automatically generates the memory map of the

hardware platform and assigns default drivers to the

processor and each of its peripherals. The execution routine

of the proposed algorithm is depicted in Fig. 20.

The MicroBlaze is synchronized with a 100 MHz clock

and the sampling period (interruption cycle) is set to 100 µs.

The execution time of the whole sensorless controller has

been evaluated to 85µs. The surface occupation of the

design is 11 % of the used Virtex 5 XC5VLX50T FPGA.

Note that external 12-bit ADCs are used for data acquisition.

In order to make a comparison to a standard software

solution, the same sensorless controller has been

implemented in a TI TMSF2808 DSP device (100MHz,

32Bit, 12-bit ADC, 2x16-bit multiplier, 16Ko RAM

memory, [63]). The same execution routine is preserved and

the total execution time has been evaluated to 66 µs [61].

The functions are fully C-coded. One can stress from the

obtained timing results that standard software devices

remain more adapted for a full software implementation.

This is mainly due to the design tools that are more mature.

Ts= TPWM= 100µs

P
ro

g
ra

m

In
te

rr
u

p
ti

o
n

PWM signals generation

(1) (2) (3) (4) (5)

t

t

Tex
(2) EKF state space estimation process

(3) P-PI speed controller

(4) PI current controller

(5) PWM process

PWM carrier

k.Ts
(k+1).Ts

Fig. 20. Timing diagram - case of a full

software sensorless controller

(1) (2) (3) (4) (5)

Data acquisition (ADC)

500 rpm

0 rpm

Actual

Estimated

Estimated

Actual

(a)

(b)

Fig. 19. Experimental results –
waveforms of the estimated

speed (a) and rotor position (b)

Actual

Estimated

Emulated physical

plant

FPGA- based sensorless

controller

Com. Controller Stimuli Signal Probe

Com. Interface

Host-PC

Comparison

Simulation

results

HIL

results

F
P

G
A

 t
a
r
g
e
t

Current & voltage Sensors

Synchronous

machine

Load

FPGA board
3φ rectifier

+ VSI Module ADC board

The way of coding and the quality of the compilation tools

are also determinant points.

For these reasons and in order to benefit from the

flexibility of SoC approaches and the high control

performances achievable with hardware designs, it is

interesting to combine both software and hardware

treatments. For this aim, it is highly recommended to adopt

co-design methodologies so as to make an intelligent

partitioning between the software treatment and the

hardware treatment.

IV- FPGA CONTROLLERS BASED ON ARTIFICIAL

INTELLIGENCE

Traditionally, mathematical models were developed to

evaluate the functionality of global engineering systems.

However, the practical development of each part of the

system needs then to be separately addressed. This often

involves the use of different software platforms, the design

itself being developed in a different environment. Recent

advances in CAD tools have brought the functional

description of design and practical hardware implementation

closer.

The use of modern Electronic Design Automation

packages for electronic systems design facilitates easy

implementation of complex control algorithms and Artificial

Intelligence (AI) into hardware. Hence, a wide range of

complex and intelligent controller designs have been

recently developed, with applications in industry [66-70]. A

significant number of them target FPGAs, due to the rapid

prototyping features and the flexibility offered by FPGAs,

especially through the recent availability of microprocessor

or DSP cores, allowing hardware software co-design and

implementation [71].

A relevant paper in this context deals with custom

architectures for Fuzzy and Neural Networks controllers

[72]. It presents efficient architecture approaches to develop

controllers using specific circuits, using HDLs and

synthesizing them to get the FPGA configuration bit-stream.

Some more specific areas using FPGAs for the

implementation of complex controllers based on Artificial

Intelligence are highlighted below.

A. Neural Networks implemented in FPGA

According to an European Network of Excellence (ENE)

report [73], the future implementation of hardware neural

networks is shaped in 3 ways: i) by developing advanced

techniques for mapping neural networks onto FPGA, ii) by

developing innovative learning algorithms which are

hardware-realizable, iii) by defining high-level descriptions

of the neural algorithms in an industry standard to allow full

simulations and fabrication and to produce demonstrators of

the technology for industry. Such new designs will be of use

to industry if the cost of adopting them is sufficiently low.

Hardware-based neural networks are important to industry

as they offer low power consumption and small size

compared to PC software and they can be embedded in a

wide range of systems. Software libraries exist for

traditional Artificial Neural Network (ANN) models

(Matlab). The industry-standard form is however

VHDL/Verilog or C++ parameterized modular code,

allowing customization.

A wide range of research papers on Neural Networks

based Controllers were published in prestigious journals.

Some were collated in special issues on Transactions of

Industrial Electronics [74, 75].

An interesting trend, which confirms the ENE report [73], is

given by the recent development and implementation results

of a parameterized FPGA-based architecture for feed-

forward multi layer perceptrons with backpropagation

learning algorithm (FF-MLPs) presented in [76]. The

proposed architecture makes possible native prototyping and

design space exploration in hardware.

Others papers [77,78] exploit the learn ability of ANNs.

Paper [76] presents an adaptive low-speed-damping

controller for a stepper motor which removes nonlinear

disturbance at low speeds and paper [78] shows a self-tuning

PID FPGA-based motion controller using RBF NN for a X-

Y table.

B. Fuzzy Logic Based Control Systems

 Today, fuzzy logic based control systems, or simply,

Fuzzy Logic Controllers (FLCs) can be found in a growing

number of products, from washing machines to speedboats,

from air condition units to hand-held autofocus cameras.

The success of fuzzy logic controllers is mainly due to their

ability to cope with knowledge represented in a linguistic

form instead of representation in the conventional

mathematical framework. Control engineers have

traditionally relied on mathematical models for their

designs. However, the more complex a system, the less

effective the mathematical model.

FPGAs constitute an appropriate target for the

implementation of fuzzy-logic controllers, facilitated by the

flexibility of the design environment, enabling direct

implementation of the circuit’s abstract model. A high

number of works have been published on fuzzy logic-based

control systems. One paper presents a method employing

hardware/software co-design techniques according to an ‘a

priori’ partition of the tasks assigned to the selected

components. This feature makes it possible to tackle the

control system prototyping as one of the design stages. In

this case, the platform considered for prototyping has been a

development board containing a standard microcontroller

and an FPGA. Experimental results from an actual control

application validate the efficiency of this methodology [79].

A paper, advocates a novel approach to implement the

fuzzy logic controller for speed control of electric vehicle by

using FPGA [80]. Another paper [81] presents an

implementation of a FLC on a reconfigurable FPGA system,

while a different paper explores the use of FPGA

technologies to implement FLCs. Two different approaches

are described. The first option is based on the logic synthesis

of the boolean equations describing the controller input-

output relations. The second approach uses dedicated

hardware to implement the fuzzy algorithm according to a

specific architecture based on a VHDL cell library [82]. A

FPGA based fuzzy sliding-mode controller, which combines

both

the merits of fuzzy control and sliding-mode control, is

proposed in [83], to control the mover position of a linear

induction motor

(LIM) drive to compensate the uncertainties

including the frictional force.

Paper [84] presents an H-bridge multilevel converter

governed by an integrated fuzzy logic controller/modulator

designed with VHDL and implemented in FPGA.

A design environment for the synthesis of embedded FLC

on FPGAs, which provides a novel implementation

technique has been developed in [85]. It allows accelerating

the exploration of the design space of fuzzy control

modules, as well as a codesign flow that eases their

integration into complex control systems. Even an FLC

based ant colony optimization (ACO) application has been

proposed in [86] for improving designs efficiency and

control performance, as well as ACO hardware

implementation.

C. Intelligent Data Acquisition Devices (DAQ)

Intelligent DAQ devices use National Instruments (NI)

LabVIEW reconfigurable FPGAs to implement custom

high-performance data acquisition on commercial off-the-

shelf (COTS) hardware. Instead of a predefined subset of

DAQ functionality, the intelligent DAQ uses an FPGA-

based system timing controller to make all analog and

digital I/Os configurable for application-specific operation.

By programming the FPGA, the custom high-performance

DAQ tasks can easily be implemented. Additionally,

because of the parallel architectures of FPGAs, the high-

performance task implementation is achieved without

performance degradation [87]. DMA provides a direct link

for data on the FPGA to RAM on the host machine,

improving data-logging efficiency and making data

immediately available for analysis and visualization. This

high-speed data transfer provides real-time visibility into

parameters and variables within the FPGA.

Furthermore, adding an FPGA circuit to a DAQ platform

interfaced by the NI Labview graphical system design tool

gives the ability to perform early signal pre-processing and

offers new valuable abilities like reconfigurability – first

step towards a self reconfigurable device ready to respond in

real time to any external or intrinsic changes [88]. On the

other hand, Labview may be used as a graphical

programming environment for FPGA targeted designs. The

new LabVIEW FPGA environment enables application

domain experts without prior knowledge of hardware

description languages (HDLs) to program reconfigurable

hardware devices. Such method is used in paper [89],

illustrating how LabVIEW FPGA supports a flexible,

reliable and cost-effective hardware design considering an

ultra-high speed control application with complex timing

synchronization. Other applications may be found in paper

[90], in which an isolated wind energy conversion system

based on the cascaded H-bridge multilevel inverter topology

is considered or paper [91] which presents a high frequency

radars controller designed in NI LabVIEW FPGA or even

space applications as in paper [92]. A powerful combination

of the parallel signal processing using neural networks

implemented in FPGA with Labview as interface for an

intelligent DAQ can be found in paper [93]. The output is an

implementation of a neural network based estimator of the

load machine speed for two-mass drive system on FPGA.

D. Evolvable hardware

Evolvable hardware offers much for the future of

complex system design. Evolutionary techniques not only

give the potential to explore larger solution spaces, but when

implemented on hardware allow system designs to adapt to

changes in the environment, including failures in system

components. Evolutionary algorithms have been developed

and applied to intrinsic hardware evolution, aiming to

produce an evolutionary system that can be readily

implemented on COTS hardware. An FPGA-based

controller for a mobile robot has been developed by Prof.

Andy Tyrrell and his team at University of York, UK. The

controller consists of look-up tables, which perform the

mapping from sensor data to actuator, evolved using an

effective evolutionary algorithm [94]. Paper [95] presents

how a self-generated architecture may be used to build-up a

secret physical cipher unit with dynamic security properties.

Another application can be found in [96], where a run-time

adaptable evolvable hardware classifier system is proposed

or in [97], in which a FPGA based customizable general-

purpose GA engine has been reported. A novel bio-inspired

self-test technique for the implementation of evolvable fault

tolerant systems, which mimics a Unitronic (unicellular

electronic) artificial system, is presented in [98]. The system

is implemented in FPGA like a bio-inspired cellular array

and made up of structurally identical cells with self-

diagnostic and self-healing capability.

V- NEURAL NETWORK BASED FPGA SYSTEMS –

CASE STUDIES

Artificial Neural Networks (ANNs) are also an

interesting research field where FPGAs have been

successfully used. Many recent publications ([9], [99],

[100], [101]) consider the FPGA as an effective

implementation solution of control algorithms for industrial

applications. Hardware implemented ANNs have an

important advantage over computer simulated ones by fully

exploiting the parallel operation of the neurones, thereby

achieving high speed of information processing.

A. Case study 1: FPGA NN Hardware Implementation

Algorithm

Some VLSI algorithms achieve efficient NN

implementation. An algorithm for compact neural network

hardware implementation, by using a combination of AND

gates, OR gates and Threshold Gates (TG), leads to compact

hardware structures. However, it cannot be used for direct

FPGA implementation because TGs are not available in

FPGA logic cells [102]. In order to minimize both ASIC and

FPGA hardware implementation of ANNs composed of

neurones with step activation functions, the solution is to

treat each neurone as a Boolean function and to implement it

separately. This leads to minimize the implementation

complexity. The most useful property of such a Boolean

function is that if its truth table is constructed as a matrix

with as many dimensions as neurone inputs, then the truth

table has only one large group of ‘1’ and one large group of

‘0’. The solid group of ‘1’ is not visible when the Gray

codification is used and thus classical Quine-McClusky

algorithms or Karnaugh maps cannot efficiently be used.

The proposed algorithm [103] uses a different approach and

generates a multilayer pyramidal hardware structure, where

layers of AND gates alternate with layers of OR gates. The

bottom layer consists of incomplete NOT gates, a structure

to be optimised later by eliminating redundant logic gates

groups.
However, the method is effective only when the numbers

of inputs and bits on each input are low, otherwise a

classical circuit may be more efficient. The algorithm itself

contains three steps: ANN mathematical model digitisation,

conversion of the digitised model into a logic gate structure,

and hardware optimisation by elimination of redundant logic

gates. A set of C++ programs automates algorithm

implementation, generating optimised VHDL code. This

strategy bridges the gap between ANN design software and

hardware design packages (Xilinx). Although the method is

directly applicable only to neurones with step activation

functions, it can be extended to sigmoidal functions.

The sample in Fig. 21 shows a neurone with 12 input

weights and positive threshold level. The weights are sorted

in descending order and a recursive implementation starts.

The first three weights are larger than the threshold, so

inputs 4, 7, 1 will drive an OR gate along with the

subneurones built using the other subgroups [104]. The

algorithm was automated using C++ programs that generate

a netlist description of the circuit, optimize it and then

generate the VHDL code. In terms of the software, there is

no limitation of the ANN size. The characteristics of the

ANN are introduced in the C++ program as a matrix text file

(.csv format). Thus, a feed forward ANN with 3

subnetworks (Fig. 22), generating the PWM switching

pattern for an inverter, was designed [103].

In contrast with training algorithms, constructive ones

determine both the network architecture and the neurone

weights and are guaranteed to converge in finite time. The

numerical values of all neurone weights and thresholds were

calculated using a geometric constructive solution known as

Voronoi diagrams. For this work, the complex plane is

divided into triangular Voronoi cells. The master program

allows user control over main parameters: i) Number of

Voronoi cells, ii) Number of sectors dividing the 360

degrees interval for argument analysis, iii) Number of bits

used to code the components of the two complex inputs iv)

Maximum fan-in for the VHDL logic gate model. The

desired performance / complexity ratio is adopted. In this

case, 5 bits to code each component of the two complex

inputs gives enough precision (delays less than 100 ns),

resulting in a total number of logic gates of 1329 on

14+6=20 layers, which fits Xilinx XC4010XL FPGA.

Fig. 21: Digital mathematical model to gate conversion

Fig. 22: ANN structure and testbench for operation speed testing

Angle: analyses the argument of current difference vector.

Position: analyses the argument and value of the voltage.
Control Signals: generates three PWM binary outputs.

When the number of inputs and bits on each input is low

(precision appropriate for drives), this method is more

effective than a classical digital circuit design implemented

in FPGA. For a high number of bits/controller inputs, the

NN approach can be less effective than a classical circuit.

The explanation is that in the NN approach the complexity

of the resulting circuit raises exponentially with these

numbers, whereas in a traditional approach, the complexity

increases quadratically. The case study presented in this

paper was implemented as part of an induction motor

controller in a 10,000 gates equivalent FPGA, as opposed to

a classical digital vector control circuit, for controlling the

same motor, which uses 99% of a 40,000 gate equivalent

FPGA [105].

B. Case study 2: FPGA NN based electronic nose

Another interesting example is related to neural

networks design applied to an FPGA based artificial

olfactory system [106]. The method presented leads to the

conceptual development of an extendable hardware

implementable neural library of a feed-forward back

propagation network (FF-BP) with on-chip learning. Neural

modules, which can emulate in hardware the FF-BP

computing functions, are grouped into a neural library and

can in principle be used to create any FF-BP NN topology

by setting the NN characteristics as number of neurons and

layers. The case study shows an ANN used as a pattern

recognition module in an artificial olfaction system, which is

capable to identify four coffee brands [107]. An extended

analysis has been carried out regarding the recognition rates

versus training data features and data representation.

The adopted approach replaces the classical solution of

defining the application by using a high level language, it

will be more useful and user friendly to create a pattern

recognition system, in our case an ANN, by means of

configurable modules grouped into a specific library. The

immediate advantage of this approach is given by the

possibility to implement different ANNs in hardware in the

early research phases of the ANN development. Also, it

gives the opportunity to establish, through simulation, the

best resolution for data representation (Fig. 23). The

research was carried out on developing a neural library set

for a Feed-Forward Back Propagation (FF-BP) topology.

The library is designed to support on-chip learning, giving

therefore premises of self configuration capabilities in terms

of pruning or enlarging the neural network’s size in order to

obtain a fully optimized neural network for a specific

application. The results are used to develop an intelligent

platform with learning and adaptive properties. Building

such a platform presumes the creation of predefined libraries

of different Artificial Neural Networks (ANN) components,

which finally may be used to create any neural network.

A system for identifying different olfactory chemical

compounds (4 different coffee brands) was developed as

application [106]. The system recognizes different patterns

(olfactory signature of organic molecules) using neural

networks as pattern recognition, hardware implementable in

programmable logic circuits such as FPGA.

Fig. 23. Proposed method for hardware implemented ANN design

Discovering the optimal topology of an ANN for a

particular application remains an important issue, especially

for highly competent classifiers such as FF-BP neural

networks. It most cases, so far, the appropriate choice of the

network features, the training methodology to be used, and

the best network topology have been identified by repetitive

simulations and modifications of the project code.

Therefore, a library with ANN components, ready to be

hardware implemented, represents a step forward towards a

more user friendly design environment. An extendable

hardware implementable neural library has been developed,

considering a FF-BP network topology with on-chip

learning. The implementation goal is achieved using the

Mathworks’ Simulink environment for functional

specification and System Generation, to generate the VHDL

code according to the chosen FPGA device features.

In order to discuss the functions that have to be

implemented, it is important to specify the architecture of

the MLP networks: the neurons are organized in at least 3

layers: one input layer, one output layer and one or more

intermediate, hidden layers. The network is fully connected,

i.e. all the outputs of a layer are connected by synapses to all

inputs of the following layer. Only the hidden and the output

layers include processing units, whereas the input layer is

used just for data feeding. The parallelism adopted is a node

one and requires managing all the neurons from the same

layer at the same time. Therefore, the control blocks that

command the behaviour of the neuron elements are common

for all neurons of a layer.

Another main component of the artificial neuron, and

usually a bottleneck for its speed performance, is the

sigmoid activation function. Its hardware implementation

implies important hardware resource utilization [108]. In

order to reduce such consumption is useful to adopt different

approximations (depending of the available hardware

resources) with minimum errors. The principal classical

methods to digitally implement an activation function are

Look-up tables and truncation of the Taylor series

expansion. Also, there are approximations with smaller

errors, but they use floating-point multiplications, thus a

practical VLSI implementation becomes far too complicated

[109, 110].

In order to create the library modules of the sigmoid

firing function, using System Generator/Simulink blocks,

hardware implementations for the following approximation

functions have been produced. The implementation reports

conclude that that the best approximation method is the

PLAN function, when the number of the neurons that use

sigmoid function as fire function is larger than the number

of the BRAM blocks available in the FPGA circuit. When

the number of neurons is lower than the total BRAM blocks

available in the FPGA circuit, the best way to approximate

the sigmoid function is the Lookup Tables method.

The process parallelism adopted implies that all the

neurons within the same layer are controlled at the same

time. The blocks are described using VHDL language and

implemented using a block that converts a VHDL design

into a System Generator/Simulink block. The computation

results show that the largest NN which can be implemented

into the 4VSX35 circuit is a FF-BP neural network with

maximum of 120 neurons distributed as: 80 in the hidden

layer and 40 in the output layer.

The FF-BP neural network design environment

developed was used to create a pattern recognition module

for an artificial olfactory system capable to recognize

different types of coffee. The olfactory system consists of

(Fig. 24):

- seven gas sensors chosen to react to a wide spectrum of

odours (TGS842, TGS826_1, TGS826_2, TGS2600,

TGS2601, TGS2602, TGS2620),

- temperature sensor (LM35),

- humidity sensor (SY-HS-230) - (all sensors are mounted

into a gas test chamber),

- test chamber,

- three pumps for gas carrying,

- circuits for sensors conditioning and pumps command,

- data acquisition board (PCI-MIO-16E-1),

- pattern recognizing module hardware implemented in

FPGA (Virtex-4 SX MB - 4VSX35),

- user interface developed in Labview 8.2.

The data acquisition module was created in Labview

environment using a virtual instrument (VI) customized to

execute the following tasks: to acquire data generated by all

9 sensors, to pre-process the acquisitioned signals (filtering,

drift cancellation) and to save data as text file format (.lvm

file). Therefore, the modules that compound the VI consist

of: pumps control module, data acquisition control module,

sub-VIs control time module, pre-processing signal module,

C grade conversion module of the signal generated by the

temperature sensor and %RH conversion module of the

signal generated by the humidity sensor.

Fig. 24. The architecture of the adopted artificial olfaction system

The data has been extracted using the scenario presented

in Fig. 25. It roughly comprises three processes. The first is

the baseline calculation (the average voltage drop on sensors

resistance when the reference gas, air, is applied). The

second and third stages presume measurement with a fixed

sampled frequency over a defined time, absorption and

respectively desorption time, of the voltage drop on sensors

resistance when the enriched odour is applied. A regular

absorption / desorption operation, which presents the results

of time settings vs. voltage drop on sensor resistor is shown

in Fig. 25.

To conclude the second case study presented, it can be

stated that a novel neural design strategy has been

developed, which benefits of reduced design time over

classical field orientation approaches, leading to a low

complexity and easy to implement pattern recognition

module. A particular application of the pattern recognition

system for an olfactory system was investigated and results

presented show efficient hardware implementation in FPGA

circuit. The neural network used as pattern recognition

system was designed using a hardware-software co-design

environment, in a manner that facilitates control over the

hardware implementation complexity, and was downloaded

into a Xilinx FPGA circuit.

The achievement presented in this case study refers to a

holistic modelling/design method, using modules created

into hardware-software co-design environment (Matlab-

System Generator–ISE) and grouped in a specific NN

library. These modules emulate in hardware any FF-BP

network topology behaviour, giving the opportunity to design

hardware implementable FF-BP neural networks, at a higher

level. As a specific application, a FF-BP network has been

used as pattern recognition module for an artificial olfactory

system, capable to recognize 4 coffee types. Also, the

influence over the recognition rates of data representation

resolution and data training dimensionality has been

analysed. The observations have been used to determine the

neural network which has the best recognition rates with

minimum hardware resource utilization.

V- CONCLUSIONS AND FUTURE TRENDS

The aim of this paper was to present the FPGA

technologies and highlight their use in industrial control

applications. It has been underlined that these hardware

solutions can perfectly address the nowadays challenges in

this field such as high control performances, low cost,

reliability, power consumption and immunity to radiations.

The contribution of these hardware devices was then

discussed. The case of embedded systems, and industrial

control systems were focused on. For the embedded

systems, it has been stated that FPGAs are becoming an

interesting option in many applications like robotics,

networking, automotive and aircraft. Indeed, FPGAs are

bringing many benefits in terms of safety, rapidity and

power consumption.

In the case of control applications, It has been shown

that FPGA-based controller can be an efficient option for

both the high demanding applications and the constrained

switching frequency applications. The first group

corresponds to high switching frequency applications, high

level of parallelism applications and HIL applications.

Regarding the second group for which the switching

frequency is limited, it has been shown that we can take

advantage of the rapidity of FPGAs to boost the

performances of the controller.

Authors have firstly made a generic presentation of the

FPGAs. Their internal structure and their configuration

technologies were described. A discussion about the design

tools was also made.

In the industrial control domain, the control algorithms

become more and more complex. To illustrate the interest of

FPGAs in such complex controller, authors have presented

an example of application which consists of a sensorless

motor controller. To estimate the rotor position and the

speed of the used synchronous machine, an Extended

Kalman Filter was used. The development of the FPGA-

based sensorless controller was then made according to a

design methodology which is required especially for such

complex algorithms.

Another relevant field which was discussed is the Neural

Network (NN) systems. The use of FPGAs in such

applications is highly interesting since the parallelism of the

NN algorithms is preserved. For an illustration purpose,

authors have resented case studies.

In the near future, the complexity of the digital control

systems will continue to grow and the tasks devoted to the

control algorithm will no longer be limited to regulation but

have to manage EMI, communications, health monitoring,

diagnosis and fault-adaptive on line control. As a

consequence and from an algorithm point of view, signal

processing functions for power applications will be the

center of intensive researches. From this perspective, FPGA-

based controller represents a very attractive solution too.

Finally, we shall end by shortly introducing the main

challenges in terms of architecture, this aspect being closely

related to the algorithm and at the same time offers in itself

a degree of creativity. Among the most exciting trends we

can quote the introduction of the floating point computing

evaluation for FPGA-based solutions. What is its cost in

terms of hardware resources? Is it necessary for industrial

control applications where the dynamic range of variables

and the complexity of the control algorithm are still limited?

Another interesting field of research is the co-design

approach, with questions like how to make an optimized

partitioning between the software part of the controller

architecture and its hardware part?, [111]. Another issue

concerns mixed integration. Indeed, as seen before and due

to their rapidity FPGA-based controllers are now

introducing only a small delay in the loop and because of

their high density rate can easily work with a high accuracy

(high number of bits). This makes the controller quasi-

transparent moving the limitations of time and accuracy

towards the interfaces like ADCs and the drivers.

Another challenging point is the system integration.

Indeed, in embedded systems (e.g. aircraft, space,

automotive) the surface occupation of the systems is a key

issue. To this purpose, it is advantageous to used digital

Fig. 25. Voltage variation with baseline time, baseline calculation time,

absorption time and desorption time

solutions that ensure a high level of integration. Here again,

the use of FPGA SoC devices is quite promising. Along the

trend, novel device technologies that also integrate mixed

analog/digital features in the same device are now available.

Finally, we shall finish this enumeration by reminding

that SRAM-based FPGA architecture can be reconfigured

on the fly. This feature has also to be explored having in

mind fault detection and reconfiguration controller or

optimized architecture [112]. In this case, the choice of the

operating system is crucial.

REFERENCES
[1] Ajay V Deshmukh, “Microcontrollers, Theory and Applications”,

the MacGraw-Hill companies, Computer Engineering series, 2007

[2] Phil Lapsley, “DSP processor fundamentals: architecture and
features”, IEEE Press, Computers, 1997

[3] Wayne Hendrix Wolf, “FPGA-based system design”, Prentice

Hall PTR, 2004
[4] Actel on-line literature. Available in www.actel.com

[5] E. Monmasson, M. Cirstea, “Guest Editorial special section on

field programmable gate arrays (FPGAs) used in industrial control
systems”, IEEE Trans. On Ind. Electron., vol. 54, no. 4, pp. 1807–

1809, August 2007

[6] E. Monmasson, M. Cirstea, “Guest Editorial special section on
field programmable gate arrays (FPGAs) used in industrial control

systems”, IEEE Trans. On Ind. Electron., vol. 55, no. 4, pp. 1499–

1500, April 2008
[7] J. Munoz-Castaner, R. Asorey-Cacheda, F.J. Gil-Castineira, F.J.

Gonzalez-Castano, P.S. Rodriguez-Hernandez, “A Review of

Aeronautical Electronics and its Parallelism with Automotive
Electronics”, IEEE Trans. On Ind. Electron., vol. 54, no. 99, April

2010

[8] P. Conmy, I. Bate, “Component-Based Safety Analysis of
FPGAs”, IEEE Trans. On Ind. Informatics, Vol.6, n° 2, pp. 195,

May 2010

[9] F. Salewski, S. Kowalewski, “Hardware/Software Design
Considerations for Automotive Embedded Systems”, IEEE Trans.

On Ind. Informatics, Vol. 4, n° 3, pp. 56, August 2008

[10] H. Guzman-Miranda, L. Sterpone, M. Violante, M.A. Aguirre, M.
Gutierrez-Rizo, “Coping With the Obsolescence of Safety- or

Mission-Critical Embedded Systems Using FPGAs”, IEEE Trans.

On Ind. Electron., vol. 58, no. 3, pp. 814, Marsh 2011
[11] M.A. Gora, A. Maiti, P. Schaumont, “Coping With the

Obsolescence of Safety- or Mission-Critical Embedded Systems

Using FPGAs”, IEEE Trans. On Ind. Informatics, Vol. 6, n° 4, pp.
719, Nov. 2010

[12] F. Simonot-Lion, "Guest Editorial Special Section on In-Vehicle

Embedded Systems", IEEE Trans. on Ind. Informatics, vol. 56, no.
4, pp. 372 - 374, Oct 2009.

[13] F. Baronti, E. Petri, S. Saponara, L. Fanucci, R. Roncella, R.

Saletti, P. D'Abramo, R. Serventi, “Design and Verification of
Hardware Building Blocks for High-Speed and Fault-Tolerant In-

Vehicle Networks”, IEEE Trans. On Ind. Electron., vol. 58, no. 3,

pp. 792, Marsh 2011
[14] J.-J. Chen, X. S. Hu, Mossé, D. , L. Thiele, "Guest Editorial

Special Section on Power-Aware Computing ," IEEE Trans. on

Ind. Informatics, vol. 57, no. 3, pp. , July 2010.
[15] J. Choi, H. Cha, "A Processor Power Management Scheme for

Handheld Systems Considering Off-Chip Contributions ," IEEE

Trans. on Ind. Informatics, vol. 57, no. 3, pp. , Jyly 2010.
[16] Fuming Sun, Haiyang Wang, Fei Fu, Xiaoying Li, “Survey of

FPGA low power design”, In Proc. ICICIP’2010 Conf., pp. 547-

550, 2010
[17] P. Ferrari, A. Flammini, D. Marioli, A. Taroni, “A Distributed

Instrument for Performance Analysis of Real-Time Ethernet
Networks”, IEEE Trans. On Ind. Informatics, Vol. 4, N° 1, pp. 16-

25, Feb. 2008

[18] S. Fischmeister, R. Trausmuth, Insup Lee, "Hardware Acceleration
for Conditional State-Based Communication Scheduling on Real-

Time Ethernet ," IEEE Trans. on Ind. Informatics, vol. 56, no. 3,

pp. 325 - 337, July 2009.
[19] L. Vachhani, K. Sridharan, “Hardware-Efficient Prediction-

Correction-Based Generalized-Voronoi-Diagram Construction and

FPGA Implementation”, IEEE Trans. On Ind. Electron., vol. 55,
no. 4, pp. 1558, April 2008

[20] L. Vachhani, K. Sridharan, P.K. Meher, “Efficient FPGA

Realization of CORDIC With Application to Robotic
Exploration”, IEEE Trans. On Ind. Electron., vol. 56, no. 12, pp.

4915, Dec. 2009

[21] C.-C. Tsai, H.-C. Huang, S.-C. Lin, “FPGA-Based Parallel DNA

Algorithm for Optimal Configurations of an Omnidirectional
Mobile Service Robot Performing Fire Extinguishment”, IEEE

Trans. On Ind. Electron., vol. 58, no. 3, pp. 1016, March 2011

[22] H. Tanaka, K. Ohnishi, H. Nishi, T. Kawai, Y. Morikawa, S.
Ozawa, T. Furukawa, “Implementation of Bilateral Control System

Based on Acceleration Control Using FPGA for Multi-DOF

Haptic Endoscopic Surgery Robot”, IEEE Trans. On Ind.
Electron., vol. 56, no. 3, pp. 618, March 2009

[23] Li. Tianjian, Y. Fujimoto, “Control System With High-Speed and

Real-Time Communication Links”, IEEE Trans. On Ind.
Electron., vol. 55, no. 4, pp. 1548, April 2008

[24] E. Monmasson, M. W. Naouar, L. Idkhajine, “FPGA-based

Controllers for Power Electronics and Drive Applications”, IEEE
Ind. Electron. Magazine, vol. 5, n°1, pp. 1-13, March 2011

[25] O. Lopez,, J. Alvarez, J. Doval-Gandoy, F.D. Freijedo, “Multilevel

Multiphase Space Vector PWM Algorithm” IEEE Trans. Ind.
Electron., vol. 55, no 5, pp 1933 – 1942, May 2008.

[26] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-

frequency digital controller IC for dc–dc converters,” IEEE Trans.
Power Electron., vol. 18, no. 1, pp. 438–446, Jan. 2003.

[27] S.C. Huerta, A. de Castro, O. Garcia, J.A. Cobos, “FPGA-Based

Digital Pulsewidth Modulator With Time Resolution Under 2 ns”,
IEEE Trans. on Power Electron., vol. 23, n°6, pp. 3135-3141,

Nov. 2008.

[28] A. V. Peterchev and S. R. Sanders, “Quantization resolution and
limit cycling in digitally controlled PWM converters,” IEEE

Trans. Power Electron., vol. 18, no. 1, pp. 301–308, Jan. 2003.

[29] A. Myaing, V. Dinavahi, “FPGA-Based Real-Time Emulation of
Power Electronic Systems With Detailed Representation of Device

Characteristics,” IEEE Trans. Ind. Electron., vol. 58, N°1, Dec.

2010.
[30] M.-W. Naouar, E. Monmasson, A. A. Naassani, I. Slama-

Belkhodja and N. Patin, “FPGA-based current controllers for AC

machine drives—A review,” IEEE Trans. Ind. Electron., vol. 54,
no. 4, pp. 1907–1925, Aug. 2007

[31] S. Karimi, A. Gaillard,P. Poure, S. Saadate, S. “FPGA-Based

Real-Time Power Converter Failure Diagnosis for Wind Energy
Conversion Systems,” IEEE Trans. Ind. Electron., vol. 55, n°12,

pp. 4299-4308, Dec. 2008
[32] F. Blaabjerg, P.C. Kjaer, P.O. Rasmussen, C. Cossar, “Improved

digital current control methods in switched reluctance motor

drives,” IEEE Trans. on Power Electron., vol. 14, n°3, pp. 563-
572, May 1999.

[33] K. Tazi, E. Monmasson and J.P. Louis, “Description of an entirely

reconfigurable architecture dedicated to the current vector control
of a set of AC machines,” In Proc. IEEE-IECON’99 Conf., 1999,

pp. 1415-1420.

[34] Y.-S. Kung, R.-F. Fung, and T.-Y. Tai, “Realization of a motion
control IC for x-y table based on novel FPGA technology,” IEEE

Trans. on Ind. Electron., vol. 56, no. 1, Jan. 2009, pp. 43–53.

[35] A. Fratta, G. Griffero, and S. Nieddu, “Comparative analysis
among DSP and FPGA-based control capabilities in PWM power

converters,” in Proc. IEEE IECON’04 Conf., 2004, pp.257-262.

[36] B. Miao, R. Zane, D. Maksimovic, “System identification of
power converters with digital control through cross-correlation

methods,” IEEE Trans. on Power Electron., vol. 20, n°5, pp. 1093-

109, Sept. 2005.
[37] A. Ordaz-Moreno, R. De Jesus Romero-Troncoso, J.A. Vite-Frias,

J.R. Rivera-Gillen, A. Garcia-Perez, “Automatic Online Diagnosis

Algorithm for Broken-Bar Detection on Induction Motors Based
on Discret Wavelet Transform for FPGA Implementation,” IEEE

Trans. Ind. Electron., vol. 55, n°5, pp. 2193-2202, May 2008.

[38] P. Simi Valsan and K. Shanti Swarup, “High-Speed Fault
Classification in Power Lines: Theory and FPGA-Based

Implementation, ” IEEE Trans. on Ind. Electron., vol. 56, no. 5,

pp. 1793–1800, May 2009.
[39] Xilinx on-line literature. Available in www.xilinx.com

[40] Altera on-line literature. Available in www.altera.com

[41] J. J. Rodriguez-Andina, M. J. Moure, M. D. Valdes, “Features,
design tools, and application domains of FPGAs”, IEEE Trans. On

Ind. Electron., vol. 54, no. 4, pp. 1810–1823, August 2007.

[42] E. Monmasson, M. Cirstea, “FPGA design methodology for
industrial control systems – A review,” IEEE Trans. On Ind.

Electron., vol. 54, no. 4, pp. 1824–1842, August 2007.

[43] E. Monmasson, L. Idkhajine, I. Bahri, M.W. Naouar, L. Charaabi,
“Design methodology and FPGA-based controllers for Power

Electronics and drive applications”, In Proc. ICIEA’2010 Conf.,

pp. 2328-2338, Taichung, Taiwan.

http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5210158
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5210158
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5210158
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4441356
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4441356
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4441356
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5153310
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5153310
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5153310
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5456135
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5456135
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=5456135
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4639511
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4639511
http://ieeexplore.ieee.org/search/srchabstract.jsp?navigation=no&arnumber=4639511

[44] L.Idkhajine, E. Monmasson, M-W. Naouar, A.Prata and

K.Bouallaga, “Fully integrated FPGA-based controller for

synchronous motor drives," IEEE Trans. Ind. Electron., vol. 56,
n°. 10, pp. 4006-4017, Oct. 2009.

[45] K. Eshraghian, “SoC Emerging Technologies”, IEEE Proceedings,

vol. 94, no. 6, Jun. 2006, pp. 1197 – 1213.
[46] G. Martin, “Overview of the MPSoC Design Challenge". in Proc.

DAC’06 Conf., 2006, CD-ROM.

[47] R. Obermaisser, P. Gutwenger,“Model-Based Development of
MPSoCs with Support for Early Validation”, in Proc. IEEE

IECON’09 Conf., 2009, CD-ROM.

[48] R. Kumar, D.Tullsen, and N.Jouppi. «Core Architecture
Optimization for Heterogeneous Chip Multiprocessors". In Proc.

PACT’2006 Conf., Seattle, April 2006

[49] M. Youssef, S. Yoo, A. Sasongko, Y. Paviot, A. A. Jerraya,
“Debugging HW/SW Interface for MPSoC: Video Encoder

System Design Case Study”, In Proc. DAC’04 Conf., 2004, CD-

ROM.
[50] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin. “A study

on communication issues for systems-on-chip,” In Proc. SBCCI

Conf., 2002, pp. 121–126.
[51] A. Brinkmann, J. Niemann, I. Hehemann, D. Langen, M.

Porrmann, and U. Ruckert. “On-chip interconnects for next

generation systems-on-chips,” in Proc. IEEE ASIC SOC Conf.,
2002, pp. 212–215.

[52] P.P Pande, C. Grecu, M. Jones, A. Ivanov. “Performance

Evaluation and Design Trade-Offs for Network-on-Chip
Interconnect Architectures”, IEEE Trans. On computers, vol. 54, n

8, pp. 1025-1040, Aug. 2005.

[53] J. J. Labrosse, MicroC/OS-II: The Real-Time Kernel. CMP Books,
2002.

[53] M. W. Naouar, A. A. Naassani, E. Monmasson, and I. Slama-

Belkhodja. “FPGA-based predictive current for synchronous
machine speed drive,” IEEE Trans. Power Electron., vol. 23, no.

4, pp.2115–2126. July 2008.

[54] S. Bolognani, L. Tubiana, M. Zigliotto, “Extended Kalman Filter
Tuning in Sensorless PMSM Drives”, IEEE Trans. on Ind.

Electron., vol. 39, no. 6, pp. 276 – 281, November 2003.

[55] A. Akrad, M. Hilairet, D. Diallo, “A Sensorless PMSM drive using
a two stage Extended Kalman Estimator”, In Proc. IECON’2008

Conf., pp. 2776-2781, Orlando, Florida, USA.
[56] B. Nahid-Mobarakeh, F. Meibody-Tabar, and F. Sargos :

“Mechanical Sensorless Control of PMSM With Online Estimation

of Stator Resistance” IEEE Trans. On Ind. Applications, vol. 40,
no. 2, pp. 457 – 471, March/April 2004

[57] Bendjedia, M.; Ait-Amirat, Y.; Walther, B.; Berthon, A :

“Sensorless control of hybrid stepper motor”, in Proc. EPE Conf.,
2007, pp. 1–10, CD-ROM.

[58] P. Brandstetter, M. Kuchar, D. Vinklarek: “Estimation Techniques

for Sensorless Speed Control of Induction Motor Drive”, in Proc.
IEEE ISIE Conf., 2006, CD-ROM.

[59] A. Maalouf, L. Idkhajine, S. Le Ballois, E. Monmasson, “FPGA-

based Sensorless Control of Brushless Synchronous Starter
Generator for Aircraft Application”, IET Electric Power

Applications Journal, Accepted for publication in 2011.

[60] L. Idkhajine, E. Monmasson, A. Maalouf: “Fully FPGA-based
Sensorless Control for AC Drive using an Extended Kalman

Filter”, In Proc. IECON’2009 Conf., pp. 2925-2930, Porto,

Portugal.
[61] L. Idkhajine, E. Monmasson, A. Maalouf: “Extended Kalman

Filter for AC Drive Sensorless Speed Controller - FPGA-Based

solution or DSP-Based solution”, In Proc. ISIE’2010 Conf., Bari
Italy.

[62] L. Idkhajine, E. Monmasson: “Optimized FPGA-based Extended

Kalman Filter Application to an AC Drive Sensorless Speed
Controller”, In Proc. SPEEDAM’2010 Conf., pp. 1012-1017 Pisa

Italy.

[63] Texas Instrument technical documents. Available in www.ti.com
[64] F. Zhengwei, J. E. Carletta, and R. J. Veillette, “A methodology

for FPGA-based control implementation,” IEEE Trans. Control

Syst. Technol., vol. 13, no. 6, pp. 977–987, Nov. 2005.
[65] S. N. Murthy, W. Alvis, R. Shirodkar, K. Valavanis, W. Moreno,

“Methodology for implementation of unmanned vehicle control on

FPGA using system generator”, In Proceedings ICCDCS’2004
Conference, CD-ROM.

[66] Oscar López, Jacobo Alvarez, Jesús Doval-Gandoy, et al.,

“Comparison of the FPGA implementation of two multilevel space
vector PWM algorithms” IEEE Transactions on Industrial

Electronics, vol.55, no. 4, pp. 1537-1547, April 2008.

[67] Da Zhang, Hui Li, "A Stochastic-Based FPGA Controller for an

Induction Motor Drive With Integrated Neural Network

Algorithms," IEEE Trans. on Ind. Electronics, vol. 55, no. 2, pp.

551-561, Feb. 2008.
[68] B. K. Bose, “Neural Network Applications in Power Electronics

and Motor Drives - An Introduction and Perspective”, IEEE

Transactions on Ind. Electronics, vol. 54, no. 1, pp. 14-33, Feb.
2007.

[69] X. Shao, D. Sun, “Development of a New Robot Controller

Architecture with FPGA Based IC Design for Improved High-
Speed Performance”, IEEE Trans. Ind. Informatics, vol. 3, no. 4,

pp 312-321, 2007.

[70] Pedro Martín, Emilio Bueno et al., “A Methodology for
Optimizing the FPGA Implementation of Industrial Control

Systems”, IECON '09. pp. 2831-2836, 2009.

[71] E. J. Bueno, Á. Hernández, et al., “A DSP and FPGA-based
industrial control with high speed communication interfaces for

grid converters applied to distributed power generation systems”,

IEEE Trans. on Industrial Electronics, vol. 56, no. 3, pp. 654-669l.
March 2009.

[72] A. Nelson, T. Marcelo, “Custom Architectures for Fuzzy and

Neural Networks Controllers,” JCS&T, vol. 2, no. 7, pp. 9-15, Oct.
2002.

[73] NEuroNet Roadmap. Future Prospects for Neural Networks, 2001.

http://www.eunite.org/eunite/roadmap/02Roadmap1.pdf
[74] Special Section: “Neural Networks for Robotics”, IEEE Trans. on

Ind. Electronics, vol. 44, no. 6, Dec. 1997.

[75] Special Section: “Fusion of Neural Nets, Fuzzy Systems and
Genetic Algorithms in Industrial Applications”, IEEE Trans. on

Ind. Electronics, vol.46, no.6, 1999.

[76] A. Gomperts, A. Ukil, F. Zurfluh, “Development and
Implementation of Parameterized FPGA-Based General Purpose

Neural Networks for Online Applications”, IEEE Transactions on

Industrial Informatics, Vol. 7, Issue 1, pp. 78-89, Feb. 2011.
[77] Q. N. Le, J.W. Jeon, “Neural-Network-Based Low-Speed-

Damping Controller for Stepper Motor with an FPGA”, IEEE

Transactions on Industrial Electronics, Vol. 57, Issue 9, pp. 3167–
3180, September 2010.

[78] Ying-Shieh Kung, Ming-Shyan Wang, Tzu-Yao Chuang, “FPGA-

based self-tuning PID controller using RBF neural network and its
application in X-Y table”, IEEE International Symposium on

Industrial Electronics, 2009. ISIE 2009, pp. 694 – 699, July 2009.
[79] S. Sanchez-Solano, R. Senhadji, A. Cabrera, I. Baturone, C. J.

Jimenez, A. Barriga, "Prototyping of Fuzzy Logic-Based

Controllers Using Standard FPGA Development Boards," In Proc.
13th IEEE International Workshop on Rapid System Prototyping

(RSP'02), 2002, CD-ROM.

[80] S.Poorani, T.V.S. Urmila Priya, K. Udaya Kumar, S.
Renganarayanan: “FPGA Based Fuzzy Logic Controller For

Electric Vehicle”, Journal of the Institution of Electrical

Engineers, Singapore, vol. 45, no. 5, 2005.
[81] D. Kim: “An implementation of fuzzy logic controller on the

reconfigurable FPGA system,” IEEE Trans. on Industrial

Electronics, Vol. 47, no. 3, pp.703-715, Jun 2000.
[82] E. Lago, M. A. Hinojosa, C. J. Jiménez, A. Barriga, S. Sánchez-

Solano, “Implementation of Fuzzy Controllers”, 1997,

http://citeseer.ist.psu.edu/46515.html
[83] F.J. Lin, D.H. Wang, P.K. Huang, “FPGA-based fuzzy sliding-

mode control for a linear induction motor drive,” IEE Proceedings,

Electric Power Applications, Vol. 152, no. 5, pp. 1137-1148, Sept
2005.

[84] C. Cecati, F. Ciancetta, P. Siano, “A FPGA/fuzzy logic - Based

multilevel inverter”, IEEE International Symposium on Industrial
Electronics, ISIE 2009, pp. 706-711. July 2009.

[85] Juang Chia-Feng, Lu Chun-Ming, Lo Chiang, and Wang Chi-Yen,

“Ant Colony Optimization Algorithm for Fuzzy Controller Design
and Its FPGA Implementation”, IEEE Transactions on Industrial

Electronics, vol. 55, no. 3, pp. 1453-1462, March 2008.

[86] S. Sanchez-Solano, E. del Toro, M. Brox, I. Baturone, A. Barriga,
“A design environment for synthesis of embedded fuzzy

controllers on FPGAs”, IEEE International Conference on Fuzzy

Systems (FUZZ), pp. 1-8, July 2010
[87] M. Trimborne, “Optimizing Intelligent DAQ Devices with NI

LabVIEW 8”, National Instruments News, 21 Feb. 2006.

[88] J. Truchard, “Bringing FPGA design to application domain
experts”, 2010 International Conference on Field-Programmable

Technology (FPT), pp iii, August 2010.

[89] T.N. Guoqiang Wang Tran, H.A. Andrade, “A graphical
programming and design environment for FPGA-based hardware”,

2010 International Conference on Field-Programmable

Technology (FPT), pp. 337 – 340, August 2010.

[90] P. Chandrashekhar Samuel, R.N. Gupta, “Wind energy conversion

based on seven-level cascaded H-bridge inverter using LabVIEW

FPGA”, 2010 International Conference on Power, Control and
Embedded Systems (ICPCES), pp. 1-6, December 2010.

[91] S.R. Verma Gadgil, M.S. D. Panse, K. Tuckley, “Sea State

Monitoring HF Radar Controller Using Reconfigurable LabView
FPGA”, International Conference on Advances in Computing,

Control & Telecommunication Technologies, 2009. ACT '09. pp.

395 – 397, December 2009.
[92] B. McMickell, P.J. Tanzillo, T. Kreider, K. Ilic, “Rapid

development of space applications with responsive digital

electronics board and LabVIEW FPGA”, 2010 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp. 78-81,

June 2010.

[93] M. Kaminski, T. Orlowska-Kowalska, “FPGA realization of the
neural speed estimator for the drive system with elastic coupling”,

35th Annual Conference of IEEE Industrial Electronics, 2009.

IECON '09, pp. 2831-2836. November 2009.
[94] C. Ortega, A.M. Tyrell: “A Hardware Implementation of an

Embryonic Architecture Using Virtex FPGAs”, Proceedings of the

Third International Conference on Evolvable Systems: From
Biology to Hardware, pp. 155 – 164, 2000, ISBN: 3-540-67338-5.

[95] W. Adi, K. Benkrid, “Adaptive and evolvable hardware security

architectures”, 2010 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pp. 194-198, June 2010.

[96] K. Glette, J. Torresen, M. Hovin, “Intermediate Level FPGA

Reconfiguration for an Online EHW Pattern Recognition System”,
2009 NASA/ESA Conference on Adaptive Hardware and Systems,

AHS 2009, pp. 19-26, July 2009.

[97] P. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, A. Stoica,
“Customizable FPGA IP Core Implementation of a General-

Purpose Genetic Algorithm Engine”, IEEE Trans. on Evolutionary

Computation, vol. 14 , Issue 1, pp. 133-149, Feb. 2010.
[98] M. Samie, G. Dragffy, T. Pipe, “Bio-inspired self-test for

evolvable fault tolerant hardware systems”, NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), pp. 325-332, June
2010.

[99] P. Conmy, I. Bate, “Component-Based Safety Analysis of FPGAs”,

IEEE Trans. Ind. Informatics, vol. 6, no. 2, pp 195-205, 2010.
[100] B. M. Wilamowski, H. Yu, “Improved computation for

Levenberg-Marquardt training”, IEEE Trans Neural Netw., 21(6),
pp 930-937, 2010.

[101] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar,

"Computing Gradient Vector and Jacobian Matrix in Arbitrarily
Connected Neural Networks," IEEE Trans. on Ind. Electron., vol.

55, no. 10, pp. 3784-3790, Oct. 2008.

[102] A. Dinu, M. N. Cirstea: “A Digital Neural Network FPGA Direct
Hardware Implementation Algorithm”, Proc. of ISIE 2007, Vigo,

Spain, pp.2307-2312.

[103] A. Dinu, M.N. Cirstea, S.E. Cirstea: “Direct Neural Networks
Hardware Implementation Algorithm”, IEEE Trans. on Ind.

Electronics, vol. 57, no. 5, pp.1845-1848, May 2010.

[104] A. Dinu, "FPGA Neural Controller for Three Phase Sensorless
Induction Motor Drive Systems", PhD Thesis, De Montfort

University, 2000.

[105] A. Aounis, M. McCormick, M.N. Cirstea: "A Novel Approach to
Induction Motor Controller Design and Implementation", Proc. of

IEEE Power Conversion Conference (PCC), Osaka, pp.993-998,

April 2002.
[106] A. Tisan, et al, “Architecture and Algorithms for Synthesizable

Neural Networks with On-Chip Learning”, 8-th International

Symposium on Signals, Circuits and Systems. ISSCS 2007, (1), pp.
265 – 268, 2007.

[107] A. Tisan, M.N. Cirstea, S. Oniga, A. Buchman, “Artificial

Olfaction System with Hardware On-chip Learning Neural
Networks”, Proc. of IEEE Int. Conference on Optimisation of

Electrical and Electronic Equipment (OPTIM 2010), Brasov,

Romania, 20-22 May 2010, vol., pp. 884-889.
[108] D. Zhang, H. Li, S.Y. Foo: “A Simplified FPGA Implementation

of Neural Network Algorithms Integrated with Stochastic Theory

for Power Electronics Applications”, Industrial Electronics
Conference, IECON'05, Raleigh, USA, pp.1018-1024, 2005.

[109] H. Amin, et all: “Piecewise linear approximation applied to

nonlinear function of a neural network”, IEE Proc. Circuits,
Devices Sys., 1997, 144, (6), pp. 313–317.

[110] M.T. Tommiska: “Efficient digital implementation of the sigmoid

function for reprogrammable logic”, IEE Proceedings –
Computers and Digital Techniques, number 6, pp. 403-411, 2003.

[111] O. Cheng, W. Abdulla, Z. Salcic, “Hardware–

Software Codesign of Automatic Speech Recognition System for

Embedded Real-Time Applications”, IEEE Trans. on Ind.

Electron., vol. 58, no. 3, pp. 850-859, March 2011.

[112] L. Siew-Kei, T. Srikanthan, C.T. Clarke, “Selecting Profitable
Custom Instructions for Area–Time-Efficient Realization on

Reconfigurable Architectures”, IEEE Trans. on Ind. Electron., vol.

58, no. 3, pp. 850-859, Oct. 2009.

