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To all our family members, students, and promising researchers in 
health and social sciences
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Preface 

Stata is a popular and versatile data analysis software. Many books and guidelines on 
Stata are available online or in the market. Stata books focusing on the analysis of 
health-related data are scarce. Most of the books used data from sources that are related 
to business or psychology, with which health researchers are mostly unfamiliar. All 
these factors, and the inspiration of students, encouraged us to write this book. In this 
book, we have used simple variables that are commonly used in health and social 
science-related research as examples to make it easy and understandable for users.

This book is intended for students (MPH, FCPS, MD, MS, MPhil, PhD, and others), 
teachers, and young researchers in health and social sciences. It is written in very 
simple language. This book answers three basic questions about data analysis. These 
are: a) what to do (what statistics to use for data analysis in order to achieve the objec-
tives); b) how to do (how to analyze data using Stata); and c) what do the outputs mean 
(how to interpret the outputs). All these questions are answered in an understandable 
manner with examples. 

This book covers more than the basic statistical methods of data analysis that are com-
monly used in health and social sciences research. It is the gateway to learning statis-
tics and Stata together, and will help the users go further. This book covers data man-
agement, descriptive statistics, hypothesis testing using bivariate and multivariable 
analysis, and others. It is easier to learn through exploration than only reading. Users 
are encouraged to explore further once the basics are known. From our understanding, 
using the statistics covered in this book, students and researchers will be able to 
analyze most of their data from epidemiological studies and publish them in interna-
tional peer-reviewed journals.

We are optimistic that students and researchers will find this book useful while analyz-
ing their data and interpreting the outputs. If you have any comments or suggestions 
about this book, feel free to write to the e-mail address below.

M. Tajul Islam
abc.taj@gmail.com
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Foreword 

The book titled "Data Analysis with Stata", written by Dr. M. Tajul Islam, Dr. Russell 
Kabir, and Dr. Monjura Nisha, is an immense contribution to teaching, training, and 
research in the field of medical sciences and relevant disciplines. The authors of the 
book have provided a step-by-step approach from data management to data analysis 
using Stata in this book.

The book is a useful resource for data analysis using Stata for undergraduate, postgrad-
uate, and doctoral students of medical sciences and other health-related disciplines, 
such as Dental, Pharmacy, Nursing, Occupational Health, Physical Medicine, Biomed-
ical and Social Sciences.

Each chapter is written in a simple manner, focusing on the needs of students. Contents 
are systematically presented and described so that students can easily grasp the process 
of data analysis and interpret the outputs. 

This book will serve as a helpful training tool for university lecturers, dissertation 
supervisors, and data analysis instructors.

Readers will benefit from using this book, and I wish for the extensive circulation of 
the book.

Professor Hafiz T.A. Khan
PhD (Edin Napier), PostDoc (Oxon), FRSPH, CStat (UK) 

Professor of Public Health and Statistics 
College of Nursing, Midwifery and Healthcare

University of West London
Middlesex TW8 9GB

United Kingdom
Email: hafiz.khan@uwl.ac.uk
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Introduction

Stata is a data analysis software that allows us to perform a wide range of statistical 
analyses. Stata can be operated by using its drop-down menu as well as by writing the 
commands directly in the command window. The commands of Stata are straightfor-
ward and simple. Therefore, data analysis by writing commands is more popular 
among users. This book is written focusing on the use of Stata’s commands for data 
analysis.

This book is for students, young researchers, and teachers. It provides more than a 
basic understanding and techniques for statistical analysis of data related to health and 
social sciences research. This book is based on Stata version 13. There are upper as 
well as lower versions of Stata. Stata commands are sufficiently similar, and users can 
use this book for both upper and lower versions. The newer versions are mainly for the 
more advanced and recently developed techniques that the users most likely do not 
require.

This book focuses on statistical decision-making, data analysis, and interpretation of 
the outputs. It covers commonly used data analysis techniques in health and social 
sciences research. The topics covered in this book include data management, descrip-
tive statistics, and bivariate and multivariable analysis for hypothesis testing, including 
nonparametric methods and others.

1.1 Version dilemma
Stata is continuously evolving over time. That means that the commands, options, 
language elements, and others may change in future versions. However, Stata ensures
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that the higher versions execute the commands regardless of the version of Stata in 
which they are written. It is, therefore, expected that all the commands (syntax) used in 
this book will run in higher (or lower) versions.  

This book is based on Stata version 13. If you are using a different version (e.g., 
version 17), you can still use the commands. If you find any problem in executing a 
command provided in this book in version 17 (or other versions), type the following 
command at the top of every Do-file (Chapter 3) that you create: 

version 13

This simple step will ensure that your Do-file or program will continue to run not only 
in version 17 but also in all future versions of Stata, even if that future version has 
changes in the syntax of some of the commands or programming constructs. 

You can also use the above command as a prefix while writing a command in the com-
mand window. For example, if you want to execute an ANOVA syntax in version 17, 
which is written in version 13, use the command:  

version 13: anova …..

This command will set Stata’s version to 13, run the anova command, and then reset 
Stata’s version to whatever it was before the command was executed. For further infor-
mation, visit: https://www.stata.com/manuals/pversion.pdf.

1.2 Stata interface
Once you open the Stata (double-clicking the Stata icon), it looks like Figure 1.1. It has 
six windows, as shown in Figure 1.1 by the numbers 1 to 6. The purposes of the 
windows are described in Table 1.1. You will also find some useful icons on the Stata 
toolbar (Fig 1.2). The functions of the icons are provided in Table 1.2. We will discuss 
Stata in further detail in the subsequent chapters.

1.3 Steps of data analysis
We collect data for our studies using various tools and methods. The most commonly 
used tools for data collection are questionnaires and record sheets, while the common-
ly used data collection methods are interviews (face-to-face, telephonic or online), 
observations, physical examinations, and lab tests. Sometimes we use available data 
(secondary data) for our research studies, such as hospital records or data from  other 

Introduction
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studies (e.g., Bangladesh Demographic and Health Survey data). Once data is collect-
ed, the steps of data analysis are:

• Data coding, if a pre-coded questionnaire or record sheet is not used
• Development of a data file and data entry 
• Data cleaning (checking for errors during data entry)
• Data screening (checking assumptions for statistical tests)
• Data analysis
• Interpretation of results

Figure 1.1 Stata interface and windows

Figure 1.2 Stata toolbar icons 
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Table 1.1 Stata windows and purposes 

Window Purpose 
Command window 
[1] 

This is for writing the commands. We write commands in this 
window. The commands are executed when the “Enter” key is 
pressed. You can use the “Page Up” and “Page Down” keys on 
the keyboard to recall commands from the “Review” window 
(window 6).  

Results or outputs 
window [2] 

This window displays the outputs along with the commands 
executed. It also shows error messages if there is any 
problem with the commands. The Results window keeps about 
500 lines of the outputs. When this limit is exceeded, Stata 
deletes the earlier outputs. If you want to save the outputs, you 
must generate a log-file to store the outputs. You can browse the 
results using the mouse or <Shift+Page Up/Page Down or Arrow> 
buttons.  

Variables window [3] Displays the variable names of the dataset currently active in 
memory (i.e., currently being used). If you double-click on a 
variable in this window, the variable will appear in the 
"Command" window.  

Properties window: 
Variables window [4] 

Under the “Properties” window, there is a “Variables” window 
(4) and a “Data” window (5). The “Variables” window shows 
the variable properties, such as variable name, variable label, 
etc.  

Data window [5] This window shows the file name, path, number of variables in 
the dataset, and total observations. 

Review window [6] This window displays the commands already executed during an 
analysis session. If you click on a command in this window, the 
command will appear in the “Command” window and can be 
executed by pressing the “Enter” key. If you double -click on a 
command in the “Review” window, the command will be 
directly executed, and the outputs can be seen in the “Results” 
window.   
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Table 1.2 Stata toolbar icons and functions 

Icon Function 

 To open a data file from the desired location. 

 To save the data file. 

 
To save the log-file (results or outputs file). You can begin, close, suspend, 
or resume the log-file using this icon.  

 

This is the new Do-file Editor icon. The Do-file is for writing, editing, and 
saving the commands. You can generate a Do-file (command file) and edit 
it using this icon. 

 
This icon is for going to the Data Editor (Edit mode). In this mode, you can 
edit or change data in the data file.  

 
This icon is for going to the Data Editor (Browse mode). You can only 
browse and see data in this mode, but you cannot change them.  

 
This icon is for going to the Variables Manager, where you can edit 
(change) the variable names, variable labels, and value labels.  



6



2

Generating Data Files

Like other data analysis programs, Stata has to read a data file to analyze the data. It is, 
therefore, necessary to develop a data file or import it from other programs for use by 
Stata. Data files can be generated by Stata, but it is not a popular practice. Researchers 
mostly convert or import data files generated in other programs for use by Stata. Data 
files generated in other programs can be easily transformed into Stata format for analy-
sis. In this chapter, we will discuss how to generate a data file in Stata.

2.1 Generating data files

2.1.1 Generating a data file by typing data in the data editor

For generating a data file, the first and basic step is to decide on a name for each of the 
variables included in the questionnaire or record sheet. To name a variable, we need to 
follow certain rules. They are:

• The variable names must be unique (i.e., all the variables should have different  
 names) 
• A variable name must be between 1 and 32 characters long. But try to keep it  
 as short as possible.
• Variable names must begin with a letter (small or capital) or an underscore.  
 Variable names cannot begin with a number. Although underscore can be used  
 to begin a variable name,  it is strongly  discouraged because  such variable  
 names are used to indicate temporary variables in Stata.
• Variables cannot include full stop (.), space,  or symbols like, ?, *, µ, λ, ~, !, -,  
 @, and #. 
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• Stata is case-sensitive. For example, "Gender", "gender", and "GENDER" will  
 not be considered as the same variable by Stata. During analysis, you need to  
 type the variable names correctly for execution. We recommend using the  
 variable names with all lowercase letters (e.g., gender). 

Once the variable names are decided, the next step is to generate a data file. In Stata, 
for generating a data file, we start by entering data before inserting the variable names. 
Suppose that we have collected data using a pre-coded questionnaire (codes are shown 
in parenthesis) with the following variables:

Categorical variables:

• Sex (m= male; f= female) 
• Religion (1= Islam/Muslim; 2= Hindu; 3= Others)
• Occupation (1= Business; 2= Government job; 3= Private job; 4= Others)
• Marital status (1= Married; 2= Unmarried; 3= Others)
• Have diabetes mellitus (1= Yes; 2= No)

Quantitative variables (numerical variables):

• ID number
• Age of the respondent
• Monthly family income
• Systolic blood pressure (BP)
• Diastolic BP

Assume that we have decided to use "age" as the variable name for age, "sex" for sex, 
and "religion" for religion. Instead of age, sex, and religion, you can use any other 
names for the variables, such as v1, v2, and v3. It is always convenient to develop a 
codebook in MS Word or MS Excel where the Stata variable names, actual variable 
names (variable labels), and variable codes (value labels) are recorded (Table 2.1). The 
codebook is helpful during data analysis. 

It is convenient to use numeric variables instead of string (character) variables for a 
data file. The numeric variables have numeric codes (e.g., 1= male; 2= female). The 
string variables may or may not be coded. If a string variable is coded, it is coded with 
letters (e.g., m= male; f= female). When a string variable is not coded, the data is 
directly entered into the data file. For example, the data of gender (male/female), 
religion (Islam/Hindu/Others), and occupation (business/job holder/others) may be 
entered directly into the data file. Note that Stata does not allow value labels for the 
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coded string variables (e.g., m= male; f= female). 

Table 2.2 shows some data (as an example) that has been collected using a question-
naire (Table 2.1). We will use this data to generate a data file in Stata.

Table 2.1 Questionnaire codebook  

Stata variable 
name 

Actual variable name/ variable 
label 

Variable code/ value 
labels  

idno Identification number Actual value 
age Age in years Actual value 
sex Sex* m= male 

f= female 
religion Religion 1= Islam/Muslim 

2= Hindu 
3= Others 

occu Occupation 1= Business 
2= Government job 
3= Private job 
4= Others 

income Monthly family income in Tk. Actual value 
marital Marital status 1= Married 

2= Unmarried 
3= Others 

diabetes Have diabetes mellitus 1= Yes  
2= No 

sbp Systolic blood pressure in mmHg Actual value 
dbp Diastolic blood pressure in mmHg Actual value 

*For practical purposes, it is better to consider a numeric variable (e.g., 1= male; 2= 
female) rather than a string (character) variable for sex (e.g., m= male; f= female) as well 
as for other variables. 
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Open the Stata program by double-clicking the Stata icon. You will see the Stata inter-
face (Stata/SE 13.0) as shown in Figure 1.1 (Chapter 1). The simplest way to generate 
a data file is through the Data Editor. To go to the Data Editor, select from the menu 
bar:

Window > Data Editor 
Or,
Data > Data Editor > Data Editor (Edit)

Or, 

Click the icon       on the toolbar.

You will see the “Data Editor (Edit) – Untitled” as shown in Figure 2.1. This is the 
window for defining the variables as well as for data entry. Use the following steps to 
generate a data file: 

Step 1: Our first variable is "idno" (Table 2.2). When the cursor is placed in the first 
column of the first row, it will show "var1[1]" in the box above. Type the first value of 
the variable "idno" as shown in Table 2.2 (which is 1, i.e., just type 1 and press the 
"Enter" button). You will notice that "var1" appears at the top of the first column (Fig 
2.2). 

Now, type the value (which is 26) of the second variable "age" in the first box of the 
second column and press "Enter". You will see that "var2" appears at the top of the 
second column. Like this, enter the values of other variables into the Stata Data Editor 
spreadsheet.  

If the first value entered for a variable is a number, Stata will consider it a numeric 
variable and will permit only numbers as its values subsequently. The numeric values 
may begin with a plus or minus sign, and include decimal points. However, the num-
bers should not have any commas (,), such as 10,000 or 1,000,000. 

Table 2.2 Data collected from the study subjects (only a portion is shown) 

idno age sex religion occu income marital 
1 26 m 1 2 25000 1 
2 28 f 2 2 35000 1 
3 29 f 1 1 60000 1 
4 34 m 1 3 20000 2 
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If the first value entered for a variable is a non-numeric character (such as m, f, or any 
other letter), Stata will consider it a string (text) variable. A string variable may have 
values up to 244 characters long and may have any combination of letters, numbers, 
symbols, and spaces.

Figure 2.1 Stata data editor spreadsheet

Figure 2.2 Stata data editor with variable names
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In the Data Editor or Data Browser, the string variable values appear as red, numeric 
variable values appear as black, and labeled (coded) numeric variable values appear as 
blue. 

Step 2: In this step, we will rename (replace) the variable names that have been gener-
ated automatically by Stata (like var1, var2, and var3) with the variable names as 
shown in the codebook (Table 2.1). For example, we need to rename the first variable 
"var1" as "idno", the second variable "var2" as "age", and so on. 

You can see that there are three windows on the right side of the Data Editor (Fig 2.1). 
These are the "Variables", "Properties", and "Data" windows. In the "Variables" 
window, all the variable names have appeared, like var1, var2, and var3 (Fig 2.2). 
Click on "var1" in the "Variables" window. Now look at the "Properties" window. It 
shows "var1" against "Name" in the window. Double-click on "Name" in the "Proper-
ties" window, delete "var1" and write "idno". This will replace "var1" with "idno". You 
can see the new variable name (idno) in the spreadsheet as well as in the "Variables" 
window. Like this, rename all the variables generated automatically by Stata with the 
variable names of your choice. You can also use the following command to change the 
variable name:

rename var1 idno

This command will rename the variable “var1” to “idno”. 

Step 3: We will now label the variables one by one. To write the variable label for 
“idno”, select (click on) the variable “idno” in the “Variables” window (Fig 2.2). Dou-
ble-click on “Label” in the “Properties” window and write “serial no”. This will be the 
variable label for “idno” as shown in the “Variables” window for the variable “idno” 
against “Label”. In this way, complete the variable labels of all variables as shown in 
the codebook. An alternative to labeling a variable is by using the following command 
in the command window: 

label var idno “serial no” 

This will label the variable “idno” as “serial no”. 

Step 4: Step 4 is assigning the value labels. Since the variables "idno" and "age" are 
not categorical variables (i.e., these variables are not coded), they do not need to have 
value labels. Value labels are only needed for the categorical variables that are coded 
numerically. Stata does not allow value labels for string variables. Therefore, we need 
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to assign value labels only for the numerically coded variables, such as "religion", 
"occupation", and others. 

In our example, the variable "religion" is a numerically coded variable, and the code 
numbers are 1= Muslim; 2= Hindu; 3= Others. We need to assign value labels to this 
variable. To assign value labels, either use the following command or the following 
steps:

label define religion 1”Muslim” 2”Hindu” 3”Others”

Or simply,

la de religion 1”Muslim” 2”Hindu” 3”Others”

Or, use the following steps:

• Select the variable “religion’ in the “Variables” window (in Data Editor) (Fig  
 2.2)
• Click on “Value Label” in “Properties” window (under “variables”)
• You will see a dropdown arrow and a small box with 3 dots
• Click on the 3 dot box
• Click on “Create Label”
• Write “religion” in the box “Label name”
• Write 1 in the “Value” box; write “Muslim” in the “Label” box; and click Add
• Write 2 in the “Value” box; write “Hindu” in the “Label” box; and click Add
• Write 3 in the “Value” box; write “Others” in the “Label” box; and click Add
• Click “OK” and then “Close”
• Click on “Value Label” in “Properties” window and using the dropdown  
 arrow, select “religion”

The above steps will insert value labels for the variable "religion". In this way (or using 
the command), provide value labels to all the coded variables in the data file and enter 
the data one by one. If there is any missing value, just keep the cell blank (or type the 
assigned missing value code). Stata will consider it (when the cell is kept blank) a 
missing value and will indicate it with a dot (.). 

Closing the Data Editor window at any time during data entry will keep the data in 
memory (data will not be lost) unless you exit the Stata program. Once data entry is 
completed (or partially completed), we need to save the data file (Stata data files have 
the extension ".dta"). To save a data file, select:

File (from the menu bar) > Save As… > Select the folder where you want to save
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the file > Give a file name (.dta will appear by default) > Save

Or, 

You can save the data file using the command “save” 

For example, if you want to save the data file by the name "practice" on your desktop, 
use the following command (you need to specify the path): 

save "C:\Users\HP\Desktop\practice.dta"

When you are in use of a data file for analysis and want to save the data file with the 
same name, use the command: 

save, replace

This will save the data file with the same name and in the same location. The replace 
option in the command replaces the old file with the same name. 

So far, we have discussed how to rename and label a variable and how to assign value 
labels using the Stata Data Editor as well as by using the commands. However, it is 
convenient to rename and label variables and assign value labels by writing commands 
in the command window of Stata. The following is the summary of how to use Stata 
commands for the above functions: 

• If you want to change (rename) the variable name “var1” to “idno”, use the  
 following command: 

 rename var1 idno

• If you want to label the variable “idno” as “serial no.”, use the following com 
 mand: 

 label var idno “serial no.” 

• To assign the value labels (1= Muslim, 2= Hindu, 3= Others) to the variable  
 “religion”, use the following command:

 label define religion 1”Muslim” 2”Hindu” 3”Others”

After executing the above command (label define), you need to select “religion” for the 
“Value Label” in the “Properties” window using the dropdown arrow, or simply use the 
following command:

 label values religion religion 

• If you want to change (rename) the variable label of a variable (e.g., variable 
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 label of “age” by “age in years”), use the following command:

 label var age “age in years”

• If you want to change the value labels, for example, you want to change the  
 value label of religion as 3= Christian (instead of Others), use the following  
 command:

 label define religion 1”Muslim” 2”Hindu” 3”Christian”, replace

• By default, the data file displays the value labels of the variables in the Data  
 Editor (Edit or Browse mode). If you want to see the code numbers (values) of  
 the variables, use the following steps (in data editor mode) or command:

 Tools > Value Labels > Hide All Value Labels
 Or,
 Browse, nolabel

2.1.2 Generating a data file using copy and paste commands

The easiest way to generate a data file in Stata is to copy and paste data from another 
data file, e.g., from Excel, dBase, SPSS, or others. For example, suppose that you have 
a data file generated in SPSS, Excel, or other program. You can bring all the data from 
these files to Stata. To do this, open the "Data Editor" window in Stata (Window > Data 
Editor). Go to the data file from where you want to copy data into Stata. Select and 
copy (Control-C) data you want to import and just paste (Control-V) them in the 
spreadsheet of Stata's "Data Editor". Stata will provide the variable names automatical-
ly (by default) as var1, var2, and var3, etc. Rename the variables (var1, var2, var3 and 
others) with the variable names of your choice. Also provide the variable labels and 
value labels as discussed in section 2.1.1. Finally, save the data file at your desired 
location (File > Save as > …). This method is suitable for a small dataset with few 
variables.

2.1.3 Importing a data file from other programs 

Stata version 16 and above has the option to directly import SPSS data into Stata by 
using the dropdown menu [File > Import > SPSS data (*.sav)]. The lower versions do 
not have this option. However, the best way to get a SPSS data file for use in Stata is 
to save the data file into Stata format in SPSS. 

For example, if you want to convert the SPSS data file “wealth.sav” into “wealth.dta” 
in Stata format, first open the data file in SPSS. Then use the following steps: 
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File > Save as… > Select Stata Version 13 SE (*.dta) for the “Save as type” box 
using the dropdown arrow > Write “wealth” in the file name box > Save

This will convert and save the SPSS data file “wealth” into Stata format. You can also 
use a suitable data conversion program to import data from SPSS or other formats into 
Stata format. 

2.1.4 Deleting and inserting variables

2.1.4.1 Deleting a variable

You can delete unwanted variables from a data file. To delete a variable, use the follow-
ing steps: 

• Select a variable in the “Variables” window of Stata
• Right-click the mouse and select “Drop selected variables”

You can also use the command “drop” to delete a variable. For example, if you want to 
delete the variable “sex” from the data file, use the following command:

drop sex

2.1.4.2 Inserting a new variable

You cannot insert a new variable in the data file without any value or missing value. 
Therefore, you need to select a value (or missing value) for the variable. For example, 
you want to insert a new variable “gender”, all the values of which will be 1. To insert 
the new variable (gender), use the following command: 

generate gender=1
Or, 
gen gender=1

If you want to insert the variable “gender” with the missing values, use the following 
command:

gen gender=.

The new variable will appear as the last variable in the data file. You also need to 
provide the variable label and value labels for the new variable as discussed earlier 
(Section 2.1.1). 
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2.1.4.3 Copy a variable into the same data file

You may be interested in copying a variable in the same data file that you are using. 
Suppose that you want to have a copy of the variable "religion" already present in the 
dataset. If you want this, you need to generate a new variable since the data file cannot 
take the same variable name as its copy. Let us name the new variable "religion2". Use 
the following command to get an exact copy (clone) of the variable "religion":

clonevar religion2=religion

You can also use the following command:

gen religion2=religion

The advantages of using the "clonevar" command are that it keeps the variable label 
and value labels the same, including the missing value code in the same way as they 
were in the old variable. On the other hand, if the command "gen" is used, it will not 
keep the variable label and value labels in the new variable. You need to provide them 
separately.

Generating Data Files
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Basics of Stata

In this chapter, we will discuss some of the basic functions related to the use of Stata 
program, such as Stata files, command syntax, and others. Before we proceed to data 
analysis, it is important to know all these basic things. 

3.1 Stata files
Stata generally involves/generates three types of files. They are: 

• Data file: The data file contains data for the analysis by Stata and has the  
 extension “.dta”; 

• Output file: The output file contains the results of data analysis and the 
 commands. It is also called a “log” file and has an extension of either “.smcl”  
 or “.log”; 

• Command file (Do-file): The command file is called a “Do-file” in Stata and  
 has the extension “.do”. This file is for storing a collection of commands for  
 data analysis. The commands saved in a Do-file can be reused or executed at  
 any time as required. The commands can be written directly and/or edited in a  
 Do-file for analysis. 

3.1.1 Data file

3.1.1.1 Opening (retrieving) an existing data file

In the previous chapter (Chapter 2), we discussed how to generate a data file in Stata. If 
you already have a Stata data file saved on your computer, you can open it in  different
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ways, such as using the drop-down menu, writing the command, or using the icon.

Suppose that you have a Stata data file named "Data_3.dta" on your computer and its 
location is C:\Users\HP\Desktop. If you want to open the data file, use the following 
steps or command: 

File (on the menu bar) > Open > Go to Desktop and select the data file “Data_3” 
> Open
Or, 
use C:\Users\HP\Desktop\Data_3, clear
Or, 

Click on the icon        > Go to Desktop > Select “Data_3” > Open
Or, 
Double click on the data file that you want to open

3.1.2 Output file or log-file

When you analyze data, the outputs (results) are shown in the results window of Stata. 
The outputs will not be saved automatically. You need to save the outputs in a file. In 
Stata, the output files are called “log” files. The log-files will have the outputs and 
commands, but not the graphs. Graphs generated in Stata need to be saved separately, 
as discussed in Section 7.1.1. 

3.1.2.1 Saving outputs in a log-file 

A log-file can be saved in two different formats. 

• Stata format (also called smcl format): In Stata format, the log-file will have  
 the extension “.smcl”. The Stata format log-files preserve the formats that we  
 see in the results window and are the defaults. 

• ASCII format: In ASCII (ordinary text) format, the file will have the exten- 
 sion “.log”.

We generally use the Stata format (smcl format) to save the outputs. However, the 
“smcl” format can be converted to “ASCII” format whenever necessary. 

Suppose that you want to analyze your data and save the outputs in a file named 
“Results_3”. To save the outputs, create a log-file at the beginning of the analysis (you 
can also create the log-file in between an analysis) using the menu bar options or com-
mand as described below:

Basics of Stata
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File (on the menu bar) > Log > Begin… > Select the location where you want to 
save the file > Write “Results_3” in the “File name” box > Select the format .smcl 
(usually the default) > Save
Or, 
log using C:\Users\HP\Desktop\Results_3

The above command will open/generate (begin) a log-file with the name 
“Results_3.smcl” on the desktop. 

Once a log-file is opened, you can temporarily stop (suspend) saving the outputs at any 
time during analysis by using the following steps or command:

File > Log > Suspend 
Or, 
log off

You can restart (resume) saving the outputs at any point in your analysis session by 
using the following steps or command:

File > Log > Resume 
Or, 
log on

The log-file is saved and closed automatically at the end of an analysis session when 
you exit Stata. You can, however, save and close the log-file anytime during analysis 
by using the following steps or command:

File > Log > Close 
Or, 
log close

3.1.2.2 Opening an existing log-file

To open an existing log-file already saved on your computer (e.g., you want to open the 
Results_3.smcl file, which is saved on the desktop), use the following steps:

File > Log > View > Browse > Select the file “Results_3” from Desktop > Open 
> Ok

If you want to add (append) the results of a new analysis to a previously saved log-file 
(say, Results_3.smcl), use the following steps or command:

File > Log > Begin > Select the file “Results_3” from Desktop (or from the 
location where it is saved) > Save > Select “Append to existing file” > Ok

Basics of Stata
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Or, 
log using C:\Users\HP\Desktop\Results_3, append

You need to specify the file’s path, otherwise the command will not be executed.  

If you want to overwrite (replace the contents of a log-file with the outputs of a new 
analysis) the outputs in a log-file (e.g., Results_3.smcl), use the following command:

log using C:\Users\HP\Desktop\Results_3, replace

This command will delete all the contents of the log-file previously saved and will save 
the outputs of the new (subsequent) analysis session. 

3.1.2.3 Browsing Stata outputs in Results window

You can browse the outputs of analyses in the results window by using the mouse or 
keyboard buttons (<Shift+Page Up> or <Shift+Arrow button>). 

Stata normally (by default) pauses each time the results window is full of information 
while executing a command unless you press any key on the keyboard. We can ask 
Stata to continue scrolling (i.e., providing the outputs without pausing) till the comple-
tion of an output by using the following command:

set more off

To go back to the pause mode, use the following command: 

set more on

3.1.2.4 Copy tables from Stata outputs to MS Word

You can copy a table (or commands or other information) from the Stata outputs 
(results) window to MS Word. To do this:

Select the table from the output window by dragging down the mouse > Click the 
right button of the mouse > Select copy > Go to MS Word file where you want to 
paste the table > Right click the mouse > Paste

Note: Use the Courier New or Consolas font to preserve the table alignments. We have 
used the Consolas font in this book for better resolution.  

3.1.2.5 Transformation of a log-file from smcl to ASCII format

You can convert a Stata log-file from smcl (.smcl) format to ASCII (.log) format (and 
vice versa). Suppose that you want to transform the log-file “Results_3.smcl” located 
on your desktop to “Results_3.log”. Use the following command or steps: 
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translate C:\Users\HP\Desktop\Results_3.smcl C:\Users\HP\Desktop\Results_3.log
Or, 
File > Log > Translate > Select the file “Results_3.smcl” from Desktop clicking 
the “Browse” tab of “Input File” > Open > Click the “Browse” tab of “Output 
File” > Give the file name “Results_3.log” > Save > Translate

3.1.3 Do-file or Stata commands file

3.1.3.1 Generating a Do-file

One can generate a Do-file and write the commands in the Do-file Editor for subse-
quent use. To open the Do-file Editor (a new Do-file), use the following steps or com-
mand:

Window > Do-file Editor > New Do-file Editor
Or,
doedit 
Or, 
Click on the icon  

The above command is for opening a new Do-file. You can save the Do-file like we 
save a file in the MS word: 

File (in Do-file editor) > Save as > Select location and file name > Save 

To open a saved Do-file (e.g., to open the Do-file “Test.do”), use either of the follow-
ing commands. You need to specify the path of the file and file name to open the 
Do-file, otherwise the command will not work.  

doedit Test.do 
doedit C:\Users\HP\Desktop\Test.do 

This command will open the Do-file “Test.do” saved on the desktop. The alternative 
way is: 

Click on the icon           , then  

File (in Do-file editor) > Open > File…  ctrl+O > Go to the file location and select 
the file > Open 

All the commands must be written in lowercase letters in the Do-file. While writing the
 commands, Stata considers the end of a command line as the end of that command. If 
your command exceeds a single line, use three back slashes (///) at the end of the line
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before continuing to the next line. Then Stata will consider that the command is contin-
ued to the next line.

Once a new Do-file is generated, you can copy the commands from Stata’s Review 
window and paste them into the Do-file.

3.1.3.2 Saving commands in a Do-file 

Suppose that you have used some commands to analyze your data. You can see those 
commands pooled in the Review window. If you want to save the commands in the 
Review window into a Do-file, use the following steps:

• Select the command(s) you want to copy
• Right click the mouse button
• Select “Send to Do-file Editor” (this will automatically open a Do-file with the  
 selected commands in it)
• Save the file (File > Save as…)

You will see that all the selected commands are in a separate window (Do-file Editor). 
You can edit the commands in this file and save the file for future execution. Com-
mands can also be copied and pasted into a Do-file from the Review window, Results 
window, or log-file using the “Copy” and “Paste” options.

3.1.3.3 Executing the commands in a Do-file

It is simple to execute the commands saved in a Do-file. First, open the Do-file in the 
Do-file Editor (Section 3.1.3.1) containing the commands that you want to execute. To 
execute a single command or several connected commands at a time written in the 
Do-file, use the following steps: 

Select the command(s) that you want to execute by using the mouse 

Tools > Execute (Do), or click on the icon        in the Do-file Editor

This will execute the commands selected in the Do-file. If you use the following steps 
without selecting any command in the Do-file (after opening the Do-file in the Do-file 
Editor), Stata will execute all the commands stored in the Do-file. 

Tools > Execute (do)

To execute all the commands in a Do-file (say, the Do-file “Test.do” saved on the desk-
top), use the command: 

do C:\Users\HP\Desktop\Test.do
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This will execute all the commands saved in the Do-file “Test.do” without opening the 
Do-file in the Do-file Editor.

3.2 Basic command syntax 

Most researchers use Stata commands for the analysis of data because of their simplici-
ty and ease of use. A typical form of Stata’s command syntax is like:

command [varlist] [if exp] [in] [weight] [, options] 
Or, 
[prefix:] command [varlist] [if exp] [in] [weight] [, options]

command: Indicates Stata’s command for the analysis of data. It tells us what Stata is 
supposed to analyze. Stata commands are case sensitive. All the commands must be 
written in lowercase format, otherwise they will not work. 

varlist: “varlist” stands for “variable list”. It indicates the list of variables needed for a 
command to execute. The variable list is optional in many commands. If “varlist” is not 
specified, the command runs on all the variables in the dataset. For example, if you use 
the command:

summarize age 

Stata will provide the summary statistics of the variable “age”. If you use only the com-
mand “summarize” without any variable name, Stata will provide the summary statis-
tics of all the variables in the dataset. Instead of writing the command “summarize”, 
you can use only the first three initial letters, such as “sum” to get the summary statis-
tics.

if exp: “if exp” means “if expression”. It specifies the conditions to be considered 
during an analysis. It is optional. For example, if you want to get the summary statistics 
of age for males only (supposing that males are coded as 1 for the variable “sex”), use 
the following command:

sum age if sex==1 

in: “in” indicates the range restrictions in terms of observation numbers. It is optional. 
For example, if you want to list the first (or last) 10 values of the variable “age” in the 
dataset, use the following command: 
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list age in 1/10
list age in -10/-1

The first command will list the first 10 values (1/10 indicates 1 to 10), while the second 
command will display the last 10 values of the variable “age”. 

[ ]: All the syntax in [ ] is optional. You may not need to select anything. For example, 
you can use the following command (without using anything for “if”, “in”, and 
“weight”) to get the summary statistics for age. 

sum age

weight: “weight” indicates the “weight variable”. If there is any weight variable 
(frequency or sampling weight) that you want to include in an analysis, put the variable 
after “in”. For example, 

sum age [fweight = v2]

Here, “fweight” indicates frequency weight (“pweight” indicates sampling weight) 
and “v2” is the weight variable that you want to consider. 

options: “, options” indicate an optional instruction for data analysis. Note that there 
is a comma (,) before the options, which must be used. For example, 

sum age, detail

Here, we have used the option “detail”. Once we use this option (detail), Stata will give 
the detailed summary statistics (mean, SD, skewness, kurtosis, percentile, and others) 
of the variable. 

prefix: The “prefix” is not mandatory for an analysis. The prefix is used to get the 
results by sub-groups, such as by sex, occupation, or other variables. For example, if 
you want to get the summary statistics of age by sex (i.e., disaggregated by males and 
females), the prefix is needed. Then the commands would be like: 

sort sex 
by sex: sum age
Or, 
bysort sex: sum age
Or, 
By sex, sort: sum age
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Here, “by sex”, “bysort sex”, and “by sex, sort” are the prefixes, while “sum” is the 
main command to get the summary statistics of age. We have used the command “sort 
sex” to sort (in ascending order) the variable “sex”. Stata needs sorting (in ascending 
order) of the prefix variable (in this example, sex) before executing the main command 
“sum”. That’s why we used the first command, “sort sex”. You can, however, use a 
single command like “bysort sex” that would first sort the “by variable” (here it is sex) 
before executing the main command.

3.3 Knowing the dataset

3.3.1 Generating brief description of a dataset 

Before data analysis, we need to know about the data, such as the number of observa-
tions and variables in the dataset, the nature of the variables, variable labels, and value 
labels. Once the data file is loaded in Stata, you can get a brief description of the 
dataset (variables) by using the following command: 

describe 
Or,
Data > Describe data > Describe data in memory > Ok

The above command (instead of “describe”, you can simply use “des”) will display the 
characteristics of all the variables in the dataset, since we did not specify any variable 
in the command (Table 3.1). Table 3.1 shows that there are 210 observations and 17 
variables in the dataset. There is also other information. We can, however, get a 
description of the variables specified with the command, such as: 

des age sex occupation religion

This command will display a description of the variables “age”, sex”, “occupation”, 
and “religion”.

3.3.2 Codebook

Before we start data analysis, it is important to know the variables in the dataset, espe-
cially how they are coded and how the missing values are identified. A good practice is 
to either develop a codebook for the data file (as discussed in Chapter 2) or to look at 
the data before analysis, so that you understand the structure of the information. This 
can be done by using the command “codebook”. 
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codebook
codebook age sex_1 diabetes
codebook age sex_1 diabetes, compact
Or, 
label list 
label list religion occupation diabetes

The first command listed above (codebook), where the variables are not specified, 
will provide the codebook of all the variables in the dataset. The second command 
will provide the codebook of the variables included in the command (age, sex_1, and 
diabetes) (Table 3.2). The “label list” command considers only the numerically coded 
variables.   
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Table 3.1 Description of a data file 
. describe 
 
Contains data from 
C:\Users\HP\Documents\Taj_1_desktop_Home\STATA_Book_Taj\Data\Data_3.dta 
  obs:           210                           
 vars:            17                           
 size:        25,410                           
------------------------------------------------------------------------------------ 
              storage   display    value 
variable name   type    format     label      variable label 
------------------------------------------------------------------------------------ 
ID_no           double  %10.0g                Id number 
age             double  %10.0g                Age 
sex             str1    %1s                   Sex: string 
sex_1           double  %10.0g     sex_1      Sex: numeric 
religion        double  %10.0g     religion   Religion 
religion_2      double  %10.0g     religion_2 Religion 2 
occupation      double  %10.0g     occupation Occupation 
income          double  %10.0g                Monthly income 
sbp             double  %10.0g                Systolic BP 
dbp             double  %10.0g                Diastolic BP 
f_history       double  %10.0g     f_history  Family history of diabetes 
pepticulcer     double  %10.0g     pepticulcer Have peptic ulcer 
diabetes        double  %10.0g     diabetes   Have diabetes mellitus 
post_test       double  %10.0g                Post test score 
pre_test        double  %10.0g                Pre test score 
date_ad         long    %dD_m_Y               Date of admission 
date_dis        long    %dD_m_Y               Date of discharge 
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3.4 Sorting of data
Sorting of data is sometimes required for browsing or editing. Sorting is also needed 
before executing some commands (Section 3.2). Stata has the option to sort variables 
both in ascending (default) or descending order. If you want to sort the variable “age” in 
ascending order (lowest to highest value), use the first of the following commands. If you 
want to sort it in descending order (highest to lowest value), use the second command:

Basics of Stata

Table 3.2 Outputs of codebook command  
. codebook age sex_1 diabetes 
 
------------------------------------------------------------------------------ 
age                                                                   Age 
------------------------------------------------------------------------------ 
                  type:  numeric (double) 
 
                 range:  [6,45]                       units:  1 
         unique values:  35                       missing .:  0/210 
 
                  mean:   26.5143 
              std. dev:   7.49049 
 
           percentiles:        10%       25%       50%       75%       90% 
                              16.5        21        27        32      36.5 
 
----------------------------------------------------------------------------- 
sex_1                                                        Sex: numeric 
----------------------------------------------------------------------------- 
                  type:  numeric (double) 
                 label:  sex_1 
 
                 range:  [0,1]                        units:  1 
         unique values:  2                        missing .:  0/210 
 
            tabulation:  Freq.   Numeric  Label 
                           133         0  Female 
                            77         1  Male 
 
----------------------------------------------------------------------------
diabetes                                             Have diabetes mellitus 
---------------------------------------------------------------------------- 
                  type:  numeric (double) 
                 label:  diabetes 
 
                 range:  [0,1]                        units:  1 
         unique values:  2                        missing .:  4/210 
 
            tabulation:  Freq.   Numeric  Label 
                           162         0  No 
                            44         1  Yes 
                             4         .    
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sort age
gsort –age

3.5 Stata operator symbols 

The arithmetic operator symbols and logical expressions are sometimes used in data 
analysis. Logical expressions are used mostly with the “if” qualifier. Table 3.3 shows 
the commonly used arithmetic operators and logical symbols. We will see their appli-
cations in the subsequent chapters.

3.6 Getting help in Stata
The basic commands for getting help in Stata are "help" and "search". The primary use 
of the “help” command is to learn about a command or function whose name you 
already know. For example, if you want to get the help files for the command “gener-
ate”, use: 

help generate

On the other hand, the primary use of the command "search" is to learn about a subject. 
It is used, especially when you do not know the command for a function. For example, 
if you want to know about the ANOVA test and its commands, use: 

search anova

This command will provide a search list of several official Stata entries. There are also 
unofficial websites that include a wealth of commands. The "search" command can 
locate information outside the official Stata files. Such an important site is the Statisti-
cal Software Components (SSC). To get into this site, use:

help ssc

If the “help” command does not find a command or function, it will automatically 
continue with the “search” command. Say, you are looking for a command that calcu-
lates the sensitivity and specificity. Use the keywords with the command “search” to 
get help, such as: 

search sensitivity specificity

For more details about Stata’s help, users may use other resources such as Stata’s 
YouTube channel (help youtube), Stata list (help statalist), Stata technical support 

Basics of Stata
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(search technical support) and others. 

Basics of Stata

Table 3.3 Key operator symbols and logical expressions used in Stata 

Operator symbols: 
+ Addition  
- Subtraction  
* Multiplication  
/ Division  
^ Power 
Logical expressions: 
< Less than 
<= Less than or equal to 
== Equal to 
> Greater than 
>= Greater than or equal to 
!= Not equal to (~= can also be used; ! or ~ indicates not) 
& And  
| Or  
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Data Cleaning and Data Screening

Once data is entered into Stata or imported from other programs, we need to be sure 
that the data is free from errors. Data cleaning is commonly done by generating 
frequency distribution tables of all the variables to find the out-of-range values and by 
cross-tabulations (or by other means) to check the conditional values. If errors are 
identified, they need to be corrected.

Simultaneously, we need to check the data if it fulfils the assumptions of the desired 
statistical test (data screening). For example, is the data of a quantitative variable 
normally distributed to do a t-test? There are other assumptions that need to be checked 
before using statistical techniques, especially for hypothesis testing. In this chapter, we 
will primarily discuss data cleaning. For the time being, users may skip this chapter 
and proceed to Chapter 5. Once the users develop some skills in data analysis, they can 
come back to this chapter. Use the data file <Data_3.dta> for practice. The codebook 
for this data file can be seen in Chapter 6 (Table 6.1).

4.1 Checking for out-of-range errors 
We can check the out-of-range errors by generating a frequency distribution table of a 
variable or by checking the minimum and maximum values. For instance, suppose that 
you want to check if there are any out-of-range errors in the variable “religion” (the 
variable “religion” has 3 levels/values: 1= Muslim; 2= Hindu; 3= Others). To check the 
out-of-range errors, we will find the minimum and maximum values of the variable 
“religion” in the dataset by using the following command (outputs are shown in Table 
4.1): 
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tabstat religion, stat(min max)
Or, 
sum religion

Table 4.1 shows that the value labels of the variable "religion" range from 1 to 3 (mini-
mum 1 and maximum 3), which is within the range of our code numbers. Therefore, 
there is no out-of-range error in this variable. If the maximum value was more than 3 
or the minimum value was less than 1, this would indicate that there were errors in data 
entry. In such a situation, identify the subjects (by ID no.) and correct the errors by 
checking the questionnaire. You can also check the same for age and other variables.

If there is any value that is outside of the valid range of a variable, we can identify that 
value against the identification (ID) number (variable name of the identification num-
ber in our dataset is "ID_no"). Let us generate a frequency distribution table of "diabe-
tes" to check the values by using the following command: 

tab diabetes

This command will produce Table 4.2. The table shows that there is data with a value 
of "2" for diabetes, which is outside the data range (the valid codes for diabetes are “0” 
and “1”). Now, to identify the subject (ID_no) who has this value, use the following 
command (Table 4.2): 

list ID_no diabetes if diabetes==2

This command will provide the identification number (ID_no) of the subject for whom 
the value of diabetes is “2” (Table 4.2). The table shows that the subject with the serial 
number (ID_no) 9 has a value of “2”. Correct this value in the data file in the Data 
Editor (Edit) mode and save the file.

Data Cleaning and Data Screening

Table 4.1 Minimum and maximum values of religion 
. tabstat religion, stats(min max) 
 
    variable |       min       max 
-------------+-------------------- 
    religion |         1         3 
---------------------------------- 
 
. sum religion 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    religion |       210     1.52381    .7067039          1          3 
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4.2 Checking for outliers 

Outliers are extreme values that deviate from other observations. Outliers may appear 
in a dataset because of measurement errors, variability in the measurements, errors in 
data entry, or other reasons. A commonly used rule says that a data point is an outlier if 
it is more than 1.5×IQR (inter-quartile range) above the 3rd quartile (i.e., Q3 + 
1.5×IQR) or below the 1st quartile (i.e., Q1 – 1.5×IQR). There are several ways to iden-
tify outliers in a dataset. The most commonly used method is the visualization of data. 
The visualization methods that can be used are the box-plot chart, scatter plot, and 
histogram. Statistical methods like Z-score and other methods are also available. 

We will check the potential outliers by constructing a box and plot chart. Let us check 
if there are any outliers in the variable systolic blood pressure (BP) [variable name is 
“sbp”]. To get the box and plot chart for systolic BP, use the following command (Figs 
4.1 and 4.2): 

graph box spb 
Or, 
graph box sbp, marker (1, mlabel (ID_no))

Both these commands will generate box and plot charts for systolic BP (Figs 4.1 and 
4.2). Figure 4.1 generated by the first command, shows that there are three dots above 
the upper whisker without showing the case numbers (ID_no). The second  command 

Data Cleaning and Data Screening

Table 4.2 Frequency distribution of diabetes 

. tab diabetes 
 
       Have | 
   diabetes | 
   mellitus |      Freq.     Percent        Cum. 
------------+----------------------------------- 
         No |        164       78.10       78.10 
        Yes |         45       21.43       99.52 
          2 |          1        0.48      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. list ID_no diabetes if diabetes==2 
 
     +-----------------+ 
     | ID_no  diabetes | 
     |-----------------| 
  9. |    9          2 | 
     +-----------------+ 
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has produced Figure 4.2, which shows the case numbers (ID_no) of the dots. These 
dots indicate that there are 3 potential outliers in systolic BP and their case numbers 
(ID numbers) are 20, 54, and 193.

Data Cleaning and Data Screening
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Figure 4.1 Box and plot chart of systolic BP with outliers
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Figure 4.2 Box and plot chart of systolic BP with id no. of outliers 
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4.3 Assessing normality of data
One of the major assumptions for using parametric tests is that the dependent continu-
ous variable is normally distributed. Whether the data has come from a normally 
distributed population or not, can be checked in different ways. The commonest meth-
ods of checking the normality of a dataset are through: 

• Histogram
• Q-Q plot
• Formal statistical tests [Skewness-Kurtosis test, Shapiro Wilk test, or Kolmogorov  
 Smirnov (K-S) test]

This topic is further discussed in Chapter 8.

Data Cleaning and Data Screening
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5

Data Management

Data analysis may require data manipulations, such as making class intervals, classify-
ing a group of people with a specific characteristic using a cut-off value (e.g., you may 
want to classify people who have hypertension using a cut-off value of either systolic 
or diastolic BP), and recoding of data for summarization and other purposes. In this 
chapter, we will discuss data manipulations that are commonly needed during data 
analysis, like:

• Converting string variables to numeric variables
• Recoding of data
• Making class intervals
• Combine data to generate an additional variable
• Data transformation 
• Calculation of total score
• Extraction of duration from dates 
• Relocation of variables
• Selection of a subgroup for data analysis
• Transformation of data from wide format to long format 

Use the data file <Data_3.dta> for practice.

5.1 Converting string variables to numeric variables
Stata data files may have both string and numeric variables. It is always preferable to 
have numeric variables in the dataset. Numeric variables are easier to manipulate and 
can be used in various  statistical analyses. A string  variable may be coded or have
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a direct response (e.g., names of districts or provinces). The codes of a string variable 
may be a character (e.g., m= male; f= female) or a number (e.g., 1= male; 2= female). 
Even though the codes are made up of numbers, they are actually characters. A detailed 
overview of how to convert a string variable into a numeric variable is discussed 
below.

5.1.1 Converting a string variable with non-numeric values into a numeric vari-
able

In our dataset, the variable “sex” is a string variable with non-numeric codes (m= male; 
f= female). We can convert the string variable “sex” into a numeric variable (say, sex1) 
by using the command “encode”. 

encode sex, generate(sex1)

The above command (you can use "gen" instead of "generate") will generate a new 
numeric variable "sex1" with the codes/values of 1 for female and 2 for male. Stata 
provides the values in alphabetical order, beginning with 1 (i.e., 1 would be given to 
the alphabetically first value of the original variable).

5.1.2 Converting a string variable with numeric values into a numeric variable

A string variable may have string numeric values (such as 1, 2, 3, etc.). The following 
command can be used to change a string variable with numeric string values into a 
numeric variable, where the numeric values will be retained as numeric. 

For example, suppose that the variable "sex" is a string variable with values/codes of 
0= female and 1= male. We want to convert "sex" into a numeric variable (say, sex1), 
retaining the values of the string variable "sex". Use the following command: 

gen sex1= real(sex)

This command will generate a new numeric variable “sex1” while keeping the values 
of the string variable same (0= female; 1= male). 

You can also convert a string variable with numeric values without generating a new 
variable, i.e., into the same variable. To do this, use the following command:

destring sex, replace

This will convert the string variable "sex" into a numeric variable, keeping the name of 
the variable and its values the same as before.

Data Management
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5.2 Recoding of data
Suppose that you have the string variable “sex” coded as “m” and “f” in the dataset. 
You want to replace the existing code “m” by 1 and “f” by 2. There are two options for 
the recoding of data:

a) Recoding into the same variable, and
b) Recoding into a different variable

5.2.1 Recoding a string variable into the same variable

Suppose that we have a string variable “sex” in our dataset, which is coded as m/f. To 
recode “m” with 1 and “f” with 2 of the string variable into the same variable, use the 
commands:

replace sex=”1” if sex==”m”
replace sex=”2” if sex==”f”

5.2.2 Recoding a string variable into a different string variable

First, we need to generate a new string variable (say, sex1) before we recode the exist-
ing string variable “sex”. Then, we will change the codes. Use the following com-
mands:

gen sex1=” “
replace sex1=”1” if sex==”m”
replace sex1=”2” if sex==”f”

This will generate a new string variable “sex1” with the codes 1= male and 2= female. 

5.2.3 Recoding a numeric variable into the same variable

Suppose that you have a numeric variable "diabetes" in your dataset, which is coded as 
1= don’t have diabetes and 2= have diabetes. You want to replace the codes "1" with 
"0", and "2" with "1". Use the following command:

recode diabetes (1=0) (2=1)

5.2.4 Recoding a numeric variable into a different variable

In this case, first, we will generate a new variable that is identical to the original 
variable using the command “generate or gen”. Then we will recode the values of the 

Data Management
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new variable using the command “recode”. Suppose that you have the numeric 
variable “diabetes”, which is coded as “1= no diabetes” and “2= have diabetes”. You 
want to recode the variable into a new variable “diabetes1”, where “1” will be coded 
as “0 (no diabetes)” and “2” will be coded as “1 (have diabetes)”. Use the following 
commands:

gen diabetes1=diabetes
recode diabetes1 (1=0) (2=1)
Or, 
gen diabetes1=0
replace diabetes1=1 if diabetes==2

The first command (gen) will generate a new variable “diabetes1” equivalent to the 
original variable “diabetes” (i.e., the values of diabetes1 and diabetes will be the same). 
The second command will change the values of the new variable “diabetes1” from “1” 
to “0” and from “2” to “1”. 

The alternative approach is to generate a new variable “diabetes1” with all the values 
equal to “0” by using the command “gen” (third command). Then replace the value “0” 
with “1” if the value of the variable “diabetes” is “2” by using the command “replace” 
(fourth command). 

You can check the coding scheme of the new variable by using the commands “tab” or 
“codebook”, such as: 

tab diabetes1
codebook diabetes1

Note that the new variable will always appear as the last variable in the dataset that you 
can check in browser mode. When you change the codes, you need to give the variable 
label (if coded into a new variable) and value labels of the new codes by using the 
following commands (also discussed in Chapter 2): 

label var diabetes1 "have diabetes"
la de diabetes1 0”no diabetes” 1”have diabetes”
label values diabetes1 diabetes1

The outputs of the above commands are displayed in Table 5.1. Other examples of 
using the “recode” command are provided in Table 5.2.

Data Management
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5.3 Making class intervals
The central tendency (such as mean and median) and dispersion (such as SD) of quan-
titative data provide meaningful information. Further useful summarization may be 
achieved by grouping the data into class intervals or categories. Suppose that you want 
to categorize the variable "age" into the following categories or class intervals:

• ≤20 years (to be coded as 1),
• 21-30 years (to be coded as 2),
• 31-40 years (to be coded as 3), and  
• >40 years (to be coded as 4)

Data Management

Table 5.1 Recoding of diabetes into a new variable 

. gen diabetes1=diabetes 

. tab diabetes1 
 
  diabetes1 |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |        165       78.57       78.57 
          2 |         45       21.43      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. recode diabetes1 (1=0) (2=1) 
(diabetes1: 210 changes made) 
 
. tab diabetes1 
 
  diabetes1 |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        165       78.57       78.57 
          1 |         45       21.43      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. label var diabetes1 "have diabetes" 

. la de diabetes1 0"no diabetes" 1"have diabetes" 

. label values diabetes1 diabetes1 

. tab diabetes1 
 
have diabetes |      Freq.     Percent        Cum. 
--------------+----------------------------------- 
  no diabetes |        165       78.57       78.57 
have diabetes |         45       21.43      100.00 
--------------+----------------------------------- 
        Total |        210      100.00 
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For this exercise, we will recode the variable "age" into a new variable "age2". We 
recommend that users always recode into a new variable. If you recode into the same 
variable, the original data will be lost, and it cannot be recovered once the data file is 
saved. To recode into a different variable (age2), use the following commands:

gen age2=age
recode age2 (0/20=1) (21/30=2) (31/40=3) (*=4)
label var age2 "age group"
label define age2 1"<=20 yrs" 2"21-30 yrs" 3"31-40 yrs" 4">40 yrs" 
label values age2 age2
tab age2

The above commands will generate a new variable "age2" with four categories of age 
as mentioned above (Table 5.3). The "*" in (*=4) indicates all other values.

Using the command "recode", you can also classify people who have hypertension and 
those who do not have hypertension (for example). To do this, you need to use a cut-off 
value to define hypertension. For example, we have collected data on diastolic BP 
(variable name is "dbp"). We want to classify those as "hypertensive", if the diastolic 
BP is >90 mmHg. Now, generate a new variable (say, htn) equivalent to the variable 
"dbp". Recode the variable "htn" as ≤90= 0 (normal BP) and >90=1 (hypertensive). We 
hope you can do it now. If you cannot, use the following commands:

gen htn=dbp
recode htn (0/90=0) (*=1)

Data Management

Table 5.2 Some examples of the use of recode command  

Command Outputs 
recode var1 (0=1) Will change values of the variable “var1”, 0 to 1 
recode var1 (1=0) (2=1) Will change values of the variable “var1”, 1 to 0 and 2 

to 1 
recode var1 (0=1) (*=2) Will change values of the variable “var1”, 0 to 1 and 

all other values to 2 
recode var1 2/4=2 Will change values of the variable “var1”, (2 to 4) to 2 
recode var1 (1 3 5 = 1) Will change values 1, 3 & 5 of the variable “var1” to 1 
recode var1 (.=9) Will change the missing values to 9 
recode var1 (9=.) Will change the value “9” as missing value 
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The above two commands will generate a new variable "htn" with values/codes "0" 
and "1" (the last variable in the data file). The code "0" indicates people who do not 
have hypertension (diastolic BP ≤ 90) and "1" indicates people who have hypertension 
(diastolic BP >90).

To give the variable label and value labels, use the following commands: 

label var htn "hypertension"
la de htn 0"no hypertension" 1"have hypertension"
label values htn htn

To check whether the commands have been executed properly, make a frequency 
distribution table of the new variable "htn". This will also provide you with the propor-
tion of subjects with diastolic hypertension. Use the following command to get the 
frequency distribution table for “htn” (Table 5.4): 

tab htn

5.4 Combining data into a new variable
Sometimes, the cut-off point of a measurement (e.g., hemoglobin and blood pressure) 
for defining a condition (e.g., anemia and hypertension) may vary according to gender 
or other characteristics. In such a situation, a single cut-off point for defining a condi-
tion may not be appropriate. 

For example, we have collected data on diastolic BP (variable name is “dbp”) both for 
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Table 5.3 Age categories  

. gen age2=age 

. recode age2 (0/20=1) (21/30=2) (31/40=3) (*=4) 

. label var age2"age group" 

. label define age2 1"<=20 yrs" 2"21-30 yrs" 3"31-40 yrs" 4">40 yrs"  

. label values age2 age2 

. tab age2 
 
  age group |      Freq.     Percent        Cum. 
------------+----------------------------------- 
   <=20 yrs |         50       23.81       23.81 
  21-30 yrs |         97       46.19       70.00 
  31-40 yrs |         58       27.62       97.62 
    >40 yrs |          5        2.38      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
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Table 5.4 Frequency distribution of hypertension  
. gen htn=dbp 
. recode htn (0/90=0) (*=1) 
(htn: 210 changes made) 
 
. lab var htn "hypertension" 
. la de htn 0"no hypertension" 1"have hypertension" 
. la values htn htn 
. tab htn 
 
     hypertension |      Freq.     Percent        Cum. 
------------------+----------------------------------- 
  no hypertension |        162       77.14       77.14 
have hypertension |         48       22.86      100.00 
------------------+----------------------------------- 
            Total |        210      100.00 
 

males and females (variable name is “sex_1”). We have defined hypertension as a 
diastolic BP greater than 85 mmHg if it is a female, and a diastolic BP greater than 90 
mmHg if it is a male. Now, how to classify those who have hypertension considering 
gender and cut-off values? 

To do this, first we will generate a new variable, say “htn1”, for which all the values 
will be “0” (zero) by using the command “gen”. 

gen htn1=0

This will generate a new variable "htn1" with all the values of “0”. Now, use the 
following commands to recode the new variable:

replace htn1=1 if dbp>85 & sex_1==0
replace htn1=1 if dbp>90 & sex_1==1

The above commands will replace some of the values of the variable "htn1" from “0” 
to “1” based on the conditions provided in the commands. In this example, code “1” 
indicates individuals with hypertension. Note that the variable "sex_1" used in  the 
commands is a numeric variable with codes 0= female and 1= male. 

Provide the variable label and value labels as done before and make a frequency distri-
bution table for the variable “htn1” to check whether the commands have worked prop-
erly. You will also get the proportion of subjects with hypertension from the table 
(Table 5.5). Data shows that the prevalence of diastolic hypertension is 30.0% in the 
sample.
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5.5 Data transformation
In many situations, the data that has been collected on a quantitative variable for a 
study is not normally distributed. Since the parametric methods (in general) for testing 
hypotheses are more effecient than the nonparametric methods, data transformations 
are occasionally needed to make the distribution normal and meet the assumptions for 
a parametric test. Depending on the shape of the data distribution, there are several 
options for data transformation. The following table (Table 5.6) shows some of the 
options for data transformation.

The commonly used method of data transformation is log transformation. Let us see 
how to transform data into a log value. Suppose that you want to transform diastolic BP 
(variable name is “dbp”) into a log of diastolic BP. Use the command "gen", as shown 
in Table 5.7 (the first and second commands), to transform the data into a new variable 
"dbp1" with the log values of diastolic BP. The table also shows the commands for 
other data transformation options.

Table 5.5 Data combined into a new variable 
. gen htn1=0 
 
. replace htn1=1 if dbp>85 & sex_1==0 
(55 real changes made) 
 
. replace htn1=1 if dbp>90 & sex_1==1 
(8 real changes made) 
 
. lab var htn1 "hypertension" 
 
. la de htn1 0"no hypertension" 1"have hypertension" 
 
. la values htn1 htn1 
 
. tab htn1 
 
     hypertension |      Freq.     Percent        Cum. 
------------------+----------------------------------- 
  no hypertension |        147       70.00       70.00 
have hypertension |         63       30.00      100.00 
------------------+----------------------------------- 
            Total |        210      100.00 
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5.6 Calculation of total score 

A study was conducted by a researcher to assess the knowledge of secondary school 
students about how HIV is transmitted. To assess their knowledge, the researcher 
collected data on the following questions (Table 5.8; data file: Data_HIV.dta).

When data is coded like 1= correct and 2= incorrect, first recode the data of the knowl-
edge variables as 2 = 0 (i.e., 0 indicates incorrect). In such a coding scheme (0/1), the 
total score would range from 0–4, since there are four knowledge questions. Then, 
calculate the total score by generating a new variable "tknow". Use the following com-
mands to do this: 

recode k1-k4 (2=0)
gen tknow=(k1+k2+k3+k4)
Or,
egen tknow= rowtotal(k1 k2 k3 k4)

Table 5.6 Data transformation options 

Method  Good for Bad for 
Log Right skewed data Zero values and negative values 
Square root Right skewed data Negative values 
Square Left skewed data Negative values 
Reciprocal Making small values bigger and 

big values smaller 
Zero values and negative values 

Table 5.7 Data transformation commands 

Command Function 
 
gen dbp1=log(dbp) 

Will generate a new variable:  
 “dbp1” with the values of “log of dbp”  

gen dbp2=ln(dbp)  “dbp2” with the values of “natural log of dbp”  
gen dbp3=dbp^2  “dbp3” with the values of “square of dbp”  
gen dbp4=sqrt(dbp)  “dbp4” with the values of “square root of dbp” 
gen dbp5=(1/dbp)  “dbp5” with the values of “reciprocal of dbp” 
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The first command will recode the knowledge variables k1 to k4 from “2” to “0”, while 
the second (or third) command will calculate the total correct answers in the new 
variable “tknow” (total knowledge on HIV). You can check the data by generating the 
descriptive statistics and a frequency distribution table of the variable “tknow” by 
using the following commands (Table 5.9): 

sum tknow
tab tknow

Table 5.9 displays the descriptive statistics (mean, standard deviation, and others) and 
frequency distribution of the students' overall knowledge on HIV transmission. The 
table shows that the mean of total knowledge is 2.18 (SD 0.63), while the minimum 
value is 0 and the maximum value is 4. The table also indicates that there are 2 (1.0%) 
students who do not have any knowledge on HIV transmission (since the score is 0, 
i.e., they could not answer any questions correctly). One hundred and twenty-five 
(63.8%) students know two ways of HIV transmission, while only 1.5% of the students 
know all the ways of HIV transmission. You can also classify the students as having 
"good" or "poor" knowledge by using a cut-off value based on the total knowledge 
score.

5.7 Extraction of duration from dates 

Stata can extract the difference between two dates. Suppose that you have a dataset 
with variables for the date of admission (variable name is date_ad) and date of 
discharge (date_dis) of patients admitted to a hospital (data file Data_3.dta). If you 
want to calculate the duration of hospital stay (date of discharge minus date of admis-
sion), use the following command to extract the difference in days: 

gen dura = date_dis – date_ad

Table 5.8 Questions for assessing the knowledge on HIV transmission 

HIV is transmitted through: Codes 
1. Sexual contact (variable name: k1) 1. Yes 2. No 
2. Transfusion of unscreened blood (variable name: k2) 1. Yes 2. No 
3. Sharing of injection needle (variable name: k3) 1. Yes 2. No 
4. Accidental needle stick injury (variable name: k4) 1. Yes 2. No 
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This command will generate a new variable “dura” (the last variable in the dataset) that 
contains the duration of hospital stay in days. You can check the data by getting the 
summary statistics of the variable “dura” using the command “sum” (Table 5.10). 

sum dura, detail

5.8 Relocating variables in the dataset
You can order the variables according to alphabetical order in the variables window. 
Suppose that you want to arrange the variables according to ascending order. Use the 
following command: 

order _all, first alphabetic

You can also move a variable to your desired position. In Stata, when a new variable is 
generated, it appears (by default) as the last variable in the dataset. Suppose  that you 
have generated a new variable "age1" and you want it to be after the existing variable  
"age".  Use the following command:

order age1, after(age) 

If you want to send a variable (say, sex) at the end of the dataset, use the first command 
below. If you want it to be the first variable, use the second command: 

order sex, last
order sex, first 

Data Management

Table 5.9 Total knowledge on HIV 
. sum tknow 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
       tknow |       196    2.183673     .638057          0          4 
 
. tab tknow 
 
      tknow |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |          2        1.02        1.02 
          1 |         16        8.16        9.18 
          2 |        125       63.78       72.96 
          3 |         50       25.51       98.47 
          4 |          3        1.53      100.00 
------------+----------------------------------- 
      Total |        196      100.00 
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5.9 Selecting a sub-group for analysis
You may have a large dataset with many variables. But, you may not need all the data 
or all the variables for your research. Stata has the option to select a small dataset (a 
subset) for analysis. Remember that the bigger the dataset, the harder it is for Stata to 
manage the data. It is, therefore, good to have a dataset as small as possible while keep-
ing all the relevant information. 

The data file <Data_3.dta> has several variables, including the variable "diabetes1". 
In the dataset, the variable "diabetes1" is coded as "1= Yes (have diabetes)" and "0= No 
(do not have diabetes)". Suppose that you want to analyze the data only for those who 
are more than 30 years old and have diabetes. We can select the data with this criteria 
using the command either "drop" or "keep". Make sure that you have saved your origi-
nal dataset before using these commands. To select the group who are more than 30 
years old and have diabetes (i.e., diabetes1= 1), use the following commands:

drop if diabetes1==0
drop if age<=30
Or, 
drop if diabetes1==0 | age<=30

The first two commands or the third command (alone) will exclude subjects who do 
not have diabetes and are aged ≤30 years from the subsequent analyses. Instead of the 
command "drop", you can use the command "keep" with the same effects as follows:

Table 5.10 Summary statistics of duration of hospital stay 
. sum dura, detail 
                            dura 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%            1              1 
 5%            3              3 
10%            3              3       Obs                  21 
25%            4              4       Sum of Wgt.          21 
 
50%            6                      Mean           5.761905 
                        Largest       Std. Dev.      2.343177 
75%            7              8 
90%            8              8       Variance       5.490476 
95%            9              9       Skewness       .1741077 
99%           11             11       Kurtosis       2.813007 
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keep if diabetes1==1 
keep if age>30
Or, 
keep if diabetes1==1 & age>30

This will limit your analyses to subjects with diabetes who are over the age of 30. You 
can check the data by making a frequency distribution table (using the command "tab 
diabetes1") of "diabetes1" and the summary statistics (using the command "sum age, 
detail") of "age". 

To delete a variable from the dataset, use the command “drop”. For example, if you 
want to delete the variables “income” and “sex”, use the following command:

drop income sex

Note that to have analyses for all the data after you use the commands “drop” or 
“keep”, you need to read the data file again, either by using the command “use” or by 
using the drop-down menu. 

You can also select a subset of data or variables for analysis while opening the data file 
by using the following commands: 

use C:\Users\HP\Desktop\Data_3.dta if diabetes1==1 & age<=30
use age sex diabetes1 using C:\Users\HP\Desktop\Data_3.dta 

The first command will select a subset of subjects who are less than or equal to 30 
years old and have diabetes. The second command will select only the variables “age”, 
“sex”, and “diabetes1” while opening the data file. 

5.10 The “egen” command
The command "egen" (which indicates extended generate) is an extended version of 
the command "generate" to generate new variables. The "egen" command is used to 
generate new variables that require some additional functions, such as mean, median, 
z-score, or others. For example, if you want to generate a new variable (say, zage) with 
the z-scores of age, use the following command:

egen zage=std(age)

Other examples of the use of the "egen" command are:

egen v5= rowmean(v1 v2 v3 v4)
egen v10= rowtotal(v1 v2 v3 v4)
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The first command will generate a new variable "v5" that will have the row-mean of 
the variables v1 to v4. The second command will generate a new variable "v10", which 
will have the row-total of the variables v1 to v4. 

5.11 Creating dummy variables
A dummy variable is a dichotomous variable that takes values of “0” and “1”, where 
the values indicate the presence or absence of a characteristic (e.g., “0” may indicate a 
non-Muslim and “1” may indicate a Muslim). Dummy variables are also known as 
indicator variables. Where a categorical variable has more than two categories, it can 
be represented by a set of dummy variables, with one variable for each category.

Sometimes it is necessary to use dummy variables during analysis, e.g., in multiple 
linear regression analysis (Section 16.2). In Stata, you can generate the dummy 
variables easily. Suppose that you want to generate dummy variables for religion. The 
variable "religion" has three levels (categories), 1= Muslim, 2= Hindu, and 3= Chris-
tian. To generate dummy variables for religion, use the following command:

tab religion, gen(reli)

This command will generate three dummy variables – “reli1”, “reli2”, and “reli3” in 
the data file. All these variables will be coded as 0/1, where for “reli1”, 1 is Muslim and 
0 is Others (Hindu and Christian); for “reli2”, 1 is Hindu and 0 is Others (Muslim and 
Christian); and for “reli3”, 1 is Christian and 0 is Others (Muslim and Hindu) (Table 
5.11). Provide the variable and value labels to the dummy variables as discussed earlier. 

You can check the dummy variables by making frequency distribution tables using the 
following command (Table 5.11):

tab1 reli1 reli2 reli3

5.12 Transformation of data formats  
Repeated measures data may come in two different formats – wide format or long 
format. For example, we have measured the blood sugar levels of five study subjects at 
three time points, such as at the baseline and at 7 and 14 hours after giving a drug. The 
variables generated for the blood sugar levels at each time point are "time0", "time7", 
and "time14", respectively. If the data (blood sugar levels) of the individuals are  plot-
ted under each time variable, as shown in Table 5.12, it is called a wide data format. 
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Table 5.11 Dummy variables of religion 
. tab religion, gen(reli) 
 
   Religion |      Freq.     Percent        Cum. 
------------+----------------------------------- 
     MUSLIM |        126       60.00       60.00 
      HINDU |         58       27.62       87.62 
  Christian |         26       12.38      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. tab1 reli1 reli2 reli3 
 
-> tabulation of reli1   
 
religion==M | 
      USLIM |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |         84       40.00       40.00 
          1 |        126       60.00      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
-> tabulation of reli2   
 
religion==H | 
       INDU |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        152       72.38       72.38 
          1 |         58       27.62      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
-> tabulation of reli3   
 
religion==C | 
   hristian |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        184       87.62       87.62 
          1 |         26       12.38      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 

Here, the data for each subject is plotted once under each time variable. 

In long format, there is a time variable (say, time) with three or more levels/ categories 
(in our example, we need three levels, such as 0= time0, 7= time7, and 14= time14) and 
there is a separate variable for blood sugar level (say, sugar), as shown in Table 5.13. 
In this format, the blood sugar levels of the study subjects are plotted under the variable 
"sugar" against the categories of the time variable.
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Occasionally, it may be necessary to transform the data from a wide format to a long 
format. For example, Stata cannot use wide data format for the analysis of repeated 
measures ANOVA. We need to change the wide data format to a long format, which 
can be done by Stata. For this exercise, let us use the data file <Data_repeat_2.dta>.

In the data file, there are seven variables — “sl (serial number)”, “subject (study 
subject)”, “treatment (treatment group)”, “sugar0 (baseline blood sugar level)”, “sug-
ar7 (blood sugar level at 7 hours after treatment)”, “sugar14 (blood sugar level at 14 
hours after treatment)”, and “sugar24 (blood sugar level at 24 hours after treatment)”. 
This data file is in wide format for the data of blood sugar levels. We can transform this 
data file into a long data format (for blood sugar) by using the following command: 

reshape long sugar, i(subject) j(time)

This command will provide Table 5.14. The table shows that with this command, Stata 
has generated a new variable "sugar", which contains the blood sugar levels of all the 
subjects at different time points. The Stata also generated another new variable "time" 
with four levels – 0 (baseline blood sugar level), 7 (blood sugar level at 7 hours after 
treatment), 14 (blood sugar level at 14 hours after treatment) and 24 (blood sugar level 
at 24 hours after treatment) [You can check it by using the command “tab time”]. Since 
there are 15 study subjects and blood sugar levels are measured four times on each 

Table 5.12 Wide data format 

Subject Time0 Time7 Time14 
1 110 108 107 
2 115 112 110 
3 112 110 115 
4 106 105 104 
5 109 108 107 

Table 5.13 Long data format

Subject Time Sugar 
1 0 110 
2 0 115 
3 0 112 
4 0 106 
5 0 109 
1 7 108 
2 7 112 
3 7 110 
4 7 105 
5 7 108 
1 14 107 
2 14 110 
3 14 115 
4 14 104 
5 14 107 
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subject, the total number of observations is 60. The number of variables in the dataset 
has also been reduced from 7 to 5.

Table 5.14 Transformation of data from wide to long format 
. reshape long sugar, i(subject) j(time) 
(note: j = 0 7 14 24) 
 
Data                               wide   ->   long 
----------------------------------------------------------------------------- 
Number of obs.                       15   ->      60 
Number of variables                   7   ->       5 
j variable (4 values)                     ->   time 
xij variables: 
              sugar0 sugar7 ... sugar24   ->   sugar 
----------------------------------------------------------------------------- 

After the transformation of the dataset, provide the variable label and value labels of 
the new variables “time” and “sugar” by using the following commands: 

la var time “time of blood sugar measurement”
la de time 0”baseline” 7”sugar at 7 hrs” 14”sugar at 14 hrs” 24”sugar at 24 hrs”
la values time time 
la var sugar “blood sugar level”

You can also transform a long data format into a wide data format by using the follow-
ing command: 

reshape wide sugar, i(subject) j(time)
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Data Analysis: Descriptive Statistics

Descriptive statistics are always used at the beginning of data analysis. The objectives 
of using descriptive statistics are to organize and summarize data. Commonly used 
descriptive statistics are frequency distribution, measures of central tendency (mean, 
median, and mode), and measures of dispersion (range, standard deviation, and 
variance). Measures of central tendency convey information about the average value of 
a dataset, while the measures of dispersion provide information about the amount of 
variation present in the dataset. Other descriptive statistics that are used during data 
analysis include quartile and percentile. In this chapter, we will discuss how to analyze 
data for descriptive statistics. Use the data file <Data_3.dta> for practice. The code-
book for the dataset is given in Table 6.1.

6.1 Frequency distribution 

Frequency distribution of variables, especially for categorical variables, is commonly 
done during data analysis. The command for the frequency distribution table is "tabu-
late" or simply "tab". If you want to find the frequency distribution of the variable 
"sex", use the following command:

tabulate sex 
Or,
tab sex

This command will give you the frequency distribution table for sex (Table 6.2). If you 
want the frequency distribution tables of two or more variables by a single command, 
the command “tab” will not produce separate tables for the variables. The use of two
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variables after the command “tab” will produce a cross-table for the variables includ-
ed in the command. For example, if you use the variables sex and religion with the 

Table 6.1 Codebook for the data file “Data_3.dta” 

Stata variable name Actual variable name Variable code  
ID_no Identification number Actual value 
age  Age in years Actual value 
sex Sex: string m= Male 

f= Female 
sex_1 Sex: numeric 0= Female 

1= Male 
religion Religion 1= Islam 

2= Hindu 
3= Others 

religion_2 Religion 2 1= Islam 
2= Hindu 
3= Christian 
4= Buddha 

occupation Occupation 1= Government job 
2= Private job 
3= Business 
4= Others 

income Monthly family income in Tk. Actual value 
sbp Systolic blood pressure in 

mmHg 
Actual value 

dbp Diastolic blood pressure in 
mmHg 

Actual value 

f_history Family history of diabetes 1= Yes  
2= No 

peptic Have peptic ulcer 1= Yes 
2= No 

diabetes Have diabetes mellitus 1= No 
2= Yes  

diabetes1 Have diabetes mellitus 0= No 
1= Yes  

posttest Post-test score Actual value 
pretest Pre-test score Actual value 
datead Date of hospital admission Actual date 
datedis Date of discharge Actual date 

Data Analysis: Descriptive Statistics
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command “tab” (i.e., tab sex religion), Stata will produce a cross-table of sex by 
religion. However, if you want to get the frequency distribution of several variables at 
a time (e.g., sex and religion), use the command “tab1”. To get the frequency distribu-
tions of sex and religion, use the following command:

tab1 sex religion 

This command will produce two separate tables, one each for sex and religion, as 
shown in Table 6.2. The table shows that there are a total of 210 subjects in the dataset, 
out of which 133 (63.33%) are female and 77 (36.67%) are male. The frequency distri-
bution of religion is provided after the frequency distribution table of sex. 

If there is any missing data, the output of the analysis will not show it (by default). If 
there are missing values in the data, the total number of subjects will be less than the 
number of data collected. For example, if we look at Table 6.2 (frequency distribution 
of religion), there are 210 subjects, while Table 6.3 shows that there are 205 subjects in 
the frequency distribution table of sex. This indicates that there are five missing values 
in the data for "sex". To get the frequency distribution with missing cases (Table 6.3), 
use the following command:

tab sex, miss

To get the identification numbers (variable name is "ID_no") of the missing subjects 
(for example, for sex), use the following command. 

list ID_no if missing(sex)

This will provide the id numbers of the missing cases for the variable “sex” (Table 6.3). 

6.2 Central tendency and dispersion
We calculate the central tendency and dispersion for the quantitative variables. 
Suppose that you want to find the mean, standard deviation (SD), minimum, and maxi-
mum values of the variable “age”. The command to get these measures is “summarize” 
or simply “sum”. Use the following command:

sum age

The above command will provide the mean, SD, minimum (min) and maximum (max) 
values of the variable "age" (Table 6.4). However, to get more detailed information, 
use the following command:

sum age, detail
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Table 6.2 Frequency distribution of sex and religion 
. tab1 sex religion 
 
-> tabulation of sex   
 
Sex: string |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          f |        133       63.33       63.33 
          m |         77       36.67      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
-> tabulation of religion   
 
   Religion |      Freq.     Percent        Cum. 
------------+----------------------------------- 
     MUSLIM |        126       60.00       60.00 
      HINDU |         58       27.62       87.62 
  Christian |         26       12.38      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 

Table 6.3 Frequency distribution of sex with missing cases and their id numbers 
. tab sex 
 
Sex: string |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          f |        130       63.41       63.41 
          m |         75       36.59      100.00 
------------+----------------------------------- 
      Total |        205      100.00 
 
. tab sex, miss 
 
Sex: string |      Freq.     Percent        Cum. 
------------+----------------------------------- 
            |          5        2.38        2.38 
          f |        130       61.90       64.29 
          m |         75       35.71      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. list ID_no if missing(sex) 
 
     +------+ 
     | ID_no | 
     |------| 
  6. |    6 | 
  9. |    9 | 
 15. |   15 | 
 20. |   20 | 
 26. |   26 | 
     +------+ 
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This command will provide the percentiles, mean, SD, variance, skewness, kurtosis, 
and four lower and four upper values of the variable “age” (Table 6.4). 

You can also get the specific statistics that you may want to have for a variable. For 
example, if you want to have the mean, median, SD, and 10th percentile of age (you can 
also use multiple variables), use the following command:

tabstat age, stat(mean median sd p10)
tabstat age sbp dbp, stat(n mean sd median p10) col(stat) long

You can also get all those statistics at each level of another categorical variable (e.g., 
sex). Use the following commands (Table 6.5):

tabstat age, stat(n mean sd median) by(sex)
tabstat age sbp, stat(n mean sd p50) by(sex) long format
tabstat age sbp, stat(n mean sd p50) by(sex) long col(stat)
tabstat age sbp, stat(n mean sd q) by(sex) long nototal

Sometimes we need to know the confidence interval (CI) for the mean. For instance, if 
you want to get the 95% CI for the mean of age, use the following command:

ci age
ci age, level(99)

The first command will provide the 95% CI (default), while the second command will 
provide the 99% CI (Table 6.4) for the mean age. You can use multiple variables with 
the command to get the CIs. For example, if you want to get the 95% CIs for the means 
of age, income, and systolic BP (variable name is sbp), use the following command 
(Table 6.4). 

ci age income sbp

When a variable is coded as 0/1, Stata considers it a dichotomous categorical variable. 
For example, the variable "diabetes1" in the dataset is coded as 0/1 (Table 6.1), where 
code "0" indicates the subjects who do not have diabetes and code "1" indicates the 
subjects who have diabetes. With this coding scheme of a variable, if we use the com-
mand "sum", the mean actually indicates the proportion of the subjects coded as “1”, 
i.e.,  the prevalence of diabetes in the sampled population when it is a cross-sectional 
data (Table 6.6). We can also get the prevalence (proportion) of diabetes using the com-
mand “tab”. 

sum diabetes1
tab diabetes1
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Table 6.4 Summary statistics of age including the confidence intervals  

. sum age 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         age |       210    26.51429    7.490491          6         45 
 
. sum age, detail 
                             Age 
------------------------------------------------------------- 
      Percentiles      Smallest 
 1%           10              6 
 5%           14              6 
10%         16.5             10       Obs                 210 
25%           21             11       Sum of Wgt.         210 
 
50%           27                      Mean           26.51429 
                        Largest       Std. Dev.      7.490491 
75%           32             41 
90%         36.5             43       Variance       56.10745 
95%           38             43       Skewness      -.0917613 
99%           43             45       Kurtosis       2.690733 
 
. ci age 
 
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
         age |        210    26.51429     .516893        25.49529    27.53328 
 
. ci age, level(99) 
 
    Variable |        Obs        Mean    Std. Err.       [99% Conf. Interval] 
-------------+--------------------------------------------------------------- 
         age |        210    26.51429     .516893        25.17059    27.85798 
 
. ci age income sbp 
 
    Variable |        Obs        Mean    Std. Err.       [95% Conf. Interval] 
-------------+--------------------------------------------------------------- 
         age |        210    26.51429     .516893        25.49529    27.53328 
      income |        210    85194.49    1223.074        82783.34    87605.63 
         sbp |        210    127.7333    1.384129        125.0047     130.462 

The first command (sum) will provide the mean, while the command "tab" will provide 
a frequency distribution table of the variable (Table 6.6). To get the CI for a proportion, 
use the command “proportion”. For example, to get the 95% CI for the prevalence of 
diabetes, use the following command (you can use multiple variables together with this 
command) (Table 6.6): 

proportion diabetes1

Table 6.6 shows the 95% CI for the proportion (%) of people who have diabetes, which
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is 0.163 (16.3%) to 0.275 (27.5%). The 95% CI indicates we are 95% confident that the 
prevalence of diabetes in the population is between 16.3% and 27.5%. You can use 
other options with this command, such as: 

proportion diabetes1, level(99)
proportion diabetes1, over(religion) level(99)

The second command will display the 99% CI of diabetes in different religious groups.

6.2.1 Interpretation

In Table 6.4, we can see all the descriptive statistics (central tendency and dispersion) 
of the variable "age", including the statistics for Skewness and Kurtosis.  

We believe you understand the meanings of mean (average), SD (average difference of 
individual observations from the mean) and variance (square of SD). The analysis did 
not give the median directly. As indicated in Table 6.4, the 50th percentile (P50) is the 
median (middle value of the data set).

As presented in Table 6.4, the mean age is 26.5 years and the SD is 7.49 years. Let us 
discuss the other statistics provided in Table 6.4, especially the skewness, kurtosis, 
percentile, and quartile (not provided directly in the analysis). 

Table 6.5 Outputs of “tabstat” command 

. tabstat age sbp dbp, stat(n mean sd median p5) col(stat) 
 
    variable |         N      mean        sd       p50        p5 
-------------+-------------------------------------------------- 
         age |       210  26.51429  7.490491        27        14 
         sbp |       210  127.7333  20.05794       123       101 
         dbp |       210  82.76667  11.74929        82        66 
 
. tabstat age sbp, stat(n mean sd p50) by(sex) long col(stat) 
 
sex        variable |         N      mean        sd       p50 
--------------------+---------------------------------------- 
f               age |       133  26.88722  6.802021        27 
                sbp |       133  129.5714  21.37695       124 
--------------------+---------------------------------------- 
m               age |        77  25.87013  8.559929        26 
                sbp |        77  124.5584  17.22108       122 
--------------------+---------------------------------------- 
Total           age |       210  26.51429  7.490491        27 
                sbp |       210  127.7333  20.05794       123 
------------------------------------------------------------- 
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Skewness and Kurtosis: These two statistics are used to evaluate whether the data has 
come from a normally distributed population or not. In Table 6.4, we can see the statis-
tics for skewness (-0.091) and kurtosis (2.69). Skewness indicates the spreadness of 
distribution (a measure of symmetry). Skewness "greater than 0" indicates data is 
skewed to the right; skewness "less than 0" indicates data is skewed to the left, while 
skewness "near to 0" indicates data is symmetrical (normally distributed). 

However, the normality of data should not be evaluated based on skewness alone. We 
also need to consider the statistics for kurtosis. Kurtosis indicates the "peakness" or 
"flatness" of the distribution. Kurtosis is a measure to understand whether the data is 
heavy-tailed or light-tailed relative to the normal distribution. Data with high kurtosis 
tends to have heavy tails. The  heavy-tailed distributions usually have outliers.  Data 
with low kurtosis tends to have light tails, or a lack of outliers. 

The value of kurtosis for a normal distribution is 3. The data for "age" has a skewness 
of -0.091 and a kurtosis of 2.69. Since the value of skewness is close to zero and the 
value of kurtosis is close to 3, we may consider that the variable "age" has come from 

Table 6.6 Prevalence and confidence interval (CI) of diabetes 
. sum diabetes1 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    diabetes |       210    .2142857    .4113064          0          1 
 
. tab diabetes1 
 
       Have | 
   diabetes | 
   mellitus |      Freq.     Percent        Cum. 
------------+----------------------------------- 
         No |        165       78.57       78.57 
        Yes |         45       21.43      100.00 
------------+----------------------------------- 
      Total |        210      100.00 
 
. proportion diabetes1 
 
Proportion estimation               Number of obs    =     210 
 
-------------------------------------------------------------- 
             | Proportion   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
diabetes1    | 
          no |   .7857143   .0283828       .724512    .8363903 
         yes |   .2142857   .0283828      .1636097     .275488 
-------------------------------------------------------------- 
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a normally distributed population. We can also check the normality of a dataset by 
other methods, which are discussed in Chapter 8. 

Percentile and Quartile: Stata has provided the percentiles (1%, 5%, 10%, 25%, etc.) 
for the variable "age" (Table 6.4). It did not show the quartiles directly. When a dataset 
is divided into four equal parts after being arranged in ascending order, each part is 
called a quartile. It is expressed as Q1 (first quartile or 25th percentile), Q2 (second 
quartile or median or 50th percentile), and Q3 (third quartile or 75th percentile). 

On the other hand, when the data is divided into 100 equal parts (after the ordered array 
– from lowest to highest), each part is called a percentile (P). We can see in Table 6.4 
that the 10th percentile (P10) is 16.5, the 25th percentile or P25 (Q1) is 21.0, the P50 (medi-
an or Q2) is 27.0, and the P75 (Q3) is 32.0 years. The Q1 (the first quartile) is 21 years, 
indicating that 25% of the study subjects’ age is less than or equal to 21 years. On the 
other hand, the 75th percentile (P75 or Q3) which is 32 years, indicates that 75% of the 
study subjects’ age is less than or equal to 32 years. There is another measurement, 
called interquartile range (IQR), which is not shown in the analysis. IQR is the differ-
ence between Q3 and Q1 (Q3 – Q1). In this example, the IQR is 11 years (32 – 21). 

Sum of weights (wgt): When the "detail" option is used with the command "sum", 
Stata provides the statistics "sum of wgt.", indicating the sum of weights (Table 6.4). 
The table shows that the sum of weights for age is 210. Since we did not use any weight 
variable in the analysis, by default, each subject is given a weight of 1. When the 
option "detail" is used, the sum of the weights will therefore be equal to the number of 
observations, as shown in our example. We do not need this information to interpret the 
descriptive statistics. 

95% confidence interval (CI): Table 6.4 shows the 95% CIs for age and other 
variables (income and systolic BP). The 95% CI for mean age is 25.4 to 27.5 years.This 
means that we are 95% confident that the mean age of the population from which the 
sample is drawn is between 25.4 and 27.5 years. 

Table 6.6 shows the mean and 95% CI of the dichotomous categorical variable "diabe-
tes1", which is coded as 0/1 (0= don’t have diabetes; 1= have diabetes). Here, the mean 
value is 0.2142. This indicates that 21.42% (mean value multiplied by 100) of the 
subjects have diabetes. If it is a cross-sectional data, we can also say that the preva-
lence of diabetes is 21.42%. The 95% CI of the prevalence is 16.36% – 27.54%. Here, 
the 95% CI indicates that the prevalence of diabetes in the population would be 
between 16.36% and 27.54%, and we are 95% confident about it. 
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6.3 Descriptive statistics disaggregated by a categorical variable
You can get the descriptive statistics and other measures disaggregated (separately) by 
categorical variables. For example, if you want to get the frequency distribution of 
religion by sex (i.e., by males and females, separately), use any of the following com-
mands (we need to sort the variable "sex" first by using the command "sort"). Outputs 
are provided in Table 6.7. 

sort sex
by sex: tab religion
Or,
bysort sex: tab religion
Or, 
by sex, sort: tab religion 

If you want to get the measures of central tendency and dispersion of systolic BP (vari-
able name is "sbp") by diabetes, use the following command. Stata will generate sepa-
rate outputs for those with and without diabetes (Table 6.8). Other alternative com-
mands are provided in Section 6.2.

bysort diabetes: sum sbp
bysort diabetes: sum sbp, detail
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Table 6.7 Frequency distribution of religion by sex 
. bysort sex: tab religion 
 
----------------------------------------------------------------------------------- 
-> sex = f 
 
   Religion |      Freq.     Percent        Cum. 
------------+----------------------------------- 
     MUSLIM |         76       57.14       57.14 
      HINDU |         35       26.32       83.46 
  Christian |         22       16.54      100.00 
------------+----------------------------------- 
      Total |        133      100.00 
 
----------------------------------------------------------------------------------- 
-> sex = m 
 
   Religion |      Freq.     Percent        Cum. 
------------+----------------------------------- 
     MUSLIM |         50       64.94       64.94 
      HINDU |         23       29.87       94.81 
  Christian |          4        5.19      100.00 
------------+----------------------------------- 
      Total |         77      100.00 

Table 6.8 Descriptive statistics of systolic BP by diabetes 

. bysort diabetes: sum sbp 
 
--------------------------------------------------------------------------------- 
-> diabetes = No 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         sbp |       165    127.6061    20.87994         91        195 
 
--------------------------------------------------------------------------------- 
-> diabetes = Yes 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         sbp |        45       128.2    16.90428        100        176 
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7

Generating Graphs

The information derived from data analysis needs to be presented in an effective and 
understandable manner. Data and information can be presented in textual, tabular, or 
graphical forms. Tables and graphs are powerful communication tools for the presenta-
tion of information. They can make an article easy to understand for the readers. While 
a table is suitable for presenting quantitative and qualitative information, a graph is an 
effective visual method for data presentation. A graph displays data at a glance, facili-
tates comparison, and can reveal trends and relationships.  

The researchers need to carefully decide which type of graph or chart will be the best 
way to present the information. The type of graph or chart to be used depends on the 
data type, analysis outputs, and the objective of communicating the information. Inap-
propriate use of graphs may fail to convey the right information and may sometimes 
confuse the readers, leading to misinterpretation of data. Therefore, the graphs for data 
presentation must be chosen carefully. 

The graphs commonly used for the presentation of data include histograms, scatter 
plots, box and plot charts, bar graphs, line graphs, and pie charts. In this chapter, we 
will discuss how to generate these graphs using Stata. Use the data file <Data_3.dta>.

7.1 Histogram
We usually generate a histogram to assess the distribution of a continuous variable. The 
histogram provides information about: a) the distribution of a dataset (whether 
symmetrical or not); b) the concentration of values; and c) the range of values. To 
generate a histogram (say, for the variable "age"), use the following command: 
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histogram age

This will display a histogram for age (Fig 7.1 A). You can specify the Y-axis scale in 
the command, such as frequency or percentage, by adding the following options: 

histogram age, frequency
histogram age, percent
histogram age, norm percent

The first command will display a histogram where the Y-axis value is the number 
(frequency; Fig 7.1 B), while the second command will display the Y-axis value in 
percentage. The third command will produce a histogram with the overlying normal 
curve (Fig 7.1 C). 

You can specify the interval width to construct a histogram. For example, if you want 
to have the histogram of age at a class interval of 3, use the following command: 

histogram age, width(3) frequency
Or, 
histogram age, width(3) start(2) frequency

You can also get the histograms dissertated by a categorical variable (say, by sex). To 
do this, use the following command:

histogram age, by(sex) frequency

This command will display histograms of age for females and males, separately (Fig 
7.1 D). You can use the graph edit options to give a title, subtitle, and change the font, 
background, and color schemes of the histogram. These options can also be specified 
through commands. 

Looking at the histogram (Fig 7.1), it seems that the data is more or less symmetrical. 
This indicates that age may be normally (approximately) distributed in the population. 

7.1.1 Saving graphs

The graphs generated by Stata cannot be saved in the output files. They need to be 
saved separately. The graphs can be saved in various formats, such as Stata Graph 
(.gph), Enhanced Metafile (.emf), or in other formats. The disadvantage of a .gph 
format is that it can only be read by Stata. On the other hand, the .emf format is usually 
the best for use in Microsoft Word documents. Suppose that you have generated a 
histogram for age. To save a histogram (or other graphs) generated by Stata with the 
name “graph1”, use the following steps in the graph window:

Generating Graphs
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File > Save As… > Select location of the file to be saved > Give a file name in the 
“File name” box (e.g., Graph1) > Select a format in the “Save as type” box (e.g., 
*.gph) > Save

You can also use the following commands to save the graph as “Graph1” on your desk-
top (or other locations): 

graph save C:\Users\HP\Desktop\Graph1
graph save C:\Users\HP\Desktop\Graph1.emf, replace

The first command will save the graph on the desktop in .gph format, while the second 
command will save the graph on the desktop in .emf format.
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Figure 7.1 Histograms of age 
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7.2 Scatter plot
A scatter diagram provides useful information about the relationship between two 
continuous variables. The scatter diagram provides information/ideas about: 

• Whether there is any correlation between the variables; 
• Whether the relationship (if there is any) is linear or non-linear; 
• The direction of the relationship, i.e., whether it is positive (if the value of one  
 variable increases with the increase of the other variable) or negative (if the  
 value of one variable decreases with the increase of the other variable); 
• The presence of potential outliers in the dataset, i.e., the values that differ  
 significantly from other observations. 

Stata can generate scatter plots with varieties of options, such as with a fit line (regres-
sion line), 95% CI for the fit line, disaggregated by a categorical variable, and others. 
Several commands can be used to generate scatter plots. Use the following commands 
to generate a scatter plot for systolic (variable name is “sbp”) and diastolic (variable 
name is “dbp”) BP:

twoway scatter sbp dbp
twoway lfit sbp dbp || scatter sbp dbp
twoway lfitci sbp dbp || scatter sbp dbp

The first command will display the basic scatter plot of systolic BP against diastolic BP 
(Fig 7.2 A). The first variable after the command is considered for the Y-axis. The 
second command will display the regression line (fit line; Fig 7.2 B) for systolic BP on 
diastolic BP, while the third command will provide the 95% CI of the regression line 
(Fig 7.2 C). 

The other commands and options that can be used to generate a scatter plot are: 

twoway scatter sbp dbp, mlabel(ID_no)
twoway scatter sbp dbp, by(diabetes) 
graph matrix age sbp dbp

The first command will display a scatter plot with the data points labelled by the case 
numbers (ID numbers) (Fig 7.3 A), while the second command will display a scatter 
plot by the variable “diabetes” (Fig 7.3 B). The last command will display a scatter plot 
matrix for the variables listed (age, systolic BP, and diastolic BP) with the command 
(Fig 7.4).

Generating Graphs
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7.3 Box and plot chart
We have shown how to generate the basic box and plot charts in Chapter 4. Here, we 
will discuss the other options for generating the box and plot charts. The commands 
that may be used for generating a box and plot chart are as follows: 

graph box sbp
graph box dbp, over(religion)
graph box age sbp dbp

The first command is the basic command for generating a box and plot chart. The first 
command will generate a box and plot chart of systolic BP as shown in Figure 7.5. The 
second command will display box and plot charts of diastolic BP for different catego-
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Figure 7.2 Scatter plots of systolic and diastolic BP 
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ries of religion (Fig 7.6). You can also generate box and plot charts for multiple 
variables simultaneously by using the last command. Horizontal box and plot charts 
can also be generated by using the following command:

graph hbox sbp 

The box and plot chart provides information about the distribution of a dataset. It also 
provides summary statistics of a variable, like Q1 (first quartile or 25th percentile), 
median (second quartile or Q2) and Q3 (third quartile or 75th percentile) as well as 
information about outliers or extreme values. The lower boundary of the box indicates
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the value for Q1, while the upper boundary indicates the value for Q3. The median is 
represented by the horizontal line within the box. The minimum and maximum values 
are indicated by the horizontal lines of the whiskers (Fig 7.5). 

In the box and plot chart, the presence of outliers is indicated by the dots (Fig 7.5). The 
outliers are the values greater than 1.5 box length distance (i.e., interquartile range or 
IQR) from the edge (upper or lower) of the box [i.e., greater than (1.5×IQR + Q3) or 
less than (Q1 – 1.5×IQR)]. You can see that there are 3 outliers in the data of systolic 
BP (Fig 7.5). If you want to get the case numbers of the outliers, use the following 
command ("ID_no" is the variable name for identification number in our dataset): 

graph box sbp, marker (1, mlabel (ID_no))

Generating Graphs
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7.4 Bar graph
Bar graphs are very powerful tools for presenting summary statistics, which make it 
easier for the readers to understand the relationship between the various values. Here, 
we will discuss how to generate simple bar graphs, such as: a) the mean of a quantita-
tive variable across a categorical variable; and b) the frequencies of a categorical 
variable. 

7.4.1 Bar graph for the mean of a quantitative variable across a categorical vari-
able

You may be interested in presenting the mean income of the respondents by religion. 
To do this, use the following command: 

graph bar income, over(religion)
graph hbar income, over(religion)

The first command will display a bar graph showing mean income across religious 
groups (Fig 7.7A). The second command will display a horizontal bar with the same 
information. If you want to get the median, instead of the mean income by religion, use 
the following command:

graph bar (median) income, over(religion)

Use the following commands if you want to get the value labels on each bar: 

graph bar age, over(religion) blabel(bar)
graph bar age, over(religion) blabel(bar, format (%3.1f))

The first command will provide the value labels (mean age) on the bars. The addition 
of the option "format (%3.1f)" in the command will provide the mean up to 3 digits 
with one decimal point (Fig 7.7B). 

7.4.2 Bar graph for the frequencies of a categorical variable 

There is no specific and direct command for generating a bar chart to graphically repre-
sent a frequency table. The “fbar” command can be used to make a bar graph. Howev-
er, before using the “fbar” command, we need to install a module using the following 
command:

ssc install fbar

Once the module is installed, use any of the following commands to make a bar graph:

Generating Graphs
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fbar religion
fbar religion, percent
fbar religion, by(sex) 

The first command will generate a bar graph of religion with a frequency of occurrence 
and the second one with a percentage. The last command will generate a frequency bar 
graph of religion by sex. The bar graphs generated by the "fbar" command cannot be 
edited in graph edits. 

An alternative way to generate a bar graph is to use the modified command for histo-
gram. To generate a bar graph for religion with the modified command of histogram, 
use the following command: 

histogram religion, discrete freq gap(20) xlabel(1 2 3, valuelabel)
histogram religion, discrete percent gap(20) xlabel(1 2 3, valuelabel)

The first command will generate a bar graph with the frequency of the bars, while the 
second one will provide the bar with a percentage.

7.5 Line graph 

A line graph is particularly suitable to demonstrate the trend, i.e., changes over time. 
We can check the trend for two or more variables at a time. The basic command for 
generating a line graph is "graph twoway line" or simply "line". Suppose that you want 
to generate a line graph to demonstrate the change in TFR (total fertility rate; variable
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name is "tfr") over the period of 1975 to 2018 (variable name is "year"). To do this, use 
the following command (use the data file <Line.dta>): 

line tfr year
twoway connect tfr year

The first command will produce the line graph A without the markers of the scatter 
points, while the second command will produce the line graph B with the markers as 
shown in Figure 7.8 (graphs have been edited for better resolution). The command 
"connect" actually combines the features of scatter with a line, i.e., connects the scatter 
points with a line segment. The Y-axis variable (dependent variable) must be written 
first after the basic command.  

You can also include two dependent variables to generate a line graph. Suppose that 
you want to demonstrate the trend of TFR as well as CPR (contraceptive prevalence 
rate; variable name is “cpr”) over the years. Use the following command to get the line 
graph (Fig 7.8 C). 

twoway connect tfr cpr year

Though you can give a title, Y-axis and X-axis labels, and others by using the Stata 
commands, it is easier to write them using the graph edits. Users can easily explore the 
graph editing options in Stata. 

If you have a dataset in wide format (use the data file “Repeated Anova_2”, which is 
in wide format), you can make a line graph by using the following command:

profileplot sugar_0 sugar_7 sugar_14  sugar_24, by(treatment)
Or,
profileplot sugar_0 - sugar_24, by(treatment)

Either of the above commands will generate a line graph of mean blood sugar levels at 
4 different time points for three treatment groups (“sugar_0 - sugar_24” indicates the 
variables sugar_0 to sugar_24). 

7.6 Pie chart
Pie charts are also commonly used to present data. Stata can generate pie charts. The 
"graph pie" command with the "over" option generates a pie chart representing the 
frequency of each group. The "plabel" option places the labels (names or values) of the 
categories inside each slice of the pie chart. Note that Stata does not allow a string 
variable for making a pie chart. The following commands can be used to make a pie 
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chart for the variable "religion". 

graph pie, over(religion)
graph pie, over(religion) plabel(_all name)
graph pie, over(religion) plabel(_all percent)
graph pie, over(religion) pie(1, explode) plabel(_all percent)

The first command will produce a simple pie chart for the variable religion (Fig 7.9 A). 
The second command will display a pie chart with category names (Fig 7.9 B), while 
the third command will display category percentages (Fig 7.9 C). To explode a slice of 
a pie graph, use the last command (Fig 7.7 D).
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Checking Data for Normality

It is important to know the nature of the distribution of a continuous random variable 
before using the statistical tests for hypotheses testing. To use the parametric methods 
for hypothesis testing (such as t-test, ANOVA, correlations, and others), one of the 
important assumptions is that the data of a continuous dependent variable is normally 
distributed. It is, therefore, necessary to check whether the data has come from a 
normally distributed population or not before we use the parametric methods. Use the 
data file <Data_3.dta> for practice.

8.1 Assessing normality of data 
The normality of data is an important assumption for using a parametric method of 
testing a hypothesis. Whether the data is from a normally distributed population or not, 
can be checked in several different ways. The most commonly used methods are: 

a) Graphs, such as histograms and Q-Q (quantile-quantile) plots, 
b) Descriptive statistics, such as skewness and kurtosis, and 
c) Formal statistical tests, such as the Shapiro Wilk test (commonly used) and the  
 Skewness-Kurtosis (S-K) test.

In this section, we will discuss how to get a histogram and a Q-Q plot and how to 
perform the formal statistical tests (Shapiro Wilk test and S-K test) to check the 
normality of data.

We want to assess whether or not the variable "systolic BP" in our dataset is normally 
distributed in the population. For this, we will first construct a histogram and a Q-Q 
plot for systolic BP (variable name is “sbp”). To construct a histogram for systolic BP,
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use the following command (also see Chapter 7):

histogram sbp, norm 
histogram sbp, by(diabetes) norm

The first command will generate a histogram of systolic BP with an overlying normal 
curve (Fig 8.1). The second command will display the same by diabetes.

To construct the Q-Q plot for systolic BP, use the first command (Fig 8.2). The second 
command will generate a Q-Q plot for males.

qnorm sbp
qnorm sbp if sex==”m”

Formal statistical tests to assess the normality of data can also be used. The statistical 
tests for checking the normality of data are the Shapiro Wilk test (commonly used) and 
the Skewness-Kurtosis test. To do these tests for systolic BP, use the following com-
mands: 

swilk sbp
sktest sbp
swilk sbp if diabetes==1
sktest sbp if diabetes==1

The outputs of first two commands are provided in Table 8.1. You can also use these 
tests for multiple variables at a time. 
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Figure 8.1 Histogram of systolic BP 
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8.1.1 Interpretation

With Stata commands, we have generated the histogram and Q-Q plot (Figs 8.1 and 
8.2) for systolic BP to visually check the distribution of data. We have also used the 
formal statistical tests (Shapiro Wilk test and Skewness-Kurtosis test) to assess the 
normality of data (Table 8.1).

The histogram (Fig 8.1) provides an impression about the distribution of the data (whether 
the distribution is symmetrical or not). If we look at the histogram of systolic BP, it seems 
that the data is slightly skewed to the right (i.e., the distribution is not symmetrical). 
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Figure 8.2 Q-Q plot of systolic BP 

Table 8.1 Normality tests for systolic BP 
. swilk sbp 
                   Shapiro-Wilk W test for normal data 
 
    Variable |    Obs       W           V         z       Prob>z 
-------------+-------------------------------------------------- 
         sbp |    210    0.95618      6.821     4.429    0.00000 
 
. sktest sbp 
                    Skewness/Kurtosis tests for Normality 
                                                         ------- joint ------ 
    Variable |    Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2 
-------------+--------------------------------------------------------------- 
         sbp |    210      0.0001         0.2925        14.72         0.0006 
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The Q-Q plot (Fig 8.2) also provides information on whether the data has come from a 
normally distributed population or not. The Q-Q plot compares the distribution of data 
with the standardized theoretical distribution from a specified family of distribution (in 
this case, from a normal distribution). If the data is normally distributed, all the points 
(dots) lie on the diagonal straight line. Our interest is in the central portion of the line 
as well as in the tails. Deviation from the central portion of the line means non-normal-
ity. Deviations at the ends of the plot indicate the existence of outliers. We can see (Fig 
8.2) that there is a slight deviation of the dots at the central portion as well as at the two 
ends. This may indicate that the data may not have come from a normally distributed 
population. 

The specific tests (objective tests) that we have used to assess if the data has come from 
a normally distributed population are the Shapiro Wilk test and the S-K test. The results 
of these two tests are provided in Table 8.1. 

Look at the "Prob > z" (for the Shapiro Wild test) and "Prob>chi2" (for the S-K test) 
columns of Table 8.1. These columns indicate the p-values of the tests. A p-value of 
<0.05 indicates that the data has not come from a normally distributed population. In 
our example, the p-value is 0.000 for both the tests. This indicates that the data for 
systolic BP has not come from a normally distributed population. Here, the null 
hypothesis is "data has come from a normally distributed population" and the alterna-
tive hypothesis is "data has not come from a normally distributed population". We will 
reject the null hypothesis since the p-values of the tests are <0.05. 

The formal tests are very sensitive to sample size. These tests may be significant for 
slight deviations in large sample data (n>100). Similarly, the likelihood of getting a 
p-value <0.05 for a small sample of data (n<20, for example) is low. Therefore, the 
rules of thumb for normality checking are: 

1) For a sample size of <30: Assume non-normal; 
2) For a moderate sample size (30-100): If the formal statistical test is significant  
 (p<0.05), consider a non-normal distribution; otherwise, check the normality  
 using other methods, such as histograms and Q-Q plots;
3) For a large sample size (n>100): If the formal statistical test is not significant  
 (p>0.05), accept normality; otherwise, check with other methods.  

However, for practical purposes, just look at the histogram. If it seems that the distri-
bution is approximately symmetrical, consider that the data has come from a normally 
distributed population and use a parametric test. If the sample size is less than 30, use 
a nonparametric test.

Checking Data for Normality
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Testing of Hypothesis

The present and the following chapters provide basic information on how to select 
statistical tests for testing hypotheses, perform the statistical tests with Stata, and inter-
pret the results of common problems related to health and social sciences research. 
Before we proceed, let us discuss some of the basic concepts of hypothesis testing. 

A hypothesis is a statement about one or more populations. A hypothesis is concerned 
with the parameter of a population about which the statement is made. A hospital man-
ager may hypothesize that the average length of stay at his hospital is seven days, or a 
researcher may hypothesize that the rate of recovery with drug A is better than that of 
drug B. By means of hypothesis testing, one determines whether or not such statements 
are compatible with the available data. 

There are two types of statistical hypotheses: null (H0) and alternative (HA) hypotheses. 
The null hypothesis is the hypothesis of equality or no difference. The null hypothesis 
always says that two or more quantities (parameters) are equal. We always test the null 
hypothesis, not the alternative hypothesis. Using a statistical test, we either reject or do 
not reject the null hypothesis. If we can reject the null hypothesis, then we can only 
accept the alternative hypothesis. It is, therefore, necessary to have a very clear under-
standing of the null hypothesis. 

Suppose that we are interested in determining the association between coffee drinking 
and stomach cancer. In this situation, the null hypothesis is "there is no association 
between coffee drinking and stomach cancer (or, coffee drinking and stomach cancer 
are independent)", while the alternative hypothesis is "there is an association between 
coffee drinking and stomach cancer (or, coffee drinking and stomach cancer are not 
independent) ". If we can reject the null hypothesis with a statistical test (i.e., if the test
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is significant; p-value <0.05), then we can only say that there is an association between 
coffee drinking and stomach cancer. 

Various statistical tests are available to test hypotheses. Selecting an appropriate statis-
tical test is the key to analyzing the data. What statistic is to be used to test a hypothesis 
depends on the study design, data type, distribution of data, and objective of the study. 
It is, therefore, important to understand the nature of the variable (categorical or quan-
titative), measurement type (nominal, ordinal, interval, or ratio scale), as well as the 
study design. The following tables (Tables 9.1 to 9.4) provide basic guidelines about 
the selection of statistical tests depending on the type of data and situation.

Testing of Hypothesis

Table 9.1 Association between quantitative and categorical or quantitative variables 

 Situation for hypothesis testing Data normally 
distributed 

Data non-
normal 

1. Comparison with a single population mean 
(with a fixed value)  

Example: You have taken a random sample 
from a population of diabetic patients to assess 
the mean age. Now, you want to test the null 
hypothesis that the mean age of the diabetic 
patients in the population is 55 years.  

1-sample t-test Sign test/ 
Wilcoxon 
Signed 
Rank test 

2. Comparison of the means of two related 
samples (pre- and post-test comparison) 

Example: You want to test the hypothesis of 
whether the drug "Inderal" is effective in 
reducing blood pressure (BP) or not. To test the 
hypothesis, you selected a group of subjects 
and measured their BP before giving the drug 
(measurements before treatment or pre-test). 
Then, you administered the drug to all of them 
and measured their BP after one hour 
(measurements after treatment or post-test). 
Now, you want to compare if the mean BP 
before (pre-test) and after (post-test) 

Paired t-test Sign test/ 
Wilcoxon 
Signed 
Rank test 
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Table 9.1 Association between quantitative and categorical or quantitative variables 

 Situation for hypothesis testing Data normally 
distributed 

Data non-
normal 

administration of the drug is the same or not. 

3. Comparison between two independent 
sample means [association between a 
quantitative and a categorical variable with 
two levels] 

Example: You have taken a random sample of 
students from a university. Now, you want to 
test the hypothesis if the mean systolic BP of 
male and female students is the same or not. 

Independent 
samples t-test 

Mann-
Whitney U 
test (also 
called the 
Wilcoxon 
Rank Sum 
test) 

 

4. Comparison of more than two independent 
sample means [association between a 
quantitative and a categorical variable with 
more than two levels] 

Example: You have taken a random sample 
from a population. You want to test the 
hypothesis if the mean income of different 
religious groups (e.g., Muslims, Hindus, and 
Christians) is the same or not. 

Another example, you have three drugs, A, B, 
and C. You want to investigate whether all 
these three drugs are equally effective in 
reducing blood pressure or not. 

One-way 
ANOVA 

Kruskal 
Wallis test 

5. Association between two quantitative 
variables  

Example: You want to test the hypothesis if 
there is a correlation between systolic BP and 
age. 

Pearson’s 
correlation 

Spearman’s 
correlation 
(Can also 
be used for 
ordinal 
variables) 
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Table 9.1 Association between quantitative and categorical or quantitative variables 

Test StatisticsSituation for hypothesis testing 
  

6. Association between a quantitative and an 
ordinal variable  

Example: You want to test the hypothesis if 
there is a correlation between systolic BP and 
severity of anemia. 

Spearman’s correlation, if the 
ordinal variable has 5 or more 
levels.  

Otherwise, use the Kendall’s 
Tau-B statistics 

7. Association between two ordinal variables  

Example: You want to test the hypothesis if 
there is a correlation between severity of pain 
and stage of cancer. 

Spearman’s correlation, if 
both the ordinal variables 
have 5 or more levels.  

Otherwise, use the Kendall’s 
Tau-B statistics 

Table 9.2 Association between two categorical variables 

 Situation for hypothesis testing Test statistics 

1. Association between two categorical variables 
(independent samples) 

Example: You have taken a random sample from a 
population and want to test the hypothesis that there is an 
association between sex and asthma. Another example, you 
want to assess the association between smoking and stomach 
cancer.  

Chi-square test/ 
Fisher’s Exact 
test 

2. Association between two categorical variables of related 
samples, such as data from a matched case-control study  

Example: You want to test the hypothesis if there is an 
association between diabetes mellitus and heart disease when 
the data is matched for smoking or other variables (a matched 
case-control study design). 

McNemar test 
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Table 9.3 Multivariable analysis 

 Type of outcome/dependent variable Type of multivariable 
analysis 

1. The outcome variable (also called the dependent 
variable) is on an interval or ratio scale – e.g., 
blood pressure, birth weight, and blood sugar. 

Multiple linear regression; 

Analysis of variance 
(ANOVA);  

Analysis of covariance 
(ANCOVA) 

2. The dependent variable is a dichotomous 
categorical variable (i.e., a nominal categorical 
variable with two levels) – e.g., disease (present 
or absent); ANC (taken or not taken); and 
outcome (cured or not cured). 

Binary logistic regression  
 

3. The dependent variable is a nominal categorical 
variable with more than two levels – e.g., 
treatment seeking behavior (such as treatment 
not received; received homeopathic treatment; 
received allopathic treatment); and cause of 
death (cancer, heart disease, pneumonia).  

Multi-nominal logistic 
regression 

4. The dependent variable is an ordinal categorical 
variable – e.g., severity of anemia (no anemia, 
mild to moderate anemia, severe anemia); stage 
of cancer (stage 1, stage 2, stage 3); severity of 
pain (mild, moderate, severe), etc. 

Proportional odds regression 
(Ordinal regression) 

5. The dependent variable is time-to-
outcome/event, such as time-to-death, time-to-
recurrence, and time-to-cure. 

Proportional hazards analysis 
(Cox regression) 

6. The dependent variable is a count – e.g., the 
number of post-operative infections; the number 
of patients admitted with heart disease to a 
hospital; and the number of road traffic accident 
cases treated in the emergency department.  

Poisson regression 
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Table 9.3 Multivariable analysis 

Type of outcome/dependent variable Type of multivariable 
analysis 

7. Incidence rates, such as incidence rates of 
tuberculosis; incidence rates of pneumonia; 
incidence rates of car accidents, etc. 

Poisson regression 

Table 9.4 Agreement analysis 

 Situation for hypothesis testing Test statistics 

1. Agreement between two quantitative variables 

Example: You want to test the hypothesis that the 
two methods of blood sugar measurement agree with 
each other. 

Bland Altman test/plots 

2. Agreement between two categorical variables 

Example: You want to test the hypothesis that the 
diagnosis of cataract in patients is agreed upon by 
two physicians.   

Kappa estimates 
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Student’s t-test for Hypothesis Testing

The student’s t-test is commonly known as the t-test. It is a frequently used parametric 
statistical method to test a hypothesis. There are several types of t-tests used in differ-
ent situations (Table 9.1), such as: a) One-sample t-test; b) Independent samples t-test; 
and c) Paired t-test. In this chapter, we will discuss all these t-tests and the interpreta-
tion of their outputs. Use the data file <Data_3.dta> for practice.

10.1 One-sample t-test
The one-sample t-test is done to compare the mean with a hypothetical value. For 
example, we have collected data on diastolic BP (variable name is “dbp”) of students 
of the State University of Bangladesh by taking a random sample. We are interested in 
knowing if the mean diastolic BP of the students is different from 80 mmHg.

Hypothesis

Null hypothesis (H0): The mean diastolic BP of students is equal to 80 mmHg in 
the population (study population is the students of the State University of Bangla-
desh).

Alternative hypothesis (HA): The mean diastolic BP of students is different from 
(not equal to) 80 mmHg in the population.

Assumptions

1. The distribution of diastolic BP in the population is normal;
2. The sample is a random sample from the population.
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The first job, before testing the hypothesis, is to check whether or not the distribution 
of diastolic BP is normal in the population (assumption 1). To do this, check the histo-
gram and/or Q-Q plot of diastolic BP or do the formal statistical test of normality (Sha-
piro Wilk test or S-K test) as discussed in Chapter 8. If the assumption is met (diastolic 
BP is at least approximately normal), do the 1-sample t-test; otherwise, use the 
nonparametric method (Wilcoxon Signed Rank test, as discussed in Chapter 20). 
Suppose that the diastolic BP is normally distributed in the population. Use the follow-
ing command to do the 1-sample t-test:

ttest dbp=80

With this command, Stata will generate Table 10.1.

10.1.1 Interpretation

In this example, we have tested the null hypothesis "the mean diastolic BP of the 
students is equal to 80 mmHg in the population". Data shows that the mean diastolic 
BP of the sample is 82.77 mmHg (95% CI: 81.16 - 84.36) with a SD of 11.75 mmHg 
(Table 10.1). The results of the one-sample t-test show that the calculated value of "t" 
is 3.412 and the p-value [(Pr(|T| > |t|); 2-tailed] is 0.0008. Since the p-value is <0.05, 
we will reject the null hypothesis at the 95% confidence level. This means that the 
mean diastolic BP of the students (in the population) from where the sample is drawn 
is different from 80 mmHg (p<0.001).

Student’s t-test for Hypothesis Testing

Table 10.1 One-sample t-test  

. ttest dbp=80 
 
One-sample t test 
------------------------------------------------------------------------------ 
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     dbp |     210    82.76667    .8107779    11.74929    81.16832    84.36502 
------------------------------------------------------------------------------ 
    mean = mean(dbp)                                              t =   3.4124 
Ho: mean = 80                                    degrees of freedom =      209 
 
    Ha: mean < 80               Ha: mean != 80                 Ha: mean > 80 
 Pr(T < t) = 0.9996         Pr(|T| > |t|) = 0.0008          Pr(T > t) = 0.0004 
 



93

10.2 Independent samples t-test
The independent samples t-test involves one quantitative variable (dependent variable) 
and a categorical variable with two levels (categories). This test is done to compare the 
mean of a dependent variable between two categories of the categorical variable. 

For example, we are interested in knowing if the mean age of diabetic and non-diabetic 
patients in the population is the same or not. Here, the test-variable (dependent 
variable) is age (a quantitative variable) and the categorical variable is diabetes, which 
has two levels/categories (have diabetes and do not have diabetes). Before doing this 
test, we need to check assumption 1 [i.e., age is normally distributed at each level of 
diabetes], as discussed earlier.  

Hypothesis

H0: The mean age of diabetic and non-diabetic patients is the same in the popula-
tion.

HA: The mean age of diabetic and non-diabetic patients is different (not the same) 
in the population. 

Assumptions

1. The dependent variable (age) is normally distributed at each level of the inde- 
 pendent variable (diabetes); 
2. The variances of the dependent variable (age) at each level of the independent  
 variable (diabetes) are the same/equal; 
3. Subjects represent random samples from the population. 

10.2.1 Test for equality of variances: Levene’s test

Before doing the independent samples t-test, we need to check if the variances of the 
dependent variable (age) at each level of the independent variable (diabetes) are the 
same or not (assumption 2). Levene’s test is the most commonly used statistical test to 
determine whether two or more groups have equal variances. To do the Levene’s test 
to determine if the variances of age are equal among the diabetic and non-diabetic 
patients, use the following command (Table 10.2):

robvar age, by(diabetes)

You can also use the following command to check the equality of variances. It will 
provide the results of variance ratio statistics (Table 10.2). 

Student’s t-test for Hypothesis Testing
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The results of Levene’s test (using the command "robvar") are provided in Table 10.2. 
The table shows the mean and standard deviation of age as well as the total observa-
tions (Freq) for both diabetic (Yes) and non-diabetic (No) patents. We can see that the 
standard deviation of age is higher among diabetic patients (8.46) compared to non-di-
abetic (7.18) patients, but the Levene’s test will tell us whether or not this difference is 
statistically significant. The results of the "sdtest" command also provide the same 
information as shown after Levene’s test results in Table 10.2. 

Stata has provided three options for Levene’s test results: 

sdtest age, by(diabetes)

Student’s t-test for Hypothesis Testing

Table 10.2 Test results for equality of variances  
. robvar age, by(diabetes) 
 
       Have | 
   diabetes |           Summary of Age 
   mellitus |        Mean   Std. Dev.       Freq. 
------------+------------------------------------ 
        Yes |   27.911111   8.4633494          45 
         No |   26.133333   7.1835969         165 
------------+------------------------------------ 
      Total |   26.514286   7.4904907         210 
 
W0  =  3.2178863   df(1, 208)     Pr > F = 0.0742901 
W50 =  3.0099114   df(1, 208)     Pr > F = 0.08423809 
W10 =  3.0595865   df(1, 208)     Pr > F = 0.08173708 
 
 
. sdtest age, by(diabetes) 
 
Variance ratio test 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     yes |      45    27.91111    1.261642    8.463349    25.36844    30.45378 
      no |     165    26.13333    .5592423    7.183597    25.02909    27.23758 
---------+-------------------------------------------------------------------- 
combined |     210    26.51429     .516893    7.490491    25.49529    27.53328 
------------------------------------------------------------------------------ 
    ratio = sd(yes) / sd(no)                                      f =   1.3880 
Ho: ratio = 1                                    degrees of freedom =  44, 164 
 
    Ha: ratio < 1               Ha: ratio != 1                 Ha: ratio > 1 
  Pr(F < f) = 0.9265         2*Pr(F > f) = 0.1471           Pr(F > f) = 0.0735 
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• W0, which is the test statistic of Levene’s test centered at the mean; 

• W50, which is the test statistic centered at the median; and 

• W10, which is the test statistic centered at a 10% trimmed mean (i.e., the top  
 5% and bottom 5% of the values are trimmed out). 

We will consider the test statistics centered at the median (W50) and the p-value for 
this is 0.084 (>0.05). This means that the variance of age for diabetic and non-diabetic 
patients is not different (equal). Similarly, the p-value (0.147) of the "sdtest" indicates 
the same, i.e., the variances for diabetic and non-diabetic patients with regard to age 
are not different.

10.2.2 Commands for independent samples t-test

The independent samples t-test can be done in two situations: 

• When the variances of the dependent variable (e.g., age) are equal at each  
 level of the categorical variable (e.g., diabetes); and 
• When the variances of the dependent variable are unequal at each level of the  
 categorical variable. 

The commands for the independent samples t-test are:

ttest age, by(diabetes)
ttest age, by(diabetes) unequal

The first command is for the t-test when the variances are equal, while the second com-
mand is for the t-test when the variances are unequal. The outputs of the t-tests are 
provided in Tables 10.3 (with equal variances) and 10.4 (with unequal variances). 

10.2.3 Interpretation 

Table 10.3 shows the descriptive measures of age by diabetes. We can see that there are 
45 subjects with diabetes and 165 subjects without diabetes. The mean age of the 
diabetic patients is 27.9 (SD 8.46) and that of the non-diabetic patients is 26.1 (SD 
7.18) years. 

The t-test results are provided at the bottom of the descriptive statistics. The calculated 
t-value is -1.41 (with the degrees of freedom 208). Since we are interested in under-
standing if the mean age is the same for both diabetic and nondiabetic patients, we will 
consider the 2-tailed test. Look at the p-value, provided under "Ha: diff !=0", which is  

Student’s t-test for Hypothesis Testing
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0.158 (>0.05). We cannot, therefore, reject the null hypothesis. This means that the 
mean age of diabetic and non-diabetic patients in the population from where samples 
are drawn is not different (p=0.158).

The results of the t-test for unequal variances are provided in Table 10.4. The interpre-
tation of the results is the same as above.

Student’s t-test for Hypothesis Testing

Table 10.3 Independent samples t-test with equal variances 

. ttest age, by(diabetes) 
 
Two-sample t test with equal variances 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      No |     165    26.13333    .5592423    7.183597    25.02909    27.23758 
     Yes |      45    27.91111    1.261642    8.463349    25.36844    30.45378 
---------+-------------------------------------------------------------------- 
combined |     210    26.51429     .516893    7.490491    25.49529    27.53328 
---------+-------------------------------------------------------------------- 
    diff |           -1.777778    1.256707               -4.255293    .6997375 
------------------------------------------------------------------------------ 
    diff = mean(No) - mean(Yes)                                   t =  -1.4146 
Ho: diff = 0                                     degrees of freedom =      208 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.0793         Pr(|T| > |t|) = 0.1587          Pr(T > t) = 0.9207 
 

Table 10.4 Independent samples t-test with unequal variances 

. ttest age, by(diabetes) unequal 
 
Two-sample t test with unequal variances 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      No |     165    26.13333    .5592423    7.183597    25.02909    27.23758 
     Yes |      45    27.91111    1.261642    8.463349    25.36844    30.45378 
---------+-------------------------------------------------------------------- 
combined |     210    26.51429     .516893    7.490491    25.49529    27.53328 
---------+-------------------------------------------------------------------- 
    diff |           -1.777778    1.380033               -4.536122    .9805668 
------------------------------------------------------------------------------ 
    diff = mean(No) - mean(Yes)                                   t =  -1.2882 
Ho: diff = 0                     Satterthwaite's degrees of freedom =  62.3436 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.1012         Pr(|T| > |t|) = 0.2024          Pr(T > t) = 0.8988 
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10.3 Paired t-test
The paired t-test is done to compare the difference between the two means of related 
samples. Related samples indicate the measurements taken from the same subjects at 
two or more different times or situations. For example, you have organized a training 
session for 32 staff members of your organization. To evaluate the effectiveness of the 
training, you have taken a pre-test before the training to assess the current status of 
knowledge of the participants. At the end of the training, you have again taken a test 
(post-test). Now, you want to compare if the training has significantly increased the 
knowledge or not. 

Another example is, suppose that you want to determine the effectiveness of a drug 
(e.g., Inderal) in reducing the systolic blood pressure (BP). To do this, you have select-
ed a random sample from a population. You have measured the systolic BP of all the 
individuals before giving the drug (pre-test or baseline measurement). You have again 
measured their BP one-hour after giving the drug (post-test or endline measurement)". 
The paired t-test is the appropriate test to compare the means in both situations.

Hypothesis

H0: There is no difference in mean scores before and after the training (for exam-
ple 1). 

HA: The mean scores are different before and after the training. 

Assumptions

1. The difference between two measurements (pre- and post-test) of the depen- 
 dent variable (examination scores) is normally distributed; 
2. Subjects represent a random sample from the population. 

10.3.1 Commands

We will use the first example (to compare the pre- and post-test scores) to do the paired 
t-test. Use the following command (the variable names are: pre_test and post_test) for 
the paired t-test (Table 10.5): 

ttest post_test = pre_test

Student’s t-test for Hypothesis Testing
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10.3.2 Interpretation

Table 10.5 shows the descriptive statistics of both the pre- and post-test results. Look-
ing at the mean scores, we can get an impression of whether the training has increased 
the mean score or not. We can see that the post-test mean is 90.9, while the pre-test 
mean is 53.5, and the difference is large (37.4). To understand if the difference between 
post-test mean and pre-test mean is significant or not, we need to check the paired t-test 
results given at the bottom of the descriptive statistics. The results show that the calcu-
lated t-value is 15.09 (degrees of freedom: 31). 

Three different p-values for the paired t-test are displayed at the bottom of the table. 
Since we are interested in understanding if there is any difference in the mean scores 
before and after the training (a two-tailed test), we will consider the p-value provided 
at the middle [Ha: mean(diff) != 0], which is 0.000. Since this value is smaller than 
0.05 (our level of significance), we will reject the null hypothesis. We can, therefore, 
conclude that there is sufficient evidence to say that there is a significant difference in 
the mean scores before and after the training; i.e., the mean knowledge score has 
increased significantly after the training (p<0.001).

Student’s t-test for Hypothesis Testing

Table 10.5 Paired t-test results 

. ttest post_test= pre_test 
 
Paired t test 
------------------------------------------------------------------------------ 
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
post_t~t |      32    90.98438    1.492164    8.440957    87.94109    94.02766 
pre_test |      32    53.57813    2.727373    15.42835    48.01561    59.14064 
---------+-------------------------------------------------------------------- 
    diff |      32    37.40625     2.47848     14.0204    32.35136    42.46114 
------------------------------------------------------------------------------ 
     mean(diff) = mean(post_test - pre_test)                      t =  15.0924 
 Ho: mean(diff) = 0                              degrees of freedom =       31 
 
 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0 
 Pr(T < t) = 1.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 0.0000 
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Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a commonly used statistical method for testing 
hypothesis. An ANOVA test is done to compare the means when the categorical inde-
pendent variable has more than two levels (categories). There are several types of 
ANOVA tests, such as one-way ANOVA, two-way ANOVA, repeated-measures ANO-
VA, and others. In this chapter, one-way and two-way ANOVA are discussed. The 
repeated measures ANOVA is discussed in Chapter 12. Use the data file <Data_3.dta> 
for practice.

11.1 One-way ANOVA
One-way ANOVA is done to compare the means of more than two groups, while the 
t-test compares the means of two groups. One-way ANOVA involves two variables: 
one categorical variable with more than two levels or categories (for example, the 
variable "religion_2", which has 4 categories – Muslim, Hindu, Christian, and 
Buddhist); and a quantitative variable (e.g., income, age, and blood pressure). Suppose 
that you want to assess if the mean income (variable name is "income") of all the 
religious groups (variable name is "religion_2") is the same or not in the population. 
One-way ANOVA is the appropriate test for this, if the assumptions are met. 

Hypothesis

H0: The mean income of all the religious groups is equal. 

HA: Not all means (of income) among the religious groups are equal. 
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Assumptions

1. The dependent variable (income) is normally distributed at each level of the  
 independent variable (religion); 
2. The variances of the dependent variable (income) at each level of the indepen- 
 dent variable (religion) are the same (homogeneity of variances); and 
3. Subjects represent random samples from the population. 

If the variances of the dependent variable in all the categories are not equal (violation 
of assumption 2), but the sample size in all the groups is large and similar, ANOVA can 
be used. 

11.1.1 Commands

All the following commands will provide the ANOVA test results. We recommend 
using the first command, which provides the descriptive statistics along with the ANO-
VA test results (Table 11.1). 

oneway income religion_2, tabulate
oneway income religion_2
anova income religion_2

Analysis of Variance (ANOVA)

Table 11.1 One-way ANOVA test results of income and religion 
. oneway income religion_2, tabulate 
 
            |      Summary of Monthly income 
 Religion 2 |        Mean   Std. Dev.       Freq. 
------------+------------------------------------ 
     MUSLIM |   88180.905   17207.614         126 
      HINDU |   79166.028   17804.631          36 
  Christian |   79405.615   19857.021          26 
   BUDDHISM |   84796.591   14447.348          22 
------------+------------------------------------ 
      Total |   85194.486   17724.033         210 
 
                        Analysis of Variance 
    Source              SS         df      MS            F     Prob > F 
------------------------------------------------------------------------ 
Between groups      3.3068e+09      3   1.1023e+09      3.64     0.0136 
 Within groups      6.2349e+10    206    302663565 
------------------------------------------------------------------------ 
    Total           6.5656e+10    209    314141354 
 
Bartlett's test for equal variances:  chi2(3) =   2.2804  Prob>chi2 = 0.516 
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11.1.2 Interpretation

The outputs of the one-way ANOVA test are provided in Table 11.1. In this example, 
we have used "income" as the dependent variable and "religion" as the independent 
variable. The independent variable (religion) has 4 categories (levels) – Muslim, 
Hindu, Christian, and Buddhist. The results first provided the descriptive measures 
(mean, SD, etc.) of income by religion. For example, the mean income of Muslims is 
BDT 88,180.9, with a SD of 17,207.6.

The ANOVA test (F-test) results are provided at the bottom of the descriptive statistics. 
The value of the F-statistic is 3.64 and the corresponding p-value (Prob > F) is 0.0136. 
Since the p-value is <0.05, we can reject the null hypothesis. This means that not all 
group means of income are equal. 

However, before interpreting the ANOVA test results, we need to check the Bartlett's 
test for homogeneity of variances (equal variances) provided at the bottom of the table. 
This test is done to assess if all the group-variances in income are equal (assumption 
2). The p-value (Prob>chi2) of the Bartlett’s test is 0.516. Since the p-value is >0.05, 
the variances of income at all levels of the religious group are equal (i.e., assumption 2 
is not violated). The assumption would have been violated if the p-value was <0.05. 

11.1.3 Post hoc test

If the ANOVA test is significant, it indicates that not all group means are equal. But it 
does not provide information about which group-means are significantly different. To 
identify which group means are significantly different, we need to use a post hoc multi-
ple comparison test, such as Bonferroni, Tukey, or Scheffe’s test. Use any of the 
following commands (preferably the first one) to get the post hoc test results (Tables 
11.2 and 11.3). If the ANOVA test (F-test) is not significant (i.e., p-value is >0.05), we 
do not need the post-hoc test. 

pwmean income, over(religion_2) mcompare(bonferroni) effects
oneway income religion_2, bonferroni tabulate

You can generate the box and plot charts to display the distribution of medians/means 
of the dependent variable across the groups (at each level of the independent variable, 
i.e., in different religious groups). To get the box and plot charts (Fig 11.1) of income 
for different religious groups, use the following command:

graph box income, over(religion_2)

Analysis of Variance (ANOVA)
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You can also get the error-bar chart of mean income for different religious groups. Use 
the following three commands consecutively to get the error-bar (Fig 11.2). If you use 
the command "oneway" instead of “anova” for the ANOVA test, the commands “mar-
gins” and “marginsplot” for error-bar will not work.  

anova income religion_2
margins religion_2
marginsplot

11.1.4 Interpretation of post hoc test results

Both the commands for multiple comparisons will provide the Bonferroni test results, 
as shown in Tables 11.2 and 11.3. Each row of Table 11.2 represents a comparison 
between two specific religious groups. For example, the first row compares the mean 
income between Hindus and Muslims. We can see that the mean difference in income 
between Hindus and Muslims is -9,014.87 and the corresponding p-value is 0.040 
(<0.05). This indicates that the mean income of Muslims and Hindus is different in the 
population (Hindus have a significantly lower income than Muslims). The differences 
in mean income of other religious groups are not significant as the p-values are >0.05. 
The table has also provided the 95% CIs of mean differences. Table 11.3 has provided 
the same information except for the 95% CIs of mean differences.

Analysis of Variance (ANOVA)

Table 11.2 Multiple comparisons of mean income by religion  
. pwmean income, over(religion_2) mcompare(bonferroni) effects 
 
Pairwise comparisons of means with equal variances 
 
over         : religion_2 
 --------------------------- 
             |    Number of 
             |  Comparisons 
-------------+------------- 
  religion_2 |            6 
---------------------------  
---------------------------------------------------------------------------------------- 
                       |                            Bonferroni           Bonferroni 
                income |   Contrast   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-----------------------+---------------------------------------------------------------- 
            religion_2 | 
      HINDU vs MUSLIM  |  -9014.877   3287.767    -2.74   0.040    -17773.41   -256.3402 
  Christian vs MUSLIM  |  -8775.289   3747.399    -2.34   0.121    -18758.27    1207.696 
   BUDDHISM vs MUSLIM  |  -3384.314   4019.891    -0.84   1.000    -14093.21    7324.585 
   Christian vs HINDU  |   239.5876   4477.525     0.05   1.000    -11688.44    12167.61 
    BUDDHISM vs HINDU  |   5630.563   4707.946     1.20   1.000    -6911.298    18172.42 
BUDDHISM vs Christian  |   5390.976   5039.677     1.07   1.000    -8034.608    18816.56 
---------------------------------------------------------------------------------------- 
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11.1.5 One-way ANOVA for unequal variances

When the group variances are not homogeneous (i.e., when Bartlett’s test p-value is 
<0.05), we cannot use the F-test for comparison of group means. Instead, we need to 
use the Welch test. Similarly, for the comparison of individual group means (post hoc 
test), instead of Bonferroni’s (or Tukey’s) test, we need to use the Games-Howell test. 
There is no straight-forward way to get these tests done in Stata. The users can do these 
tests easily by using SPSS [19].

11.2 Two-way ANOVA 

Two-way ANOVA is similar to one-way ANOVA except that it examines an additional 
independent categorical variable. The two-way ANOVA involves three variables: one 
quantitative (dependent variable) and two categorical variables. This test is not com-

Analysis of Variance (ANOVA)

Table 11.3 Multiple comparisons of mean income by religion 
. oneway income religion_2, bonferroni tabulate 
 
            |      Summary of Monthly income 
 Religion 2 |        Mean   Std. Dev.       Freq. 
------------+------------------------------------ 
     MUSLIM |   88180.905   17207.614         126 
      HINDU |   79166.028   17804.631          36 
  Christian |   79405.615   19857.021          26 
   BUDDHISM |   84796.591   14447.348          22 
------------+------------------------------------ 
      Total |   85194.486   17724.033         210 
 
                        Analysis of Variance 
    Source              SS         df      MS            F     Prob > F 
------------------------------------------------------------------------ 
Between groups      3.3068e+09      3   1.1023e+09      3.64     0.0136 
 Within groups      6.2349e+10    206    302663565 
------------------------------------------------------------------------ 
    Total           6.5656e+10    209    314141354 
 
Bartlett's test for equal variances:  chi2(3) =   2.2804  Prob>chi2 = 0.516 
 
                  Comparison of Monthly income by Religion 2 
                                (Bonferroni) 
Row Mean-| 
Col Mean |     MUSLIM      HINDU   Christia 
---------+--------------------------------- 
   HINDU |   -9014.88 
         |      0.040 
         | 
Christia |   -8775.29    239.588 
         |      0.121      1.000 
         | 
BUDDHISM |   -3384.31    5630.56    5390.98 
         |      1.000      1.000      1.000 
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monly used in health research. Use the data file <Data_3.dta> for practice.

Suppose that we want to compare the mean systolic BP (variable name is "sbp") in 
different occupation and sex groups. Here, the dependent variable is systolic BP and 
the independent variables are occupation and sex.

Since there are four levels (categories) of occupation (govt. job; private job; business; 
and others) and two categories of sex (male and female) in the data, we will have a 
factorial design with eight (4×2) data cells. The two-way ANOVA test answers the 
following three questions:

Analysis of Variance (ANOVA)

 
Figure 11.1 Box and plot chart of income by religious groups 

 
Figure 11.2 Error-bar chart of mean income for religious groups 
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1. Does occupation influence the systolic BP (i.e., is the mean systolic BP equal  
 among the occupation groups)?
2. Does sex influence the systolic BP (i.e., is the mean systolic BP equal for males  
 and females)?
3. Does the influence of occupation on systolic BP depend on sex (i.e., is there  
 an interaction between occupation and sex)?

Questions one and two refer to the main effect, while the question three explains the 
interaction of two independent variables (occupation and sex) on the dependent 
variable (systolic BP). The primary objective of two-way ANOVA is to assess if there 
is an interaction between the independent categorical variables on the dependent 
variable. 

Assumptions

1. The dependent variable (systolic BP) is normally distributed at each level of  
 the independent variables (occupation and sex);
2. The variances of the dependent variable (systolic BP) at each level of the inde- 
 pendent variables are equal; and
3. Subjects represent random samples from the population.

First, we need to check if the systolic BP is normally distributed in different categories 
of occupation and sex separately. We can check this by constructing the histograms and 
Q-Q plots, or by doing the Shapiro Wilk test (Chapter 8). We also need to check the 
homogeneity of variances in each group of the independent variables (occupation and 
sex) by using the Levene's test (Section 10.2.1). 

11.2.1 Commands for two-way ANOVA

To get the two-way ANOVA test results for systolic BP (variable name is "sbp"), occu-
pation (variable name is "occupation"), and sex (variable name is "sex_1"), use any of 
the following commands. ANOVA does not allow string variables in the analysis. You 
need to change the format of a string variable to a numeric variable before including it 
in the analysis.

anova sbp occupation##sex_1
Or,
anova sbp occupation sex_1 occupation#sex_1

Either of the above commands will generate Table 11.4.

Analysis of Variance (ANOVA)
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You can get the error graph of the adjusted mean of systolic BP for sex (males and 
females) by occupation. To get the plot of mean systolic BP with error bars of occupa-
tion by sex, use the following commands successively (Fig 11.3): 

margins sex_1, at(occupation=(1(1)4))
marginsplot

11.2.2 Interpretation

Table 11.4 shows the outputs of the two-way ANOVA test. The table shows the main 
effects of the independent variables as well as their interaction. Look at the p-values 
(Prob > F) for occupation and sex. They are 0.758 and 0.072, respectively. The findings 
indicate that the mean systolic BP is not different in different occupation groups as well 
as sex (males and females). Now, look at the p-value for "occupation#sex_1", which 
indicates the significance of the interaction between these two variables (occupation 
and sex) on systolic BP. A p-value of <0.05 indicates the presence of interaction. The 
presence of interaction indicates that the systolic BP in different occupation groups is 
influenced by (depends on) sex. In our example, the p-value for interaction is 0.230 
(>0.05), which means that there is no interaction between occupation and sex to influ-
ence the systolic BP.

11.2.3 Post hoc test for two-way ANOVA

The post-hoc test (also discussed under one-way ANOVA) is performed if the main 
effect is significant (i.e., the p-values for occupation and/or sex are <0.05), otherwise 

Analysis of Variance (ANOVA)

Table 11.4 Two-way ANOVA table 

. anova sbp occupation##sex_1 
 
                           Number of obs =     210     R-squared     =  0.0386 
                           Root MSE      = 20.0049     Adj R-squared =  0.0053 
 
                  Source |  Partial SS    df       MS           F     Prob > F 
        -----------------+---------------------------------------------------- 
                   Model |  3245.48737     7  463.641053       1.16     0.3283 
                         | 
              occupation |  470.647297     3  156.882432       0.39     0.7589 
                   sex_1 |  1308.03373     1  1308.03373       3.27     0.0721 
        occupation#sex_1 |  1735.11998     3  578.373327       1.45     0.2308 
                         | 
                Residual |  80839.5793   202  400.195937    
        -----------------+---------------------------------------------------- 
                   Total |  84085.0667   209  402.320893    
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it is not necessary. Our data shows that there is no significant effect of occupation and 
sex on systolic BP, since the p-values are 0.758 and 0.072, respectively. However, if

Analysis of Variance (ANOVA)
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Figure 11.3 Error-bar chart of mean systolic BP of sex by occupation 

Table 11.5 Pairwise comparisons table for mean systolic BP by occupation 
. pwmean sbp, over(occupation) mcompare(bonferroni) effects 
 
Pairwise comparisons of means with equal variances 
 
over         : occupation 
 
--------------------------- 
             |    Number of 
             |  Comparisons 
-------------+------------- 
  occupation |            6 
--------------------------- 
 
------------------------------------------------------------------------------------------ 
                         |                            Bonferroni           Bonferroni 
                     sbp |   Contrast   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------------+---------------------------------------------------------------- 
              occupation | 
PRIVATE JOB vs GOVT JOB  |  -3.036395   3.883548    -0.78   1.000    -13.38208    7.309289 
   BUSINESS vs GOVT JOB  |   -1.52619   3.883548    -0.39   1.000    -11.87187    8.819493 
     OTHERS vs GOVT JOB  |  -2.364103   3.821385    -0.62   1.000    -12.54419     7.81598 
BUSINESS vs PRIVATE JOB  |   1.510204   4.074798     0.37   1.000    -9.344964    12.36537 
  OTHERS vs PRIVATE JOB  |    .672292   4.015596     0.17   1.000    -10.02517    11.36975 
     OTHERS vs BUSINESS  |  -.8379121   4.015596    -0.21   1.000    -11.53537    9.859545 
------------------------------------------------------------------------------------------ 
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you want to perform the multiple comparisons test (say, Bonferroni) for “occupation” 
after the two-way ANOVA, use the first command, while use the second command to 
get the same for “sex_1”. 

pwmean sbp, over(occupation) mcompare(bonferroni) effects 
pwmean sbp, over(sex_1) mcompare(bonferroni) effects 

The first command will provide Table 11.5. Interpretation of the results is the same as 
discussed in Section 11.1.4.

Analysis of Variance (ANOVA)
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Repeated Measures ANOVA

Repeated measures design is commonly used in experimental studies. In repeated 
measures design, measurements of the same variable are made on each subject on two 
or more different occasions (either at different points in time or under different condi-
tions, such as different treatments). It is similar to a paired t-test, except that there are 
more than two measurements in the repeated measures ANOVA. The repeated 
measures ANOVA test compares the means across one or more variables that are based 
on repeated observations. In this chapter, one-way (within-subjects) repeated measures 
ANOVA is discussed. 

12.1 One-way repeated measures ANOVA
The one-way repeated measures ANOVA test is analogous to the paired samples t-test 
that we have discussed earlier (Chapter 10). The main difference is that, in a paired 
samples t-test, we have two measurements on the same subjects at different times (e.g., 
before and after giving a drug, or pre-test and post-test results), while in a one-way 
repeated measures ANOVA, there are three or more measurements on the same 
subjects at different points in time (i.e., the subjects are exposed to multiple measure-
ments over a period of time or conditions). One-way repeated measures ANOVA is 
also called one-way within-subjects ANOVA. Use the data file <Repeat anova_3.dta> 
for practice.

Suppose that we are interested in assessing the mean blood sugar levels at four differ-
ent time intervals (e.g., at hour-0, hour-7, hour-14, and hour-24) after administration of 
a drug on 15 study subjects. The objective is to assess whether the drug reduces blood 
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sugar levels over time (i.e., whether the mean blood sugar levels over time are the same 
or different). 

To conduct this study, we have randomly selected 15 individuals from a population and 
measured their blood sugar levels at the baseline, i.e., before administration of a drug 
(hour-0). All the individuals are then administered a drug (say, drug A), and their blood 
sugar levels are measured again after 7 hours, 14 hours, and 24 hours. We are interested 
in knowing if the blood sugar levels over time, after giving the drug, are the same or 
not (in other words, whether the drug is effective in reducing the blood sugar levels 
over time). The variable "time" in the dataset indicates the times of measurement of 
blood sugar levels in the subjects. In this example, we have only one treatment group 
(received drug A) but have the outcome measurements (blood sugar) at four different 
points in time on the same subjects (i.e., we have one treatment group with four levels 
of measurement on the same subjects). 

Hypothesis

H0: The mean blood sugar levels are equal (same) at each level of measurement 
(i.e., the mean blood sugar levels at 0, 7, 14, and 24 hours in the population are the 
same).

HA: The mean blood sugar levels are not equal at different levels of measurement 
(i.e., the mean blood sugar levels at 0, 7, 14, and 24 hours in the population are 
different).

Assumptions 

1. The dependent variable (blood sugar level) is normally distributed in the popu- 
 lation at each level of within-subjects factor; 
2. The population variances of the differences between all combinations of relat- 
 ed groups/levels are equal (called the Sphericity assumption); and
3. The subjects represent a random sample from the population.

12.1.1 Commands 

The data file “Repeat anova_3.dta” has the following variables:

Subject: It indicates the study participants, like participants 1, 2, 3, and so on. You will 
notice that there are 15 subjects enrolled in this study (you can check it by using the 
command "tab", like "tab subject").



111Repeated Measures ANOVA

Sugar: The variable “sugar” indicates the blood sugar levels of the study subjects at 
different times of measurement. 

There is another variable named “treatment” in the dataset that indicates in which treat-
ment group the subjects were enrolled in. This variable is not needed for the analysis 
of one-way repeated measures ANOVA because we need only one treatment group for 
the analysis. 

To perform the one-way repeated measures ANOVA test, use the following command:  

anova sugar subject time, repeated(time)

Once you use this command, the Stata results may show “matsize too small”. If you see 
this message in the output window, you need to increase the “matsize” by using the 
following command. Matsize indicates “maximum matrix size”, which influences the 
number of variables that can be included in any of Stata's estimation commands. 

set matsize 10000

Time: The variable "time" indicates the times of measurement of blood sugar levels. 
Blood sugar levels were measured on the same subjects at four different times, such as: 
a) at the baseline, i.e., before treatment (coded as 0); b) 7 hours after treatment (coded 
as 1); c) 14 hours after treatment (coded as 2); and d) 24 hours after treatment (coded 
as 3). You can check the times of measurement of blood sugar levels on the subjects by 
using the following command. 

tab time 

This will provide Table 12.1. The table shows that there are four categories of the 
variable "time", and they are: a) before treatment; b) 7 hours after treatment; c) 14 
hours after treatment; and d) 24 hours after treatment.

Table 12.1 Frequency distribution of the variable “time” 

. tab time 
 
   Time of measurement |      Freq.     Percent        Cum. 
-----------------------+----------------------------------- 
      before treatment |         15       25.00       25.00 
 7 hrs after treatment |         15       25.00       50.00 
14 hrs after treatment |         15       25.00       75.00 
24 hrs after treatment |         15       25.00      100.00 
-----------------------+----------------------------------- 
                 Total |         60      100.00 
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The above command will increase the “matsize” to 11,000 in Stata (you can only 
increase the “matsize” up to 11,000). Now, use the following command to perform the 
repeated measures ANOVA test: 

anova sugar subject time, repeated(time)

While using the command, the computer may take some time to analyze the data, 
depending on the speed and memory of your computer and the size of the data. It may 
take 3-7 minutes to calculate the ANOVA test results. The results of the analysis are 
shown in Table 12.2.

Table 12.2 Repeated measures ANOVA 
. anova sugar subject time, repeated(time) 
 
Panel 1.  
                           Number of obs =      60     R-squared     =  0.7643 
                           Root MSE      = 3.94868     Adj R-squared =  0.6689 
 
                  Source |  Partial SS    df       MS           F     Prob > F 
              -----------+---------------------------------------------------- 
                   Model |  2123.86667    17  124.933333       8.01     0.0000 
                         | 
                 subject |  1194.73333    14  85.3380952       5.47     0.0000 
                    time |  929.133333     3  309.711111      19.86     0.0000 
                         | 
                Residual |  654.866667    42  15.5920635    
              -----------+---------------------------------------------------- 
                   Total |  2778.73333    59  47.0971751    
 
Between-subjects error term:  subject 
                     Levels:  15        (14 df) 
     Lowest b.s.e. variable:  subject 
 
Panel 2. 
 
Repeated variable: time 
                                          Huynh-Feldt epsilon        =  0.4463 
                                          Greenhouse-Geisser epsilon =  0.4232 
                                          Box's conservative epsilon =  0.3333 
 
                                            ------------ Prob > F ------------ 
                  Source |     df      F    Regular    H-F      G-G      Box 
              -----------+---------------------------------------------------- 
                    time |      3    19.86   0.0000   0.0001   0.0001   0.0005 
                Residual |     42 
              ---------------------------------------------------------------- 
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12.1.2 Interpretation

Look at the “time” row in Table 12.2 (Panel 1). The p-value (Prob > F) is 0.000. This 
indicates that the mean blood sugar levels significantly differ at different time points 
(we have four time points). However, before explaining this table, we need to check 
whether the sphericity assumption (assumption 2) has been violated or not. To check 
whether the sphericity assumption is violated or not, we need to do the "Mauchly’s 
test" for the sphericity assumption. If the assumption is violated (i.e., Mauchly’s test 
p-value is <0.05), we commonly use the p-value of the Greenhouse-Geisser (G-G) test 
as shown in the second panel of Table 12.2 to interpret the results of the repeated 
measures ANOVA test. 

If the within-subjects factor has more than two levels, three types of tests are available 
in repeated measures ANOVA. In our dataset, the within-subjects factor is the times of 
measurement of blood sugar levels (variable name is "time"), which has four levels — 
before treatment, 7 hours after treatment, 14 hours after treatment, and 24 hours after 
treatment (Table 12.1). The tests are: 

1. Standard univariate test (when the sphericity assumption is not violated); 
2. Alternative univariate tests (Greenhouse-Geisser, Huynh-Feldt, and Lower- 
 bound); and 
3. Multivariate tests (Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's  
 Largest Root). 

All these tests evaluate the same hypothesis that the population means are equal at all 
levels of measurement. The standard univariate test is based on the sphericity assump-
tion, i.e., the standard univariate test result is considered if the sphericity assumption is 
not violated. In reality, and in most cases, the sphericity assumption is violated, and we 
cannot use the standard univariate test results as provided in panel 1 of Table 12.2 
(time row). It is, therefore, recommended to use the alternative univariate test, such as 
the "Greenhouse-Geisser (G-G)" test (or the others), as provided under panel 2 of Table 
12.2. The results show that the p-value of the G-G test is 0.0001 (in the time row of 
panel 2), which is <0.05. This indicates that the mean blood sugar levels differ signifi-
cantly at different time points. To check the mean of which time points are statistically 
different, see below (Table 12.5). 

However, if you want to check the sphericity assumption, you need to do the Mauch-
ly’s test. To get the Mauchly’s test, you need to install the modules "Mauchly and 
moremata" (commonly, they are not the built-in commands in Stata). To install the 
modules, use the following commands:

Repeated Measures ANOVA
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ssc install mauchly
ssc install moremata

After installation of the modules, use the following commands to get the Mauchly’s 
test results: 

xtset subject
mauchly sugar, m(time)

This will provide the results of Mauchly’s test of sphericity (Table 12.3). Our interest 
is in the p-value of the test. The p-value of the test, as shown in the table, is zero. If the 
p-value is >0.05, the sphericity assumption is not violated, and you can use the results 
provided in the first panel of Table 12.2 (in the time row). If the p-value is <0.05 (i.e., 
the sphericity assumption is violated), use the results of the Greenhouse-Geisser (G-G) 
or the other test [e.g., Huynh-Feldt (H-F)] as provided under panel 2 of Table 12.2.

To get the means and standard deviations of blood sugar levels at four time points, use 
the following command: 

tabstat sugar, stat(n mean sd) by(time)

This will provide Table 12.4 with the means and standard deviations of blood sugar 
levels at different time points, including the number of subjects (n). You can get the 
pairwise comparison of mean blood sugar levels by using the following command 
(with Bonferroni’s test) (Table 12.5): 

pwmean sugar, over(time) mcompare(bonferroni) pveffects

Finally, to get the line graph of mean blood sugar levels over time with 95% CI, use the

Repeated Measures ANOVA

Table 12.3 Mauchly’s test of sphericity assumption  

. xtset subject 
       panel variable:  subject (balanced) 
 
. mauchly sugar, m(time) 
 
Mauchly's Test of Sphericity 
________________________________________________________________________________ 
 Mauchly's W.   Chi2.   d.f.    P-value.   Epsilon_gg.   Epsilon_ff. Lower-bound 
______________________________________________________________________________ 

  0.0689       34.0332     5      0       0.4232        0.4463       0.3333 
________________________________________________________________________________ 
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following commands successively after the primary analysis (Fig 12.1):

anova sugar subject time, repeated(time)
margins time
marginsplot

Repeated Measures ANOVA

Table 12.4 Mean and SD of blood sugar levels at different time points 
. tabstat sugar, stat(n mean sd) by(time) 
 
Summary for variables: sugar 
     by categories of: time (Time of measurement) 
 
            time |         N      mean        sd 
-----------------+------------------------------ 
before treatment |        15  110.5333   4.73387 
7 hrs after trea |        15     105.2  4.427189 
14 hrs after tre |        15  101.5333  6.300416 
24 hrs after tre |        15  100.4667  7.099966 
-----------------+------------------------------ 
           Total |        60  104.4333  6.862738 
---------------------------------------------------------------------------------- 
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Figure 12.1 Mean blood sugar levels with 95% CIs at different time points 
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Table 12.5 Pairwise comparison of mean blood sugar levels  

. pwmean sugar, over(time) mcompare(bonferroni) pveffects 
 
Pairwise comparisons of means with equal variances 
 
over         : time 
 
--------------------------- 
             |    Number of 
             |  Comparisons 
-------------+------------- 
        time |            6 
--------------------------- 
 
------------------------------------------------------------------------------------------ 
                                                  |                            Bonferroni 
                                            sugar |   Contrast   Std. Err.      t    P>|t| 
--------------------------------------------------+--------------------------------------- 
                                             time | 
       7 hrs after treatment vs before treatment  |  -5.333333   2.098526    -2.54   0.083 
      14 hrs after treatment vs before treatment  |         -9   2.098526    -4.29   0.000 
      24 hrs after treatment vs before treatment  |  -10.06667   2.098526    -4.80   0.000 
 14 hrs after treatment vs 7 hrs after treatment  |  -3.666667   2.098526    -1.75   0.516 
 24 hrs after treatment vs 7 hrs after treatment  |  -4.733333   2.098526    -2.26   0.168 
24 hrs after treatment vs 14 hrs after treatment  |  -1.066667   2.098526    -0.51   1.000 
------------------------------------------------------------------------------------------ 
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Association Between Two Categorical 
Variables: Chi-square Test of Independence

The chi-square test is a commonly used statistical test for testing a hypothesis in health 
and social sciences research. The chi-square value ranges from 0 to ∞ (infinity), and it 
does not take any negative value. This test is suitable to determine the association 
between two categorical variables, whether the data are from cross-sectional, 
case-control, or cohort studies. On the other hand, in epidemiology, cross-tabulations 
are commonly done to calculate the odds ratio (OR) [for a case-control study] and 
relative risk (RR) [for a cohort study] with their 95% confidence intervals (CI). The 
OR and RR are the measures of strength of association between two variables. In this 
chapter, we have discussed the chi-square and the Fisher’s exact tests for hypothesis 
testing and how to get the RR and OR using Stata. We have also demonstrated how to 
perform a stratified analysis in this chapter. Use the data file <Data_3.dta> for practice.

13.1 Chi-square test of independence
The Chi-square test of independence is used to determine the association between two 
categorical variables. Suppose that you have collected data on gender (sex) and diabe-
tes from a group of individuals selected randomly from a population. You are interest-
ed in knowing if there is an association between gender and diabetes. In such a situa-
tion, the chi-square test is the appropriate test for testing the hypothesis.
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Hypothesis

H0: There is no association between gender and diabetes (it can also be stated as 
gender and diabetes are independent).

HA: There is an association between gender and diabetes (or, gender and diabetes 
are not independent).

Assumption

1. The data is a random sample drawn from a population.

13.1.1 Commands

The basic command to get the chi-square test results is to generate a cross-table using 
the command "tab" with the option of chi-square statistics. Use any of the following 
commands to find an association (chi-square test) between sex and diabetes. 

tab sex diabetes, chi2
tab sex diabetes, row col chi2

The first command will generate a cross-table of sex (the first variable is placed on the 
row) and diabetes with only the observed frequencies and the chi-square test results. 
The second command will provide the row and column percentages in the cross-table, 
including the observed frequencies and chi-square test results (Table 13.1). 

You can also use the option “all” to get all the relevant statistics (chi-square, Cramer’s 
V, and others) for the association between two categorical variables (Table 13.2), such 
as:  

tab sex diabetes, all
tab sex diabetes, col row all
tab sex diabetes, expected all

The last command will provide all the relevant statistics with the expected cell values. 
The chi-square test is valid if no more than 20% of cells have expected values of less 
than 5. If the expected value is less than 5 in more than 20% of the cells, we need to use 
the Fisher’s exact test instead of the chi-square test. The command for the Fisher’s 
exact test is (Table 13.3): 

tab sex diabetes, exact 
tab sex diabetes, expected exact

Association Between Two Categorical Variables: Chi-square Test of Independence
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Table 13.1 Chi-square test results with row and column percentages  

. tab sex diabetes, row col chi2 
 
           |     Have diabetes 
      Sex: |       mellitus 
    string |       Yes         No |     Total 
-----------+----------------------+---------- 
         f |        20        113 |       133  
           |     15.04      84.96 |    100.00  
           |     44.44      68.48 |     63.33  
-----------+----------------------+---------- 
         m |        25         52 |        77  
           |     32.47      67.53 |    100.00  
           |     55.56      31.52 |     36.67  
-----------+----------------------+---------- 
     Total |        45        165 |       210  
           |     21.43      78.57 |    100.00  
           |    100.00     100.00 |    100.00  
 
          Pearson chi2(1) =   8.7995   Pr = 0.003 
 

Table 13.2 Cross tabulation with chi-square and other test results  

. tab sex diabetes, col row all 
 
           |     Have diabetes 
      Sex: |       mellitus 
    string |       Yes         No |     Total 
-----------+----------------------+---------- 
         f |        20        113 |       133  
           |     15.04      84.96 |    100.00  
           |     44.44      68.48 |     63.33  
-----------+----------------------+---------- 
         m |        25         52 |        77  
           |     32.47      67.53 |    100.00  
           |     55.56      31.52 |     36.67  
-----------+----------------------+---------- 
     Total |        45        165 |       210  
           |     21.43      78.57 |    100.00  
           |    100.00     100.00 |    100.00  
 
          Pearson chi2(1) =   8.7995   Pr = 0.003 
 likelihood-ratio chi2(1) =   8.5367   Pr = 0.003 
               Cramér's V =  -0.2047 
                    gamma =  -0.4618  ASE = 0.135 
          Kendall's tau-b =  -0.2047  ASE = 0.071 
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13.1.2 Interpretation

Table 13.1 is a 2 by 2 table of sex and diabetes with row and column percentages and 
the chi-square test results. The question is, which percentage should you report? It 
depends on the situation/study design and what you want to report. For the data of a 
cross-sectional study, it may provide better information to the readers if row percent-
ages are reported. In that case, the row percentages indicate the prevalence of the 
condition (in this example, diabetes).

For example, one can understand from Table 13.1 that the prevalence of diabetes 
among males is 32.47% and that of females is 15.04% when row percentages are used. 
However, the column percentages can also be reported for a cross-sectional data (most 
of the publications use column percentages). If column percentages are used, the 
meaning will be different. In our example (Table 13.1), the results indicate that 55.56% 
of the diabetic patients are males, compared to 31.52% of the non-diabetic individuals. 
If the data is from a case-control study, you must report column percentages (you 
cannot use row percentages for case-control studies). On the other hand, for the data of 
a cohort study, one should report the row percentages. In such a situation, it would 
indicate the incidence (instead of the prevalence) of the disease among males and 
females. 

We can see in Table 13.1 (in the row of "Total") that the overall (irrespective of gender) 
prevalence of diabetes is 21.43% (considering the data is from a cross-sectional study).

Association Between Two Categorical Variables: Chi-square Test of Independence

Table 13.3 Fisher’s exact test results with expected cell values 
. tab sex diabetes, expected exact 
 
           |     Have diabetes 
      Sex: |       mellitus 
    string |       Yes         No |     Total 
-----------+----------------------+---------- 
         f |        20        113 |       133  
           |      28.5      104.5 |     133.0  
-----------+----------------------+---------- 
         m |        25         52 |        77  
           |      16.5       60.5 |      77.0  
-----------+----------------------+---------- 
     Total |        45        165 |       210  
           |      45.0      165.0 |     210.0  
 
           Fisher's exact =                 0.005 
   1-sided Fisher's exact =                 0.003 
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Table 13.1 also shows that 32.47% of males have diabetes compared to only 15.04% of 
females (i.e., the prevalence among males and females). The chi-square test actually 
tests the hypothesis of whether the prevalence of diabetes among males and females in 
the population is the same or not.  

Now, look at the Pearson’s chi-square test results provided at the bottom of the table 
[(Pearson chi2(1) = 8.7995  Pr = 0.003)]. The "Pearson chi2(1)" indicates the Pearson’s 
chi-square test result with the degree of freedom (df) of 1, while "Pr" indicates the 
p-value. 

Before we conclude the chi-square test results, it is important to check if there is any 
cell in the 2 by 2 table that has an expected value of less than 5. This can be checked 
using the option "expected". Table 13.3 displays the expected cell values and the Fish-
er’s exact test p-value. The table shows that there is no cell in the 2 by 2 table with an 
expected value of less than 5 (the minimum expected value found is 16.5). For the use 
of the chi-square test results, it is desirable to have no cell in a 2 by 2 table with an 
expected value of less than 5. If this is not fulfilled, we need to use the Fisher’s exact 
test p-value to interpret the results.

Since we do not have the problem of an expected value of less than 5 in the 2 by 2 table, 
we will consider the chi-square test results given at the bottom of Tables 13.1 and 13.2 
for conclusion. The results show that the calculated chi-square value is 8.79 (df= 1) and 
the corresponding p-value is 0.003. Since the p-value is <0.05, we will reject the null 
hypothesis. This indicates that there is a significant association between gender and 
diabetes. It can also be concluded that the prevalence of diabetes among males is 
significantly higher than that of females, which is statistically significant at 95% confi-
dence level (p=0.003).

13.2 Relative risk and odds ratio
We calculate relative risk (RR) for the data of cohort studies and odds ratio (OR) for 
case-control studies (OR is also sometimes calculated for cohort studies and cross-sec-
tional studies). To calculate the RR and OR with their confidence intervals (CI), we 
need to use the "epidemiology and related" option of data analysis. We also need to 
recode the outcome and exposure variables as 0/1 (0 for no disease/unexposed; 1 for 
have disease/exposed) if they are not coded like this. 

We want to calculate the RR from the cross-tabulation between diabetes (outcome 
variable) and sex_1 (exposure variable). Since the variable "diabetes" (in our dataset)

Association Between Two Categorical Variables: Chi-square Test of Independence
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is coded as 1/2 (1= have diabetes and 2= don’t have diabetes), we need to change the 
coding structure of the variable "diabetes" as 0= don’t have diabetes and 1= have 
diabetes using the command "recode" as discussed in Section 5.2. There is no problem 
with the variable "sex_1" in the dataset since it is already coded as 0= female and 1= 
male. Once it is done (there is a variable in the dataset "diabetes1", which is coded as 
0/1), use the following command to get the RR and OR with their 95% CIs:  

cs diabetes1 sex_1
cs diabetes1 sex_1, or
cs diabetes1 sex_1, or level(99)

The command “cs” indicates “cohort study”. This command will automatically 
provide the RR and its 95% CI (by default) along with other statistics (Table 13.4). If 
you want to get the OR, in addition to RR, use the second command. The third com-
mand is for getting the 99% CIs for both the RR and OR.

Instead of using the “cs” command, you can use the following commands to get the OR 
without a 2 by 2 table:

tabodds diabetes1 sex_1, or
tabodds diabetes1 sex_1, base(2) or

The first command will provide the OR without the 2 by 2 table, and with the first 

Association Between Two Categorical Variables: Chi-square Test of Independence

Table 13.4 Relative risk and 95% confidence interval 

. cs diabetes1 sex_1 
 
                 | Sex: numeric           | 
                 |   Exposed   Unexposed  |      Total 
-----------------+------------------------+------------ 
           Cases |        25          20  |         45 
        Noncases |        52         113  |        165 
-----------------+------------------------+------------ 
           Total |        77         133  |        210 
                 |                        | 
            Risk |  .3246753    .1503759  |   .2142857 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
 Risk difference |         .1742994       |    .0533492    .2952495  
      Risk ratio |         2.159091       |    1.287892    3.619616  
 Attr. frac. ex. |         .5368421       |    .2235371    .7237276  
 Attr. frac. pop |         .2982456       | 
                 +------------------------------------------------- 
                               chi2(1) =     8.80  Pr>chi2 = 0.0030 
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category of sex (females; indicated by Odds Ratio = 1.0) as the comparison group 
(Table 13.5). The second command will provide the same but the second category of 
sex (males) as the comparison group (Table 13.5).

If you want to calculate the OR with 95% CI (default) for a case-control study, use the 
first command (Table 13.6) as shown below. Use the second command if you want to 
get the 99% CI. 

cc diabetes1 sex_1
cc diabetes1 sex_1, level(99) 

Another way of getting the OR is to use the command “logistic”, which is used for 
logistic regression analysis. The command is:

logistic diabetes1 sex_1

The results of the above command (called univariate logistic regression analysis) are 
shown in Table 13.7.

Association Between Two Categorical Variables: Chi-square Test of Independence

Table 13.5 Odds ratio with 95% CI and p-value 
tabodds diabetes1 sex_1, or 
 
--------------------------------------------------------------------------- 
       sex_1 |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 
-------------+------------------------------------------------------------- 
      Female |    1.000000          .           .              .          . 
        Male |    2.716346       8.76       0.0031      1.362845   5.414068 
--------------------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(1)  =     8.76 
                                  Pr>chi2  =   0.0031 
 
Score test for trend of odds:     chi2(1)  =     8.76 
                                  Pr>chi2  =   0.0031 
 
tabodds diabetes1 sex_1, base(2) or 
 
--------------------------------------------------------------------------- 
       sex_1 |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 
-------------+------------------------------------------------------------- 
      Female |    0.368142       8.76       0.0031      0.184704   0.733759 
        Male |    1.000000          .           .              .          . 
--------------------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(1)  =     8.76 
                                  Pr>chi2  =   0.0031 
 
Score test for trend of odds:     chi2(1)  =     8.76 
                                  Pr>chi2  =   0.0031 
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In the above examples, both the outcome (dependent variable) and exposure (indepen-
dent variable; sex) variables are dichotomous variables with the coding schemes of 0/1. 
If the exposure variable has more than two levels/categories (e.g., the variable "reli-
gion" has 3 categories in our dataset; 1= Muslim, 2= Hindu, and 3= Christian), the 
commands "cc" or "cs" will not calculate the ORs. In that case (when the exposure 
variable has more than two categories), use the command "logistic" to get the ORs, 
such as (outputs are provided in Table 13.8): 

logistic diabetes1 i.religion

The prefix "i." used for the variable "religion" (i.e., i.religion) is necessary when it is a 
categorical variable with more than two levels. When the "i." prefix is used before the 
exposure variable, Stata considers it a categorical variable. If the prefix "i." is not used,
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Table 13.6 Odds ratio and 95% confidence interval 

. cc diabetes1 sex_1 
                                                         Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |        25          20  |         45       0.5556 
        Controls |        52         113  |        165       0.3152 
-----------------+------------------------+------------------------ 
           Total |        77         133  |        210       0.3667 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         2.716346       |    1.311301    5.641061 (exact) 
 Attr. frac. ex. |         .6318584       |    .2373985    .8227284 (exact) 
 Attr. frac. pop |         .3510324       | 
                 +------------------------------------------------- 
                               chi2(1) =     8.80  Pr>chi2 = 0.0030 

Table 13.7 Odds ratio by using the “logistic” command 

. logistic diabetes1 sex_1 
 
Logistic regression                               Number of obs   =        210 
                                                  LR chi2(1)      =       8.54 
                                                  Prob > chi2     =     0.0035 
Log likelihood = -104.84341                       Pseudo R2       =     0.0391 
 
------------------------------------------------------------------------------ 
   diabetes1 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       sex_1 |   2.716346   .9334131     2.91   0.004     1.385123    5.326991 
       _cons |   .1769912   .0429362    -7.14   0.000     .1100168     .284737 
------------------------------------------------------------------------------ 
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Stata will consider the variable as a continuous variable and the results will be mislead-
ing. With the above command, Stata will consider the first category (Muslims) as the 
comparison group by default. If you want the other category of religion as the compari-
son group (say, last category or Christians), use any of the following commands: 

logistic diabetes1 ib3.religion
tabodds diabetes1 religion, base(3) or

13.2.1 Interpretation

Table 13.4 shows the cross-tabulation of diabetes and sex. The table shows that of the 
45 cases of diabetes (cases), 25 are males (males are exposed since they are coded as 
1). On the other hand, of the 165 non-cases (who do not have diabetes), 52 are males. 
The RR (also called risk ratio) calculated from the data is 2.15, and the 95% CI is 1.28 
- 3.61. Stata has also provided the chi-square test results at the bottom of the table, 
including the p-value of the test (0.003). From the data, we can conclude that males are 
at 2.15 times higher risk of having diabetes compared to females, which is statistically 
significant at 95% confidence level (RR: 2.15; 95% CI of RR: 1.28 - 3.61; p=0.003). 

Table 13.6 shows the OR (of being male) with the 95% CI. The OR, as calculated, is 
2.71 and its 95% CI is 1.31 - 5.64. The analysis also provided the p-value of the 
chi-square test (Pr>chi2), which is 0.003. We can, therefore, conclude that males are 
more likely to have diabetes compared to females, which is statistically significant at 
95% confidence level (OR: 2.71; 95% CI of OR: 1.31 - 5.64; p=0.003).  

Association Between Two Categorical Variables: Chi-square Test of Independence

Table 13.8 Odds ratios for an exposure variable with more than 2 levels 

. logistic diabetes1 i.religion 
 
Logistic regression                               Number of obs   =        210 
                                                  LR chi2(2)      =       3.01 
                                                  Prob > chi2     =     0.2215 
Log likelihood = -107.60445                       Pseudo R2       =     0.0138 
 
------------------------------------------------------------------------------ 
   diabetes1 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    religion | 
      HINDU  |   1.465201   .5378927     1.04   0.298     .7135283    3.008732 
  Christian  |   .5016722   .3271554    -1.06   0.290     .1397418    1.801001 
             | 
       _cons |        .26   .0572364    -6.12   0.000     .1688846    .4002734 
------------------------------------------------------------------------------ 
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Table 13.7 shows the analysis of the data using the "logistic" command (univariate 
logistic regression analysis). The table shows the OR (2.71), the 95% CI of OR (1.38 - 
5.32) and the p-value (0.004). This is the OR for males compared to females (lower 
value is considered as the comparison group). 

Table 13.8 shows the association between diabetes and religion, which has three levels. 
Note that Stata considers the lowest value/code (Muslims) of the exposure variable as 
the comparison group during such an analysis (by default). The table shows the ORs, 
95% CIs, and p-values for Hindus and Christians. The OR of diabetes for being a 
Hindu is 1.46 (95% CI: 0.71 - 3.00; p=0.298) compared to Muslims, which is not statis-
tically significant since the p-value is greater than 0.05. Similarly, the OR of diabetes 
for being a Christian is 0.50 (95% CI: 0.13 - 1.80; p=0.290) compared to Muslims, 
which is also not statistically significant. 

13.3 Stratified analysis
The stratified analysis is a statistical method that allows us to test for confounding and 
interaction effects. It also provides the adjusted RR (or OR) for the association 
between an exposure and an outcome after controlling for one or more variables. 

For example, you may be interested in estimating the adjusted value of RR (or OR) for 
the association between sex and diabetes after controlling (adjusting) for the variable 
“family history of diabetes” (the variable name is “f_history”). To get the adjusted RR 
(or OR), we will do the stratified analysis using the following commands (Tables 13.9 
and 13.10): 

cs diabetes1 sex_1, by(f_history)
cc diabetes1 sex_1, by(f_history)

The first command will provide the adjusted RR (Table 13.9), while the second com-
mand will provide the adjusted OR (Table 13.10). From these tables, we can also get 
information on whether the family history of diabetes is a confounding factor in the 
relationship between sex and diabetes, and whether or not there is an interaction 
between sex and family history of diabetes on the outcome variable (diabetes).

Association Between Two Categorical Variables: Chi-square Test of Independence
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13.3.1 Interpretation

The stratified analysis in epidemiology is done to estimate the strength of association 
(RR or OR) between an exposure (e.g., sex) and an outcome (diabetes) after 
controlling (adjusting) for a third categorical variable (e.g., family history of diabetes). 
It also enables us to examine whether: a) the third variable is a confounding factor, or 
b) there is an interaction (also called effect modification) between exposure and the 
third factor. 

The stratified analysis can be done for the data of cross-sectional, cohort, or case-con-
trol studies. It is suitable to adjust for a single stratified variable, though more than one 
variable can be used in the analysis. 

In our example, we have examined the relationship between sex (exposure) and diabetes 
(outcome) at two levels of the categorical stratified variable "family history of diabetes".

Association Between Two Categorical Variables: Chi-square Test of Independence

Table 13.9 Results of stratified analysis (RR) 

. cs diabetes1 sex_1, by(f_history) 
 
Family history o |       RR       [95% Conf. Interval]   M-H Weight 
-----------------+------------------------------------------------- 
             Yes |    2.907692     1.330149   6.356186     3.554688  
              No |    1.794872     .7021495   4.588146     1.902439  
-----------------+------------------------------------------------- 
           Crude |    2.159091     1.287892   3.619616               
    M-H combined |    2.519746      1.36505     4.6512 
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =    0.631  Pr>chi2 = 0.4271 
 

Table 13.10 Results of stratified analysis (OR) 

. cc diabetes1 sex_1, by(f_history) 
 
Family history o |       OR       [95% Conf. Interval]   M-H Weight 
-----------------+------------------------------------------------- 
             Yes |   3.818182      1.390158   11.51741      2.40625 (exact) 
              No |   2.192308      .4142173   9.721011     1.268293 (exact) 
-----------------+------------------------------------------------- 
           Crude |   2.716346      1.311301   5.641061              (exact) 
    M-H combined |   3.257001      1.520939   6.974675               
------------------------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     0.44  Pr>chi2 = 0.5056 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      9.53 
                                                Pr>chi2 =    0.0020 
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Table 13.9 shows the results of stratified analysis considering that the data is from a 
cohort study. The results show that among those who have a family history of diabetes, 
the RR for males (compared to females) is 2.90 (95% CI: 1.33 - 6.35), while the RR is 
1.79 (95% CI: 0.70 - 4.58) when there is no family history of diabetes. The table also 
shows the crude (Crude) and adjusted RR (M-H combined). The crude (or unadjusted) 
RR is calculated without considering the third (stratified) variable (i.e., family history 
of diabetes). The crude RR, as calculated by Stata, is 2.15 (95% CI: 1.28 - 3.61), while 
the adjusted RR (M-H combined) is 2.51 (95% CI: 1.36 - 4.65). The adjusted RR 
indicates the RR after controlling for the family history of diabetes. 

In our data (Table 13.9), we can see that there is a difference between the crude (2.15) 
and adjusted (2.51) RR. This (i.e., when there is a difference between crude and adjust-
ed RR) may indicate that the family history of diabetes has some confounding effect 
(influence) on the relationship between sex and diabetes. Though there is no set rule for 
deciding what amount of difference is considered significant, in general, more than 
20% change is considered important (in our example, it is less than 20%). However, if 
the crude (unadjusted) and adjusted RRs (or ORs) are close together, the third variable 
(stratified variable) is not a confounding factor in the relationship between an exposure 
and an outcome. 

Now, the question is whether there is an interaction between sex and family history of 
diabetes on the outcome. If there is an interaction, the RRs (or ORs) in two strata of the 
third variable will be different. In our example, for males, if there is a family history of 
diabetes, the RR is 2.90, while the RR is 1.79 if there is no family history of diabetes, 
and they are different. This indicates that there may have an interaction between sex 
and family history of diabetes on the outcome. However, before we conclude like this, 
we need to check the statistical significance of the difference. Stata has provided the 
statistical test (Test of homogeneity (M-H); chi2(1) = 0.631; Pr>chi2 = 0.4271) to 
understand the significance of the difference at the bottom of the table (Table 13.9). It 
shows that the p-value (Pr>chi2 = 0.4271) is 0.427. Since the p-value is >0.05, the 
difference in RRs in the two strata is not statistically significant. We may, therefore, 
conclude that there is no interaction between sex and family history of diabetes on 
outcome even though the RRs are different in two strata of family history of diabetes. 
If the homogeneity test is significant (less than 0.05), it is not appropriate to report the 
adjusted RR (or OR). The results should be presented for each stratum separately.

Table 13.10 has provided similar information, where we have calculated the OR 
(instead of RR) considering that the data is from a case-control study. We can see that

Association Between Two Categorical Variables: Chi-square Test of Independence
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the crude and adjusted ORs are 2.71 and 3.25, respectively. Since the ORs are substan-
tially different (exactly 20%), the family history of diabetes is a confounding factor in 
the relationship between sex and diabetes. The p-value for the adjusted OR is provided 
at the bottom of the table (Mantel-Haenszel chi2(1) = 9.53; Pr>chi2 = 0.0020). It 
shows that the p-value is 0.002. We, therefore, conclude that males are 3.25 (M-H com-
bined OR) times more likely to have diabetes compared to females after controlling for 
family history of diabetes, which is statistically significant (95% CI: 1.42 – 6.97; 
p=0.002).

On the other hand, the ORs of diabetes for males with and without a family history of 
diabetes are 3.81 and 2.19, respectively. Though they are different, the difference is not 
statistically significant (p=0.505) as shown in the table [Test of homogeneity (M-H); 
chi2(1) = 0.44; Pr>chi2 = 0.5056]. Therefore, there is no interaction between sex and 
family history of diabetes on the outcome variable.

Association Between Two Categorical Variables: Chi-square Test of Independence
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14

Hypothesis Test of Proportions

Data is frequently collected in health and social sciences research to estimate the 
proportions. We may have a situation where there is a single group of individuals and 
a certain proportion of them have a particular characteristic (e.g., a disease). For exam-
ple, a researcher has collected data from a population by taking a random sample and 
found that a certain percentage (proportion) of individuals have diabetes. The research-
er may be interested in testing the null hypothesis that the population proportion is 
equal to a pre-specified value/proportion (one-sample test of proportion). 

On the other hand, for the comparison of proportions of two independent samples or 
the proportions of two groups of individuals, a two-sample test of proportions is used. 
In this chapter, we have discussed how to test the null hypothesis for one-sample and 
two-sample proportions. Use the data file “Data_3.dat”. 

14.1 One-sample test of proportion 

There is a variable “diabetes1” in the dataset. In the variable, there are individuals who 
have diabetes (coded as 1) and those who do not have diabetes (coded as 0) [the 
variable’s coding scheme must be 0/1, otherwise the command for the statistical test of 
proportion will not work]. Let us assume that the data is a random sample from a 
district. We can calculate the prevalence of diabetes from the data by using the follow-
ing command: 

tab diabetes1

This command will provide Table 14.1. The table shows that there are 45 individuals
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who have diabetes out of 210. Therefore, the prevalence of diabetes is 21.43%. 

We are interested in testing the hypothesis of whether or not the prevalence of diabetes 
in the district is different from the national prevalence of 19.0%. Here, the null hypoth-
esis is "the prevalence of diabetes in the district is not different from 19.0%", while the 
alternative hypothesis is "the prevalence of diabetes in the district is different from 
19.0%". This is a situation where we can apply the one-sample test of proportion.

The one-sample test of proportion is analogous to the one-sample t-test. The one-sam-
ple proportion test is used to compare the observed proportion with a hypothetical 
value. To do the one-sample test of proportion, use the following command:

prtest diabetes1==.19

The results are shown in Table 14.2. The hypothesis that we have tested is a two-tailed 
hypothesis. The p-value of the two-tailed test is provided under "Ha: p != 0.19", which 
is 0.369 [Pr(|Z| > |z|) = 0.3697]. Since the p-value is >0.05, we  cannot reject the null

Hypothesis Test of Proportions

Table 14.1 Prevalence of diabetes 
. tab diabetes1 
 
       have | 
diabetes 01 |      Freq.     Percent        Cum. 
------------+----------------------------------- 
         no |        165       78.57       78.57 
        yes |         45       21.43      100.00 
------------+----------------------------------- 
      Total |        210      100.00 

Table 14.2 One-sample test of proportion 
. prtest diabetes1==.19 
 
One-sample test of proportion              diabetes1: Number of obs =      210 
------------------------------------------------------------------------------ 
    Variable |       Mean   Std. Err.                     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   diabetes1 |   .2142857   .0283152                       .158789    .2697824 
------------------------------------------------------------------------------ 
    p = proportion(diabetes1)                                     z =   0.8971 
Ho: p = 0.19 
 
    Ha: p < 0.19                 Ha: p != 0.19                 Ha: p > 0.19 
 Pr(Z < z) = 0.8152         Pr(|Z| > |z|) = 0.3697          Pr(Z > z) = 0.1848   
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Suppose that we are interested in examining whether the same proportion of males and 
females has diabetes in the population, i.e., whether the prevalence of diabetes is the

hypothesis. It can, therefore, be concluded that the prevalence of diabetes in the district 
may not be different from the national prevalence of 19.0%.

14.2 Two-sample test of proportions
In section 14.1, we analyzed the variable "diabetes1" and found that the overall preva-
lence of diabetes is 21.43%. There is another variable in the dataset named "sex_1", 
which is coded as "0" for females and "1" for males. For the analysis of two-sample 
proportions, the categorical variable must be a numeric variable. If it is a string 
variable, the command will not be executed. From the data, we can calculate the preva-
lence of diabetes among males and females by generating a cross-table. To generate a 
cross-table of sex (variable name: sex_1) and diabetes (variable name: diabetes1) with 
row percentages, use the following command: 

tab sex_1 diabetes1, row

The above command will generate Table 14.3. The table shows that the prevalence of 
diabetes among females and males is 15.04% and 32.47%, respectively.

Hypothesis Test of Proportions

Table 14.3 Cross-tabulation of sex and diabetes 
. tab sex_1 diabetes1, row 
 
+----------------+ 
| Key            | 
|----------------| 
|   frequency    | 
| row percentage | 
+----------------+ 
 
      Sex: |   have diabetes 01 
   numeric |        no        yes |     Total 
-----------+----------------------+---------- 
    Female |       113         20 |       133  
           |     84.96      15.04 |    100.00  
-----------+----------------------+---------- 
      Male |        52         25 |        77  
           |     67.53      32.47 |    100.00  
-----------+----------------------+---------- 
     Total |       165         45 |       210  
           |     78.57      21.43 |    100.00  
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same among females and males. This is a situation where we can apply the two-sample 
test of proportions. For this example, the null hypothesis is "the proportion of males 
who have diabetes is equal to the proportion of females who have diabetes in the popu-
lation". The alternative hypothesis is that the two proportions are not the same (differ-
ent) in the population. 

To test the null hypothesis that the two proportions are the same in the population, use 
the following command: 

prtest diabetes1, by (sex_1)

The results are shown in Table 14.4. The table shows that the difference between the 
two proportions (female to male) is -.174 (-17.4%). This means that the prevalence of 
diabetes among females is 17.4% less than that of males (15.03% vs. 32.46%). The 
95% CI of the difference is also given in the table, which is -.295 (29.5%) to -.053 
(5.3%) ["diff" row in the table]. Our interest is in the two-sided p-value of the test, 
which is 0.003 (Pr(|Z| < |z|) = 0.0030). Since the p-value is <0.05, we will reject the null 
hypothesis and conclude that the proportion of males who have diabetes is different 
from that of females (i.e., the prevalence of diabetes among males is significantly high-
er than that of females). The chi-square test of independence also tests the same 
hypothesis.

Hypothesis Test of Proportions

  Table 14.4 Two-sample test of proportions  

. prtest diabetes1, by (sex_1) 
 
Two-sample test of proportions                Female: Number of obs =      133 
                                                Male: Number of obs =       77 
------------------------------------------------------------------------------ 
    Variable |       Mean   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      Female |   .1503759   .0309939                      .0896289    .2111229 
        Male |   .3246753   .0533624                      .2200869    .4292638 
-------------+---------------------------------------------------------------- 
        diff |  -.1742994   .0617104                     -.2952495   -.0533492 
             |  under Ho:   .0587581    -2.97   0.003 
------------------------------------------------------------------------------ 
        diff = prop(Female) - prop(Male)                          z =  -2.9664 
    Ho: diff = 0 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(Z < z) = 0.0015         Pr(|Z| < |z|) = 0.0030          Pr(Z > z) = 0.9985 
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15

Association Between Two Continuous 
Variables: Correlation

The nature and strength of the relationships between two or more continuous variables 
can be examined by regression and correlation analysis. Correlation is concerned with 
measuring the strength of a relationship between continuous variables. The correlation 
model provides information about the relationship between two variables without 
distinguishing which one is the dependent and which one is the independent variable. 
But the basic procedure for regression and correlation models is the same. 

Under the correlation model, we calculate the "r" value. The "r" is called the sample 
correlation coefficient. It indicates the degree of linear relationship between the depen-
dent (Y) and independent (X) variables. The value of "r" ranges between “–1” and 
“+1”. This chapter will cover the correlation model. Use the data file <Data_3.dta> for 
practice.

15.1 Pearson’s correlation
Pearson’s correlation is used when the normality assumptions are met, i.e., when both 
the variables involved in the correlation analysis are normally distributed. Suppose that 
we want to explore if there is a correlation between systolic blood pressure (BP) (vari-
able name is "sbp") and diastolic BP (variable name is "dbp"). 

Hypothesis

H0: There is no correlation between systolic and diastolic BP.
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HA: There is a correlation between systolic and diastolic BP.

Assumptions

1. The variables (systolic and diastolic BP) are normally distributed in the popu- 
 lation; 
2. The subjects represent a random sample from the population.

15.1.1 Scatter plot

The first step, before carrying out the correlation analysis, is to generate a scatter plot. 
The scatter plot provides information about: 

• Whether there is a correlation (relationship) between two variables; 
• Whether the relationship (if there is any) is linear or non-linear; and 
• Direction of the relationship, i.e., whether the relationship is positive (if the  
 value of one variable increases with the increase of the other variable) or nega- 
 tive (if the value of one variable decreases with the increase of the other  
 variable).

To generate a scatter plot of systolic and diastolic BP, use the following commands 
(also see Section 7.2):

scatter dbp sbp
scatter dbp sbp || lfit dbp sbp 

The first command will display a simple scatter plot of systolic and diastolic BP (Fig 
15.1), while the second command will display the regression line (fit line) on the 
scatter plot (Fig 15.2). 

15.1.2 Commands for Pearson’s correlation

To determine the Pearson’s correlation coefficient between two continuous quantita-
tive variables, we use the command "correlate" or simply "corr" or "pwcorr". The com-
mands "correlate" or "corr" provide correlations of the listed variables based on the 
non-missing observations. On the other hand, the command "pwcorr (pairwise correla-
tion)" reports on all the observations available for each variable pair. 

corr sbp dbp
corr sbp dbp age income
pwcorr sbp dbp, sig
pwcorr sbp dbp age income, sig

Association Between Two Continuous Variables: Correlation
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The first command will provide the Pearson’s correlation coefficient (r value) of 
systolic and diastolic BP without the p-value (Table 15.1). The second command will 
generate the correlation matrix of the variables (sbp, dbp, age, and income) included in 
the command (Table 15.2). If you want to obtain the correlation coefficient of systolic 
and diastolic BP along with the p-value, use the third command (Table 15.3). The 
fourth command will provide a correlation matrix table for the variables included in the 
command with the corresponding p-values (Table 15.4). The commands for the 
correlation matrix are provided as an example.

Association Between Two Continuous Variables: Correlation
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Figure 15.1 Scatter plot of systolic and 
diastolic BP 

Figure 15.2 Scatter plot of systolic and 
diastolic BP with the regression line 
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Figure 15.3 Scatter diagram of diastolic BP and age 
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Look at Fig 15.2, which shows the regression line on the scatter plot. The regression 
line has passed from near the lower left corner to the upper right corner, indicating a 
positive correlation between systolic and diastolic BP. If the relationship was negative 
(inverse), the regression line would have passed from the upper left corner to the lower 
right corner. 

15.1.3 Interpretation

In the first step, we have constructed the scatter plots of systolic and diastolic BP (Figs 
15.1 and 15.2). Figure 15.1 shows that the data points are scattered around an invisible 
straight line (indicating linear relationship) and there is an increase in the diastolic BP 
(Y) as the systolic BP increases (X). This indicates that there may have a positive 
correlation between these two variables.

Association Between Two Continuous Variables: Correlation

Table 15.1 Pearson’s  correlation between sbp and dbp  

. corr sbp dbp 
(obs=210) 
             |      sbp      dbp 
-------------+------------------ 
         sbp |   1.0000 
         dbp |   0.8468   1.0000 

Table 15.2 Correlation matrix of systolic BP, diastolic BP, age and income  

. corr sbp dbp age income 
(obs=210) 
             |      sbp      dbp      age   income 
-------------+------------------------------------ 
         sbp |   1.0000 
         dbp |   0.8468   1.0000 
         age |  -0.0378  -0.0224   1.0000 
      income |   0.0163   0.0697  -0.1324   1.0000 

Table 15.3 Pearson’s  correlation between systolic and diastolic BP with the p-value  

. pwcorr sbp dbp, sig 
 
             |      sbp      dbp 
-------------+------------------ 
         sbp |   1.0000  
             | 
         dbp |   0.8468   1.0000  
             |   0.0000 
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Figure 15.3 shows the scatter plot of diastolic BP and age. It does not indicate any 
correlation between diastolic BP and age since the dots are scattered around the regres-
sion line, which is more or less parallel to the X-axis.

Table 15.1 shows the Pearson’s correlation coefficient (r value) of systolic and diastol-
ic BP, which is 0.846. Table 15.3 shows the same result, but with the p-value, which is 
0.000. The correlation coefficient [r] indicates the strength or degree of the linear 
relationship between two variables (systolic and diastolic BP). As the value of "r" is 
positive and the p-value is <0.05, we can conclude that there is a significant positive 
correlation between systolic and diastolic BP. 

The value of “r” lies between “–1” and “+1”. Values near to “zero” indicate no correla-
tion, while values near to “+1” or “–1” indicate a strong correlation. The negative value 
of “r” (– r) indicates an inverse relationship. A value of r ≥ 0.8 indicates a very strong 
correlation; an “r” value between 0.6 and <0.8 indicates a moderately strong correla-
tion; an “r” value between 0.3 and <0.6 indicates a fair correlation; and an “r” value of 
<0.3 indicates a poor correlation [8].

15.2 Spearman and Kendall’s tau-b correlations
The Spearman and Kendall’s tau-b are the nonparametric methods of obtaining the 
correlation coefficients. The Spearman correlation is performed when the normality 
assumption is violated (i.e., if the distribution of either the dependent or independent, 
or both the variables, is not normally distributed). Spearman correlation is also applica-
ble for two categorical ordinal variables if they have ≥5 levels, such as intensity of pain

Association Between Two Continuous Variables: Correlation

Table 15.4 Correlation matrix with the corresponding p-values  

. pwcorr sbp dbp age income, sig 
 
             |      sbp      dbp      age   income 
-------------+------------------------------------ 
         sbp |   1.0000  
             | 
         dbp |   0.8468   1.0000  
             |   0.0000 
             | 
         age |  -0.0378  -0.0224   1.0000  
             |   0.5856   0.7465 
             | 
      income |   0.0163   0.0697  -0.1324   1.0000  
             |   0.8144   0.3146   0.0554 
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(no, mild, moderate, severe, and very severe pain) and grade of cancer (stage 1, stage 
2, stage 3, stage 4, and stage 5). 

To obtain the Spearman correlation coefficient of systolic BP (variable name “sbp”) 
and income, where income is not normally distributed, use the following command: 

spearman sbp income

This command will report the Spearman correlation coefficient of systolic BP and 
income along with the p-value as shown in Table 15.5. 

The Kendall’s tau-b statistic is used to determine the correlation between two ordinal 
variables, or an ordinal and a continuous variable (provided the ordinal variable has 
less than 5 levels). To determine the correlation between age group (variable name is 
age2) and systolic BP, use the following command (Table 15.6):

ktau age2 sbp

15.2.1 Interpretation

Table 15.5 shows the number of pairwise observations (n=210) used to calculate the 
Spearman correlation coefficient. Spearman’s rho indicates the Spearman correlation 
coefficient. In our example, Spearman’s rho is 0.007, which is very small. The p-value 
of this test is indicated by “Prob > |t|”. The p-value of this test is 0.9192, which is 
>0.05. We cannot, therefore, reject the null hypothesis. This indicates that there is no 
statistically significant correlation between systolic BP and income.

Table 15.6 shows the results of the Kendall’s tau correlation between age group and 
systolic BP. The correlation coefficient (Kendall’s tau-b) of the variables is 0.0114 and 
the corresponding p-value is 0.83. This indicates that there is no significant correlation 
between age group and systolic BP.

Association Between Two Continuous Variables: Correlation

Table 15.5 Spearman correlation between systolic BP and income  
. spearman sbp income 
 
 Number of obs =     210 
Spearman's rho =     0.0070 
 
Test of Ho: sbp and income are independent 
    Prob > |t| =     0.9192 
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15.3 Partial correlation
The purpose of performing partial correlation is to determine the correlation between 
two variables after controlling for one or more other variables (continuous or categori-
cal). This means that, through partial correlation, we get the adjusted "r" value after 
controlling for other variables included in the analysis. 

For example, if we suspect that the relationship between diastolic and systolic BP may 
be influenced (confounded) by other variables (such as age and diabetes), we should 
use the partial correlation to exclude the influences of other variables (age and diabe-
tes). The partial correlation gives us the adjusted correlation coefficient (r value). If we 
want to get the correlation coefficient of diastolic and systolic BP after adjusting for 
age and diabetes, use the following command: 

pcorr dbp sbp age diabetes

The command above will provide the correlation coefficient of diastolic and systolic 
BP after controlling for age and diabetes, including the p-value as shown in Table 15.7.

15.3.1 Interpretation

The results of the partial correlation of diastolic and systolic BP after adjusting for age 
and diabetes mellitus are displayed in Table 15.7. We can observe that the partial 
correlation coefficient of diastolic and systolic BP is 0.847 and the p-value is 0.000. 
This means that these two variables (diastolic and systolic BP) are significantly 
correlated (p=0.000) even after controlling for age and diabetes mellitus. The table also 
provides the results of semipartial correlation. In semipartial correlation, the correla-
tion coefficient is calculated holding the other variables (age and diabetes, in our 
example) constant either for X or Y, but not for both. In partial correlation, the other 

Association Between Two Continuous Variables: Correlation

Table 15.6 Kendall’s tau-b correlation between age group and systolic BP  

. ktau age2 sbp 
 
  Number of obs =     210 
Kendall's tau-a =       0.0092 
Kendall's tau-b =       0.0114 
Kendall's score =     201 
    SE of score =     946.641   (corrected for ties) 
 
Test of Ho: age2 and sbp are independent 
     Prob > |z| =       0.8327  (continuity corrected) 
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variables are held constant for both X and Y. We should consider the partial correlation 
for reporting.

The partial correlation provided for the age indicates the partial correlation coefficient 
of age and diastolic BP (0.022; p=0.752) after controlling for systolic BP and diabetes.

Association Between Two Continuous Variables: Correlation

Table 15.7 Correlation between systolic and diastolic BP after controlling for age 
and diabetes 

. pcorr dbp sbp age diabetes 
(obs=210) 
 
Partial and semipartial correlations of dbp with 
 
               Partial   Semipartial      Partial   Semipartial   Significance 
   Variable |    Corr.         Corr.      Corr.^2       Corr.^2          Value 
------------+----------------------------------------------------------------- 
        sbp |   0.8470        0.8468       0.7175        0.7171         0.0000 
        age |   0.0220        0.0117       0.0005        0.0001         0.7524 
   diabetes |   0.0409        0.0218       0.0017        0.0005         0.5574 
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Linear Regression

Regression analysis is a useful statistical method of data analysis in health and social 
sciences disciplines. The nature and strength of relationships between two or more 
continuous variables can be ascertained by regression and correlation analyses. 

We have discussed correlation in Chapter 15. While correlation is concerned with 
measuring the strength of the linear relationship between variables, regression analysis 
is useful in predicting or estimating the value of one variable corresponding to a given 
value of another variable. For instance, we can use regression analysis to examine 
whether systolic BP is a good predictor of diastolic BP and also to get the estimated 
(predicted) value of diastolic BP corresponding to a value of systolic BP. In regression 
analysis, our main interest is in regression coefficient (also called slope or β). The 
regression coefficient indicates the strength of association between dependent (Y) and 
independent (X) variables. Linear regression analyses can be done either as simple 
linear regression or multiple linear regression methods.  

In this chapter, both simple and multiple linear regression methods are discussed. 
Multiple linear regression is a type of multivariable analysis. The multivariable analy-
sis is a statistical tool where multiple independent variables are considered for a single 
outcome variable. The terms "multivariate analysis" and "multivariable analysis" are 
often used interchangeably in health and social sciences research. In fact, multivariate 
analysis refers to a statistical method for the analysis of multiple outcome variables. 

Multivariable analyses are widely used in observational studies, intervention studies 
(randomized or nonrandomized trials), and studies of diagnosis and prognosis. The 
main purposes of multivariable analyses are to: 



144

• Adjust for the confounding factors; 
• Predict the probability of an outcome when several characteristics are present  
 in an individual; 
• Determine the relative contribution of independent variables to the outcome  
 variable; and 
• Assess the interaction of multiple variables for the outcome.

There are several types of multivariable analysis methods. The choice of multivariable 
analysis for the type of outcome variable is summarized in Table 9.3 (Chapter 9). The 
commonly used multivariable analysis methods in health and social sciences research 
include multiple linear regression, logistic regression, and proportional hazards regres-
sion (Cox regression), which are discussed in this book. Use the data file 
<Data_4.dta> for practice.

16.1 Simple linear regression
In simple linear regression, there is one dependent (outcome) and one independent 
(explanatory or predictor) variable. The objective of simple linear regression is to find 
the population regression equation, which describes the true relationship between a 
dependent variable (Y) and an independent variable (X). In a simple linear regression 
model, two variables are involved – one is an independent variable (X) placed on the 
X-axis, and the other is a dependent variable (Y) placed on the Y-axis. Then, we call it 
"regression of Y on X".

Suppose that we want to perform a simple linear regression analysis of diastolic BP 
(dependent variable) on systolic BP (independent variable). The objective is to find the 
population regression equation to predict diastolic BP by systolic BP. 

Assumptions

1. Normality: For any fixed value of X (systolic BP), the sub-population of Y 
values (diastolic BP) is normally distributed; 

2. Homoscedasticity: The variances of the sub-populations of “Y” are all equal;

3. Linearity: The means of the sub-populations of “Y” lie on the same straight 
line; and

4. Independence: Observations are independent of each other.

The first step in analyzing the data for regression is to construct a scatter diagram to

Linear Regression
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visualize the relationship between the two variables, which is discussed in Chapter 15. 
The scatterplot will provide an indication of the linear relationship between the 
variables, diastolic and systolic BP. For example, to get the scatter plot of diastolic and 
systolic BP with the fit-line, use the following command:

graph twoway lfit dbp sbp || scatter dbp sbp

16.1.1 Commands for simple linear regression

The command for linear regression analysis is “regress”. To do the regression of 
diastolic BP (variable name is “dbp”) on systolic BP (variable name is “sbp”), use the 
first of the following commands (Table 16.1):

regress dbp sbp
regress dbp sbp, vce(robust)

The first variable immediately after the command “regress” is the dependent variable. 
The second command will provide robust estimates of the standard error of the regres-
sion coefficient (Table 16.1). Robust regression is an alternative to ordinary regression 
(least squares regression; first command). It provides better estimates of regression 
coefficients, especially when outliers are present in the data.

You can conduct the regression analysis on a subset of your data. For example, if you 
want to perform the regression analysis only for the females (variable name is “sex” 
and females are coded as 0), use the following command (Table 16.2):

regress dbp sbp if sex==0

You can get the predicted values of diastolic BP (outcome variable) of the individuals 
after performing the regression analysis. Use the following command to get the 
predicted values: 

predict predbp

The above command will generate a new variable "predbp" containing the predicted 
values of diastolic BP for all the individuals in the dataset. You can see the new 
variable at the bottom of the variables window. You can also calculate the estimated 
(predicted) diastolic BP of an individual whose systolic BP is 110 mmHg by using the 
following command (outputs not shown): 

margins, at(sbp=(110)) 

Linear Regression
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16.1.2 Interpretation

The results of simple linear regression analysis are provided in Table 16.1. The table 
shows the coefficient of determination (R-squared) of diastolic BP on systolic BP. The 
coefficient of determination is the square of the correlation coefficient value (r value). 
The table shows that the coefficient of determination (R-squared) of diastolic BP on 
systolic BP is 0.717 and the p-value (Prob > F) is 0.000. The table also shows the value 
for the adjusted coefficient of determination (Adj R-squared).

The coefficient of determination, or the R-squared value, indicates the amount of varia-
tion in "Y" due to "X" that can be explained by the regression line. Here, the R-squared 
value is 0.717 (~0.72), which indicates that 72% of the variation in diastolic BP can be 
explained by  systolic BP. The rest of the variation (28%) is due to other factors (unex-
plained variation). The adjusted R-squared value (0.715), as shown in the table, is the 
adjusted value for better population estimation. The significance of the  R-squared

Linear Regression

Table 16.1 Regression of diastolic BP on systolic BP 
. regress dbp sbp 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  1,   208) =  527.20 
       Model |  20688.9902     1  20688.9902           Prob > F      =  0.0000 
    Residual |  8162.57647   208  39.2431561           R-squared     =  0.7171 
-------------+------------------------------           Adj R-squared =  0.7157 
       Total |  28851.5667   209  138.045774           Root MSE      =  6.2644 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sbp |   .4960326   .0216034    22.96   0.000     .4534429    .5386223 
       _cons |   19.40677   2.793132     6.95   0.000     13.90029    24.91325 
------------------------------------------------------------------------------ 
 
. regress dbp sbp, vce(robust) 
 
Linear regression                                      Number of obs =     210 
                                                       F(  1,   208) =  440.31 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.7171 
                                                       Root MSE      =  6.2644 
------------------------------------------------------------------------------ 
             |               Robust 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sbp |   .4960326   .0236391    20.98   0.000     .4494297    .5426355 
       _cons |   19.40677    3.01498     6.44   0.000     13.46293    25.35061 
------------------------------------------------------------------------------ 
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value is assessed by the F-test [F (1, 208) = 527.20] as shown in the table. Since the 
p-value (Prob > F) of the coefficient of determination is less than 0.05, it is statistically 
significant. This finding indicates that the linear regression model is useful in predict-
ing the dependent variable (diastolic BP) by the independent variable (systolic BP) in 
the model.

We can conclude from the data that there is a significant positive correlation between 
diastolic and systolic BP since the regression coefficient (0.496; “Coef.” in Table 16.1) 
is positive and statistically significant (p= 0.000)], and we can, therefore, use the 
regression equation for prediction. Table 16.1 shows the regression (also called 
explained) sum of squares (20688.99; in the row "Model" and column "SS") and the 
residual (also called error) sum of squares (8162.57; in the row "Residual" and column 
"SS"). The residual is the difference between the observed value and the predicted 
value (i.e., the observed value and the value on the regression line). The residual sum 
of squares provides an idea of how well the regression line actually fits into the data. 
The smaller the value, the better the fit.

The strength of the relationship between variables is measured by the regression coef-
ficient (β or b) or slope. Table 16.1 shows the regression coefficient (row "sbp" and 
column "Coef.”) of diastolic BP on systolic BP, which is 0.496 with a p-value of 0.000 
(P> | t |). The table also shows the value for "a" (_cons) or Y-intercept, which is 19.40. 
These values (regression coefficient and constant) are needed to construct the linear 
regression equation. 

Linear Regression

Table 16.2 Regression of diastolic BP on systolic BP among females 

. regress dbp sbp if sex==0 
 
      Source |       SS       df       MS              Number of obs =     133 
-------------+------------------------------           F(  1,   131) =  404.31 
       Model |  16168.3835     1  16168.3835           Prob > F      =  0.0000 
    Residual |  5238.71425   131  39.9901851           R-squared     =  0.7553 
-------------+------------------------------           Adj R-squared =  0.7534 
       Total |  21407.0977   132  162.174983           Root MSE      =  6.3238 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sbp |   .5177267    .025748    20.11   0.000      .466791    .5686625 
       _cons |   17.38358   3.380971     5.14   0.000     10.69521    24.07194 
------------------------------------------------------------------------------ 



148 Linear Regression

The value of “b” (regression coefficient) indicates the amount of change in “Y” for 
each unit change in “X”. In our example, the value of “b” is 0.496. It indicates that if 
the systolic BP increases (or decreases) by 1 mmHg, the diastolic BP will increase (or 
decrease) by 0.496 mmHg. The table shows the significance (p-value) of “b”, which is 
0.000. A p-value of <0.05 indicates that “b” is not equal to zero in the population (the 
null hypothesis is that “b” is equal to zero in the population). For simple linear regres-
sion, if R-square is significant, “b” will also be significant. 

On the other hand, the value of "a" (constant or Y-intercept) in our example is 19.407. 
The value, a= +19.407, indicates that the regression line crosses or cuts the Y-axis 
above the origin (zero) and at the point of 19.407 (a negative value indicates the regres-
sion line cuts the Y-axis below the origin). The value of "a" does not have any practical 
meaning since it indicates the average diastolic BP of individuals if the systolic BP is 
zero.

We know that the equation for simple linear regression is Y = a + bX, where "Y" is the 
predicted value of the dependent variable; "a" is the Y-intercept or constant; "b" is the 
regression coefficient or slope; and "X" is a value of the independent variable. There-
fore, the regression or prediction equation for this regression model is: 

With this equation, we can estimate the diastolic BP of an individual by his/her systolic 
BP. For example, what will be the estimated diastolic BP of an individual whose systol-
ic BP is 130 mmHg? Using the above equation, the answer is that the estimated diastol-
ic BP will be equal to 83.89 mmHg (19.407 + 0.496 × 130). Stata can calculate this for 
you if you use the following command after performing the regression analysis:

margins, at(sbp=(130))   

If we want to use the regression equation for the purpose of prediction, “b” needs to be 
statistically significant (p<0.05). In our example, the p-value for “b” is 0.000. We can, 
therefore, use the equation for the prediction of diastolic BP by systolic BP. 

The analysis (Table 16.1) has actually evaluated whether "b" is zero or not in the popu-
lation by the t-test (Null hypothesis: the regression coefficient (b) is equal to "zero" in 
the population; Alternative hypothesis: the population regression coefficient is not 
equal to "zero"). We will reject the null hypothesis since the p-value is 0.000 (<0.05). 
We can, therefore, conclude that the systolic BP can be considered in estimating the 
diastolic BP by using the following regression equation: 

Y = 19.407 + 0.496 × X.
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16.2 Multiple linear regression
In simple linear regression, two variables are involved—one dependent (Y) and one 
independent (X) variable. The independent variable is also called the explanatory or 
predictor variable. In multiple linear regression, there is more than one explanatory 
(independent) variable in the model. The explanatory variables may be quantitative or 
categorical variables. The main purposes of multiple regression analysis are to: 

• Obtain the adjusted estimates of the regression coefficients of the explanatory  
 variables in the model; 
• Predict or estimate the value of the dependent variable by the explanatory vari 
 ables in the model; and 
• Understand the amount of variation in the dependent variable explained by the  
 explanatory variables together in the model. 

Suppose that we want to assess the contribution of four variables (age, systolic BP, sex, 
and religion) in estimating (or predicting) the diastolic BP in a sample of individuals 
selected randomly from a population. Here, the dependent variable is diastolic BP, and 
the explanatory variables (independent variables) are age, systolic BP, sex, and 
religion. Of the explanatory variables, two are quantitative (age and systolic BP) and 
two are categorical variables (sex and religion). Of the categorical variables, sex has 
two levels (0= female and 1= male) and religion has three levels (1= Muslim, 2= 
Hindu, and 3= Christian). Regression does not allow string variables in the analysis. If 
you want to include any string variable in the model, you need to convert the variable 
into a numeric variable. How to convert a string variable into a numerical variable is 
discussed in Chapter 5 (Section 5.1).  

When an independent variable is a categorical variable with more than two levels (like 
religion), we cannot simply include it in regression analysis because the code numbers 
are arbitrary (Stata will consider it as a quantitative variable) and the regression 
estimates will be misleading. We need to create dummy variables for such categorical 
variables before including them in the analysis. The dummy variables are the dichoto-
mous indicator variables (coded as 0/1) representing the categories of a categorical 
variable. The number of dummy variables generated for a categorical variable is equal 
to the number of levels minus one. For example, if we want to include the variable 
"religion" in the analysis, we need to generate two dummy variables since it has three 
levels (Muslim, Hindu, and Christian).

We can generate the dummy variables in Stata as described in Section 5.11. Stata can
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can also generate the dummy variables automatically during regression analysis if the 
prefix "i." is used before a variable that has more than two levels (in general, if the 
prefix "i." is used for any variable, Stata considers it a categorical variable during 
analysis). 

For example, if we include religion in the regression analysis as "i.religion", Stata will 
automatically generate two dummy variables for religion during the analysis, with the 
first category (Muslim) as the comparison group by default. You can change the com-
parison group by using the prefix “.ib”. For example, if you want the second category 
of religion (Hindu) as the comparison group, use the prefix “.ib2” (since Hindus are 
coded as 2). 

We always need to decide on a comparison group (e.g., a comparison group for religion 
or other variables) before generating the dummy variables or entering a categorical 
variable in the model with the prefix “.i”. Stata, by default, considers the first category 
(e.g., Muslims for the variable “religion” since Muslims are in the first category) of a 
variable as the comparison group if the variable is entered with the prefix “i.” (e.g., 
i.religion). If we want to consider the other category (e.g., the third category or Chris-
tians) as the comparison group, we should use the prefix “.ib3” since Christians are 
coded as 3. 

In our regression analysis, we will use the variable “religion” with Christians (coded as 
3) as our comparison group by using the prefix “.ib3”. When a variable is coded as 0/1 
(e.g., the variables “sex” and “diabetes”), the regression estimates in multiple regres-
sion analysis will be for the higher value, and the lower value will be the comparison 
group. 

16.2.1 Sample size for multiple regression

Multiple regression analysis should be done if the sample size is fairly large. The mini-
mum sample size needed for the analysis depends on how many independent variables 
we want to include in the model. Different authors provided different guidelines. One 
author recommends a minimum of 15 subjects for each of the independent variables in 
the model. Other authors provided a formula (n= 50 + 8m) to estimate the number of 
subjects required for the analysis. For example, if we intend to include five indepen-
dent variables in the model, we need to have at least 90 subjects (50 + 8×5). For 
stepwise regression, there should be 40 cases for each of the independent variables in 
the model.
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16.2.2 Commands for multiple linear regression analysis

The basic command for regression analysis is “regress”. Use the following commands 
for the multiple regression analysis where the dependent variable is diastolic BP (vari-
able name is “dbp”) and the explanatory (independent) variables are age, systolic BP 
(variable name is “sbp”), sex, and religion. We will use the prefix “.ib3” before the 
variable “religion” so that Stata automatically generates the dummy variables and 
considers the third category (Christians) as the comparison group during analysis. We 
will also use the prefix “i.” for sex to indicate it as a categorical variable. Note that the 
variable immediately after the command “regress” is the dependent variable. 

regress dbp age sbp i.sex ib3.religion
regress dbp age sbp i.sex i.religion

The first command will provide the outputs with Christians as the comparison group 
(Table 16.3), while the second command will provide the outputs where Muslims are 
the comparison group. If you want the second category (Hindus) to be the comparison 
group, use the prefix “ib2” for religion. 

You can get the standardized coefficients (beta) by using the following command: 

regress dbp age sbp i.sex ib3.religion, beta

The outputs of the above command are provided at the bottom of Table 16.3. The 
standardized coefficients are used to understand the relative influence of the indepen-
dent variables on the dependent variable. The higher the value, the greater the influ-
ence.

You can introduce interaction terms into the model. Suppose that you want to check if 
there is an interaction between sex and religion. For this, use the first command: 

regress dbp age sbp i.sex i.religion i.sex#i.religion
regress dbp age sbp i.sex i.religion i.sex#c.sbp

The second command will demonstrate the interaction between sex and systolic BP. 
The prefix “c.” used for “spb” is to indicate that it is a continuous variable.

You can use the “margins” command, after the regression analysis, to get the predict-
ed values of dependent variable for the independent variables in the model (also see 
Section 16.1.1). For instance, to get the predicted values of diastolic BP (i.e., adjusted 
mean of diastolic BP) for religion, sex, and religion#sex, use the following commands 
(results not shown):  
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margins religion sex, atmeans 
margins religion#sex, atmeans 
margins sex, at(religion=(1 2 3)) atmeans 

Table 16.3 Results of the multiple regression analysis  

. regress dbp age sbp i.sex ib3.religion 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  5,   204) =  107.89 
       Model |  20934.8733     5  4186.97466           Prob > F      =  0.0000 
    Residual |  7916.69336   204  38.8073204           R-squared     =  0.7256 
-------------+------------------------------           Adj R-squared =  0.7189 
       Total |  28851.5667   209  138.045774           Root MSE      =  6.2296 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0283828   .0562385    -0.50   0.614     -.139266    .0825004 
         sbp |   .4892801   .0216686    22.58   0.000      .446557    .5320032 
             | 
         sex | 
       Male  |  -2.164135   .9128191    -2.37   0.019    -3.963905   -.3643654 
             | 
    religion | 
     MUSLIM  |    .212462   1.363372     0.16   0.876    -2.475645    2.900569 
      HINDU  |   -.229616   1.488835    -0.15   0.878    -3.165094    2.705862 
             | 
       _cons |   21.82239   3.426989     6.37   0.000     15.06553    28.57925 
------------------------------------------------------------------------------ 
 
. regress dbp age sbp i.sex ib3.religion, beta 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  5,   204) =  107.89 
       Model |  20934.8733     5  4186.97466           Prob > F      =  0.0000 
    Residual |  7916.69336   204  38.8073204           R-squared     =  0.7256 
-------------+------------------------------           Adj R-squared =  0.7189 
       Total |  28851.5667   209  138.045774           Root MSE      =  6.2296 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
         age |  -.0283828   .0562385    -0.50   0.614                -.0185771 
         sbp |   .4892801   .0216686    22.58   0.000                 .8352803 
             | 
         sex | 
       male  |  -2.164135   .9128191    -2.37   0.019                -.0889736 
             | 
    religion | 
     MUSLIM  |    .212462   1.363372     0.16   0.876                   .00888 
      HINDU  |   -.229616   1.488835    -0.15   0.878                -.0087588 
             | 
       _cons |   21.82239   3.426989     6.37   0.000                        . 
------------------------------------------------------------------------------ 
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The first command will provide the average diastolic BP for different categories of 
religion and sex, separately. The second and third command will provide the average 
diastolic BP for religion and sex together (e.g., Muslim males, Muslim females, Hindu 
males, Hindu females, Christian males, and Christian females).

16.2.3 Interpretation

In the analysis, we used diastolic BP (dbp) as the dependent variable and age, systolic 
BP (sbp), sex, and religion as the explanatory variables. 

Table 16.3 shows the outputs of the multiple regression analysis. The table shows that 
data from 210 subjects were analyzed. It shows the values for R-squared (0.725) and 
adjusted R-squared (0.718), including the p-value (Prob > F; 0.000).

The R-squared value of 0.725 indicates that all the independent variables (age, systolic 
BP, sex, and religion) together in the model explain 72.5% of the variation in diastolic 
BP, which is statistically significant (p= 0.000). If the sample size is small, the 
R-squared value may overestimate the population value. The adjusted R-squared 
(0.718) gives the R-squared value for better population estimation. 

Table 16.3 also shows the regression coefficients (Coef.), p-values (P > | t |) and 95% 
confidence intervals (95% Conf. Interval) for all the explanatory variables in the mod-
el, along with the constant (_cons). The regression coefficients as shown in the table 
are for age (-0.028; p= 0.614), systolic BP (0.489; p<0.001), sex (-2.164; p= 0.019 for 
males compared to females), Muslims (0.212; p= 0.876 compared to Christians) and 
Hindus (-0.229; p= 0.878 compared to Christians). 

From the analysis, we can conclude that the systolic BP and sex are the factors signifi-
cantly influencing the diastolic BP (since the p-values are <0.05). The other variables 
in the model (age and religion) do not have any significant influence in explaining (or 
predicting) the diastolic BP. The regression coefficient (Coef.)  [also called multiple 
regression coefficient] for systolic BP,  in this example, is 0.489 (95% CI: 0.44 to 
0.53; p<0.001). This indicates that the average increase (or decrease) in diastolic BP 
is 0.489 mmHg if the systolic BP increases (or decreases) by 1 mmHg after adjusting 
for all other variables (age, sex, and religion) in the model. On the other hand, the 
regression coefficient for sex is –2.164 (95% CI: -3.96 to -0.36; p= 0.019), which 
means that the average diastolic BP of males is 2.16 mmHg less (since the coefficient 
is negative) than that of females after adjusting for all other variables (age, systolic BP, 
and religion) in the model. If the regression coefficient was positive (e.g., +2.164), the 
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average diastolic BP of males would be 2.16 mmHg higher than that of females, given 
the other variables constant in the model.

Table 16.3 (at the bottom) shows the standardized coefficients (beta). The standardized 
coefficients are used to understand the magnitude of the influence of independent 
variables on the dependent variable. The higher the value, the greater the influence. 
The table shows that the beta for systolic BP and sex are 0.835 and -0.088, respectively. 
Therefore, systolic BP has the highest influence (also greater than sex) in predicting 
diastolic BP.  

Regression equation

The regression equation to estimate the average value of the dependent variable with 
the explanatory variables is given below:

Y= a + B1X1 + B2X2 + B3X3 + B4X4 …….. BnXn

Here, "Y" represents the estimated mean value (predicted value) of the dependent 
variable; "a" represents the constant (or Y-intercept); "B" represents the regression 
coefficient(s) of the variables in the model; and "X" represents the value of the 
variable(s) in the model. 

Suppose that we want to estimate the diastolic BP of an individual who is 40 years old, 
male, Muslim, and has a systolic BP of 120 mmHg. In Table 16.3, we can find the 
regression coefficients for age [= -0.028 (B1)], systolic BP [= 0.489 (B2)], sex [= -2.164 
(B3) for being male] and Muslims [= 0.212 (B4) for being Muslim] and the constant (= 
21.82). Therefore, the estimated diastolic BP of the individual will be:

Y= 21.82 + (-0.028 × 40) + (0.489 × 120) + (-2.164 × 1) + (0.212 × 1) = 79.67.

16.2.4 Regression diagnostics

The regression analysis is based on certain assumptions. It is important to check the 
underlying assumptions before considering whether the regression analysis is useful or 
valid. In regression analysis, the assumptions are commonly checked on the residuals. 
Residual is the difference between an observed value and a predicted value (value 
given by the fitted line or regression line). Regression diagnostics are used to evaluate 
whether the assumptions are true or not.

For practical purposes, after checking for multicollinearity of independent variables 
and the assumption of linearity (the relationship between X and the mean of Y is 
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linear), we need to check the following four assumptions on residuals for a linear 
regression model to be valid. The assumptions to be checked on the residuals are:

1) The residuals are normally distributed with the mean equal to zero;
2) The residuals have constant variance (homoscedasticity);
3) There is no outlier; and
4) The data points are independent.

16.2.4.1 Checking for multicollinearity

Before deciding about the multiple regression model, we need to check for multicol-
linearity (inter-correlations among the independent variables) of the independent 
variables. If there are moderate to high inter-correlations among the independent 
variables, two situations may occur. Firstly, the importance of a given explanatory 
variable may be difficult to determine because of a biased (distorted) p-value; and 
secondly, a dubious relationship may be obtained. For example, if there is multicol-
linearity among the independent variables, we may observe that the regression coeffi-
cient for sex is not significant (though it is actually significant) and that the systolic BP 
has a negative relationship (though the relationship is positive) with the diastolic BP. 
Another important sign of multicollinearity is a severe reduction of the adjusted R 
squared value. 

To determine the correlations among the independent variables, we can generate the 
Pearson’s correlation matrix. For example, if we want to see the correlations among the 
systolic BP, age, sex, and religion, use the following command to get the correlation 
matrix (Table 16.4).

corr sbp age sex religion

Table 16.4 shows the correlation coefficients (r values) among the variables included 
in the analysis. The highest correlation coefficient that we see in the table is -0.13, 
which is for religion and sex. In general, if the r value is greater than 0.5, it is consid-
ered that the correlation may interfere with the regression analysis. However, in our 
analysis, there is no such problem as shown in the table.

Pearson’s correlation can only check for collinearity between any two variables. Some-
times a variable may be multicollinear with a combination of variables. It is, therefore, 
preferable to use the tolerance (or variance inflation factor) measure, which indicates 
the strength of the linear relationships among the independent variables.
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To get the measures of tolerance and variance inflation factor (VIF), use the command 
“vif” after performing the multiple regression analysis. A tolerance value indicates the 
degree of collinearity. The tolerance value is the inverse of the VIF measure (1/VIF). 
The tolerance value ranges from 0 to 1. A value of “zero” indicates that the variable is 
almost in a linear combination (i.e., has a very strong correlation) with other indepen-
dent variables. To get the values for VIF and tolerance, use the following command 
after performing the regression analysis:

vif 

This command will provide both the VIF and Tolerance (1/VIF) values of the indepen-
dent variables included in the regression analysis (Table 16.5). 

The table (Table 16.5) shows that the tolerance (1/VIF) values for sex, systolic BP, and 
age are greater than 0.95. The tolerance values for both religion 1 (Muslims) and 2 
(Hindus) are 0.41. Usually, the dummy variables have lower tolerance values. The 
recommended tolerance level is greater than 0.6 before we include the variables in the 
multiple regression model. However, a tolerance value of 0.40 and above is also 
acceptable, especially if it is a dummy variable. 

If there are variables that are highly correlated (tolerance value is <0.4), one way to 
solve the problem is to exclude one of the correlated variables from the model. The 
other way is to combine the explanatory variables together (e.g., by taking their sum). 
Finally, to develop a model for multiple regression, we should first check for multicol-
linearity and then the other assumptions (see below). If the requirements are fulfilled, 
then only we can finalize the regression model.

16.2.4.2 Checking for linearity

When we do a linear regression analysis, it is assumed that the relationship between the 
response (dependent) variable and the predictor variables (independent variables) is 

Table 16.4 Correlation matrix of systolic BP, age, sex, and religion 

. corr sbp age sex religion 
(obs=210) 
 
             |      sbp      age      sex religion 
-------------+------------------------------------ 
         sbp |   1.0000 
         age |  -0.0281   1.0000 
         sex |  -0.1207   0.0586   1.0000 
    religion |  -0.0249  -0.0582  -0.1308   1.0000 
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linear. This is called the assumption of linearity. The best way to check the linearity 
assumption is to construct a scatterplot and visually inspect the plot for linearity. 

Checking linearity for a simple linear regression is straightforward since there is only 
one predictor (independent) variable against the response (dependent or outcome) 
variable. For a simple linear regression, we can check the linearity by generating a 
scatterplot of the dependent variable against the independent variable, which is 
discussed in Section 7.2. However, to check the linear relationship between diastolic 
and systolic BP, use the following commands to get a scatterplot of diastolic BP against 
systolic BP: 

twoway (scatter dbp sbp) 
twoway (scatter dbp sbp) (lfit dbp sbp) 
twoway (scatter dbp sbp) (lfit dbp sbp) (lowess dbp sbp)

The first command will display a scatterplot of diastolic BP and systolic BP without the 
regression line (fit-line). The second command will provide the scatterplot with the 
fit-line (Fig 16.1), while the third command will provide all the above with a smooth 
prediction line. Figure 16.1 shows that the relationship between diastolic and systolic 
BP is linear since the scatter dots are lying more or less symmetrically around a straight 
line.

Checking the linearity assumption in multiple linear regression is not straightforward. 
It can be checked in several different ways. The most straightforward way is to draw 
scatter plots of standardized residuals (z-residuals) against each of the predictor (inde-
pendent) variables included in the regression analysis. Standard residuals are the resid-
uals divided by the standard deviation of the residuals. 

Table 16.5 Multicollinearity test results 
vif 
 
    Variable |       VIF       1/VIF   
-------------+---------------------- 
         age |      1.01    0.992729 
         sbp |      1.02    0.982955 
       1.sex |      1.05    0.955039 
    religion | 
          1  |      2.41    0.414242 
          2  |      2.40    0.417031 
-------------+---------------------- 
    Mean VIF |      1.58 
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We have done the regression analysis of diastolic BP (dependent variable) on age, 
systolic BP, sex, and religion. First, do the regression analysis, then generate the 
standardized residual variable “zresid” by using the following command: 

predict zresid, rstandard

This command will generate a new variable “zresid” with the z-values of the residuals. 
Now, use the following commands to get the scatterplots of z-residuals against the 
systolic BP (Fig 16.2) and age (Fig 16.3):

twoway (scatter zresid sbp) (lfit zresid sbp)
twoway (scatter zresid age) (lfit zresid age) 

Both the plots (Figs 16.2 and 16.3) show that the scatter dots are symmetrical above 
and below the straight lines, indicating that the relationships are linear. You can also 
construct the same for z-residuals and religion by using the command: 

twoway (scatter zresid religion) (lfit zresid religion)

16.2.4.3 Checking for normality of residuals

Normality of residuals is required in regression analysis to validate hypothesis testing 
for R-squared values and regression coefficients, i.e., the normality assumption 
ensures that the p-values of the F-test and t-test are valid. Normality is not required to 
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Figure 16.1 Scatterplot of diastolic and systolic BP with the fit line 
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obtain unbiased estimates of the regression coefficients (b values). Similarly, the 
normality assumption of the independent variables is not required for multiple regres-
sion analysis. 

After running the regression analysis, use the following command to generate the 
residual variable:  

predict residual, resid

This command will generate a new variable “residual” with the residuals in the data 
file. Now, use any of the following commands to check for the normality of residuals. 

kdensity residual, normal
histogram residual
pnorm residual 
qnorm residual

The command “kdensity” stands for kernel density plot. Using the option “normal” will 
provide the overlaid normal density curve on the plot (Fig 16.4). The command “histo-
gram” will generate a histogram of the residuals (Fig 16.5), while the commands 
“pnorm” and “qnorm” will provide the P-P (Fig 16.6) and Q-Q (Fig 16.7) plots, respec-
tively. The P-P plot is sensitive to non-normality in the middle range of data, while the 
Q-Q plot is sensitive to non-normality near the tails.
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Figure 16.2 Scatterplot of z-residuals 
against systolic BP 

Figure 16.3 Scatterplot of z-residuals 
against age  



160 Linear Regression

You can also use formal statistical tests (Shapiro-Wilk test or Skewness-Kurtosis test) 
to evaluate the normality of residuals by using any of the following commands (Table 
16.6):

swilk residual 
sktest residual

Table 16.6 shows that the p-values of both these tests are greater than 0.05, indicating 
that the distribution of residuals is normal. 

To get the mean of the residuals, use the following command (Table 16.7):

sum residual

All the plots (Kernel density, histogram, P-P, and Q-Q plots) indicate that the distribu-
tion of the residuals is normal (also see Chapters 5 and 8). The mean of the residuals, 
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as shown in Table 16.7, is -7.01e-09 (-7.01 x e-09), which is equal to “zero”. For practical 
purposes, simply construct the histogram of the residuals and decide whether the distri-
bution is approximately normal or not.

The first test of heteroscedasticity given by the command “hettest” is the Breusch-Pa-
gan test, and the second test given by the command “imtest” is the White’s test. Both 
these tests test the null hypothesis that the variance of the residuals is homogeneous. 
Therefore, to fulfill the assumption, we expect a p-value greater than 0.05. Table 16.8 
shows that the p-values of both these tests are greater than 0.05 (use the p-value of

16.2.4.4 Checking for homoscedasticity 

To check for heteroscedasticity (i.e., the variances of the residuals are not homoge-
neous), after the regression analysis, use either of the following commands. The 
outputs are shown in Table 16.8. 

estat hettest  
estat imtest

Table 16.6 Normality test of residuals  

. swilk residual 
 
                   Shapiro-Wilk W test for normal data 
 
    Variable |    Obs       W           V         z       Prob>z 
-------------+-------------------------------------------------- 
    residual |    210    0.99256      1.158     0.339    0.36734 
 
 
. sktest residual 
                    Skewness/Kurtosis tests for Normality 
                                                         ------- joint ------ 
    Variable |    Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2 
-------------+--------------------------------------------------------------- 
    residual |    210      0.7485         0.9940         0.10         0.9499 
 

Table 16.7 Mean of the residuals  

sum residual 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    residual |       210   -7.01e-09    6.154585  -15.05615   18.24044 
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either test for interpretation). This indicates that the variances of the residuals are 
homogeneous. 

However, these tests are very sensitive to model assumptions. It is, therefore, a com-
mon practice to combine the tests with a diagnostic plot (a plot of residuals against the 
predicted values) to make a judgment on the severity of heteroscedasticity. To generate 
the plot of residuals against the fitted (predicted) values of the dependent variable 
(diastolic BP), use either of the following commands: 

rvfplot
rvfplot, yline(0)

The above commands will generate Figures 16.8 and 16.9, respectively. The figures are 
similar except that Figure 16.9 has a reference line that represents Y= 0. If the scatters 
of the points show no clear pattern (as seen in Fig 16.8 and Fig 16.9), we can conclude 
that the variances of the sub-population of “Y” are constant (homoscedastic).

If there is evidence of heteroscedasticity (Fig 16.10), one of the solutions is to run a 
regression with robust standard errors by using the following command: 

regress dbp age sbp i.sex ib3.religion, vce(robust)

Table 16.8 Test for heteroscedasticity  
. estat hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of dbp 
 
         chi2(1)      =     0.27 
         Prob > chi2  =   0.6059 
 
. estat imtest 
 
Cameron & Trivedi's decomposition of IM-test 
 
--------------------------------------------------- 
              Source |       chi2     df      p 
---------------------+----------------------------- 
  Heteroskedasticity |      18.98     16    0.2697 
            Skewness |       4.25      5    0.5144 
            Kurtosis |       0.02      1    0.8930 
---------------------+----------------------------- 
               Total |      23.24     22    0.3880 
--------------------------------------------------- 
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16.2.4.5 Checking for outliers 

The presence of outliers is checked on the standardized values (z-values) of the residu-
als. Outliers are the z-values of the residuals that are either less than -3.0 or greater than 
+3.0. To assess the outliers, we need to generate (we have done it before; see Section 
16.2.4.2) a variable for the z-values of residuals (or transform the variable “residual” 
generated earlier into z-values; see Section 5.10) by using the following command: 

predict zresid, rstandard

This command will generate a new variable “zresid” (if not done earlier) with the 
z-values of residuals. Now, use the following commands to check if there are any 
values that are greater than +3.0 or less than -3.0. 

list sl zresid if (zresid<-3)
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list sl zresid if (zresid>3)
tab zresid

The first command will display the z-residual values if they are less than minus 3.0 
along with the serial numbers (ID numbers). Note that if there is no value that is less 
than minus 3.0, Stata will not show any output. Similarly, the second command will 
display the z-residual values that are greater than +3.0 along with the ID numbers. If 
there are any values that are less than -3.0 and/or greater than +3.0, consider them the 
outliers. If you use the third command, Stata will provide a long table of z-residual 
values (better to avoid this). 

Instead of using the above commands, you can check the highest 10 and lowest 10 
values of the variable “zresid” by using the following commands after sorting the 
variable: 

sort zresid
list zresid in 1/10
list zresid in -10/-1

The above commands will display the outputs as shown in Table 16.9. The table shows 
that there are no values that are greater than +3.0 or less than minus 3.0. This indicates 
that there is no outlier in the residuals. However, one or more outliers may be present 
in a dataset. The outliers should be carefully checked for mistakes in data entry. If there 
is no evidence of mistakes and the value is plausible, then the value should not be 
altered. It is also discouraged to exclude outliers from analysis. The presence of outli-
ers in the data may influence the results of regression or other statistical analyses. A 
recommended strategy for handling the outliers is to carry out the analysis with and 
without the outliers. If there is little difference in the results, the outliers have minimal 
effect. If the difference is substantial, it may be better to find an alternative method of 
data analysis, such as data transformation or using the rank method [3]. You may also 
run the regression with robust standard errors if there are outliers in the data by using 
the following command:

regress dbp age sbp i.sex ib3.religion, vce(robust)

16.2.4.6 Test for independence

The test for checking the independence of observations (i.e., values of residuals are 
independent or there is no autocorrelation) is needed for time-series data. The test for 
independence is done to evaluate if there is any autocorrelation in the residuals. Auto-
correlation refers to the degree of correlation of the same variable between two succes-
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sive time intervals (i.e., the degree of similarity between a given time series). For 
cross-sectional data, autocorrelation is not an issue. 

The independence of residuals (autocorrelation) is assessed by the Durbin-Watson 
(DW) statistic and is applicable for time-series data. The DW test is done after execut-
ing the multiple regression analysis. The DW statistic ranges from 0 to 4. A value of 2 
indicates that there is no autocorrelation. Values less than 0 to 2 indicate the presence 
of a positive autocorrelation, while values greater than 2 to 4 indicate the presence of a 
negative autocorrelation. To perform the DW test, it requires a time variable. In our 
dataset (Data_4.dta), there is no time variable. However, we can generate a time 
variable (for the purpose of demonstration) by using the following command before 
doing the DW test: 

gen time = _n

This  command will generate a time variable “time”. Now, use the following command 
to let Stata know which variable is the time variable for this analysis (if the time variable 
in your data file is “year”, use the command: tsset year): 

tsset time

Finally, use the following command, after multiple regression analysis, to get the DW 
test statistic (Table 16.10): 

Table 16.9 Upper and lower 10 z-values of the residuals  
. list zresid in 1/10 
 
     +-----------+ 
     |    zresid | 
     |-----------| 
  1. | -2.462475 | 
  2. | -2.258894 | 
  3. | -2.158022 | 
  4. | -2.071153 | 
  5. | -2.065784 | 
     |-----------| 
  6. | -2.003306 | 
  7. |  -1.93732 | 
  8. | -1.908815 | 
  9. | -1.884941 | 
 10. |  -1.83873 | 
     +-----------+ 
 

. list zresid in -10/-1 
 
     +----------+ 
     |   zresid | 
     |----------| 
201. | 1.600753 | 
202. | 1.665619 | 
203. | 1.800676 | 
204. | 1.823561 | 
205. | 1.846748 | 
     |----------| 
206. | 1.887106 | 
207. | 1.951255 | 
208. | 2.181215 | 
209. | 2.678532 | 
210. | 2.960519 | 
     +----------+ 
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estat dwatson

If the DW statistic value hovers around 2 (between 1.5 and 2.5), it indicates that the 
data points are independent (there is no autocorrelation). Table 16.10 shows that the 
value of the DW statistic is 1.70. Since the value is close to 2, it can be considered that 
there is no autocorrelation in the residuals.

16.2.5 Variable selection for a model

In general, the independent variables to be selected for a multivariable analysis should 
include the risk factors of interest and potential confounding factors (based on theory, 
prior research, and empirical findings), while variables with lots of missing values 
should be excluded. 

We have used the "Enter" method (see Table 16.11) for the regression analysis of data 
so far in this chapter. The "Enter" method uses all the independent variables in the 
model as decided by the researcher. It does not remove any variables from the model 
automatically during analysis. Automatic procedures can be used to determine which 
independent variable(s) will be included (retained) in the model. The major reason for 
using the automatic selection procedure (i.e., the stepwise method) is to identify the 
useful independent variables necessary to estimate or predict the outcome variable. 
The major limitations of automatic selection procedures (stepwise methods) are that 
the analysis may provide invalid estimates and confidence intervals. Therefore, the 
stepwise methods should be used cautiously [28, 40].

Stata and other data analysis software have the option to automatically select the inde-
pendent variables for a model. They use statistical criteria to select the variables and 
their order in the model. The commonly used variable selection techniques are the 
stepwise methods. 

Table 16.10 Durbin-Watson test  

. gen time= _n 
 
. tsset time 
        time variable:  time, 1 to 210 
                delta:  1 unit 
 
. estat dwatson 
 
Durbin-Watson d-statistic(  6,   210) =  1.700676 
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In simple terms, stepwise regression is a process that helps us to determine which 
variables are important and which are not in explaining the outcome variable. Certain 
variables may have high p-values (e.g., p-values greater than 0.05) and do not mean-
ingfully contribute to predicting the outcome. In stepwise regression, only the import-
ant variables that are statistically contributing to the outcome are kept to ensure the 
best linear model for prediction. Different methods of stepwise approaches are 
described in Table 16.11.

16.2.5.1 Backward selection method

For a backward selection method of variables in multiple regression, use the following 
command (outputs are shown in Table 16.12): 

xi: stepwise, pr(0.2): regress dbp sbp age i.sex i.religion

In this example, “pr(0.2)” indicates the removal (exclusion) criteria of independent 
variables from the model, i.e., if the p-value of an independent variable is ≥0.02, the 
variable will be automatically removed from the model. You can change the criteria of 
removal based on your requirements. For example, you may decide the removal crite-
ria as 0.1 or 0.3 or others. The use of “xi:” before the command “stepwise” will consid-
er both the categorical and quantitative variables for the analysis.

Sometimes it is necessary to keep one or more variables in the model that are consid-
ered important for theoretical or practical reasons, though they are not statistically 
significant (forced-entry of variables). In our example, the variable “age” is not signifi-
cantly associated with the outcome variable (p=0.614; Table 16.3). However, if you 
want to force-entry the variable “age” into the model in a stepwise method, use the first 
of the following commands (Table 16.13):

xi: stepwise, pr(0.2) lockterm1: regress dbp age sbp  i.religion
xi: stepwise, pr(0.2) lockterm1: regress dbp (age i.religion) sbp

The first command will force-entry the variable “age” (the first variable immediately 
after the dependent variable) into the model. The second command will force-entry the 
variables “age” and “religion” into the model. 

For the backward stepwise method with a removing criteria of p≥0.2 and adding 
(entry) criteria of p<0.1, use the following command:

xi: stepwise, pr(.2) pe(.1): regress dbp sbp age i.sex i.religion
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16.2.5.2 Forward selection method

For a forward selection method with an entry-term p-value of ≤0.2, use the following 
command [pe(#) indicates the level of significance for inclusion into the model]: 

xi: stepwise, pe(0.2): regress dbp age sbp i.sex i.religion

Table 16.11 Variable selection methods for modeling 

Technique Method Advantages and limitations  

Backward 
selection 

In this method, all the variables are 
initially included, and in each step, the 
most statistically insignificant variable 
(p>0.05; useless variable) is dropped. This 
process is repeated until all the variables 
left over are statistically significant.

Better for assessing 
(adjusting) for confounding 
effect than the forward 
selection method. 

Forward 
selection 

In this method, first a single independent 
variable that has the strongest association 
(smallest p-value) with the outcome 
variable is entered into the model. Then 
(second step), the method identifies the 
variables among those not in the model 
that, when added to the model so far 
obtained, explain the largest amount of 
the remaining variability. The second step 
is repeated until the addition of the extra 
variable is not statistically significant. 

Best suited for dealing with 
the studies where the sample 
size is small. Does not deal 
well with suppressor 
(confounding) effects. 

Stepwise/ 
Remove 
selection 

This is a combination of forward and 
backward selection methods. In the 
stepwise method, variables that are 
entered are checked at each step for 
removal. Likewise, in the removal 
method, variables that are excluded will 
be checked for re-entry. 

Has the ability to manage 
large number of potential 
predictor variables, fine-
tuning the model to choose 
the best predictor variables 
from the available options. 

Enter (all 
variables) 

Enters all the variables at the same time 
and does not remove any variable 
automatically from the model.  

Including all variables may 
be problematic, if there are 
many independent variables 
and the sample size is small. 
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For a forward stepwise method with a removing criteria of p≥0.2 and adding (entry) 
criteria of p<0.15, use the following command:

xi: stepwise, pr(.2) pe(.15) forward: regress dbp sbp age i.sex i.religion

16.2.5.3 Interpretation

The interpretation of the outputs of stepwise methods is the same as discussed in 
Section 16.2.3. In the backward selection method of analysis, our dependent variable 
was “dbp” (Table 16.12). The independent variables included in the analysis were 
“sbp, age, sex, and religion”. The outputs of the analysis (Table 16.12) show that two  
variables (systolic BP and sex) are significantly associated with diastolic BP and are 
retained in the model. 

The R-squared value, calculated in the analysis, is 0.725, indicating that the indepen-
dent variables (systolic BP and sex) together explain 72.5% of the variation in diastolic 
BP, which is statistically significant [p=0.000 (Prob > F)]. The regression coefficients 
(Coef.) and p-values (P > | t |) for systolic BP and sex are 0.489 (p=0.000) and -2.180 
(for males compared to females; p=0.015), respectively. We can, therefore, conclude 
from the analysis that the systolic BP and sex are the important factors significantly 
influencing the diastolic BP (since the p-values are <0.05). 

Table 16.12 Modeling with backward selection method  

. xi:stepwise, pr(0.2): regress dbp sbp age i.sex i.religion 
 
i.sex             _Isex_0-1         (naturally coded; _Isex_0 omitted) 
i.religion        _Ireligion_1-3      (naturally coded; _Ireligion_1 omitted) 
                      begin with full model 
p = 0.8763 >= 0.2000  removing _Ireligion_3 
p = 0.6723 >= 0.2000  removing _Ireligion_2 
p = 0.6181 >= 0.2000  removing age 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  2,   207) =  272.86 
       Model |   20917.406     2   10458.703           Prob > F      =  0.0000 
    Residual |  7934.16062   207  38.3292784           R-squared     =  0.7250 
-------------+------------------------------           Adj R-squared =  0.7223 
       Total |  28851.5667   209  138.045774           Root MSE      =  6.1911 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sbp |    .489694   .0215077    22.77   0.000     .4472918    .5320963 
       _Isex |  -2.180167   .8930832    -2.44   0.015    -3.940872   -.4194618 
       _cons |   21.01581   2.838019     7.41   0.000     15.42068    26.61094 
------------------------------------------------------------------------------ 
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The regression coefficient for systolic BP is 0.489 (95% CI: 0.44 to 0.53; p<0.001). 
This indicates that the average increase (or decrease) in diastolic BP is 0.49 mmHg if 
the systolic BP increases (or decreases) by 1 mmHg after adjusting for sex. The regres-
sion coefficient for sex, on the other hand, is –2.180 (95% CI: -3.940 to -0.419; p= 
0.015), which means that the average diastolic BP of males is 2.18 mmHg less (since 
the coefficient is negative) than the females after adjusting for systolic BP.

Table 16.13 Backward selection method with forced-entry of age in the model  
. xi: stepwise, pr(0.2) lockterm1: regress dbp age sbp i.religion 
 
i.religion           _Ireligion_1-3     (naturally coded; _Ireligion_1 omitted) 
                      begin with full model 
p = 0.8181 >= 0.2000  removing _Ireligion_2 
p = 0.6124 >= 0.2000  removing _Ireligion_3 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  2,   207) =  263.03 
       Model |  20704.4665     2  10352.2333           Prob > F      =  0.0000 
    Residual |  8147.10016   207  39.3579718           R-squared     =  0.7176 
-------------+------------------------------           Adj R-squared =  0.7149 
       Total |  28851.5667   209  138.045774           Root MSE      =  6.2736 
 
------------------------------------------------------------------------------ 
         dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |  -.0353995    .056452    -0.63   0.531    -.1466941    .0758952 
         sbp |   .4956516   .0216435    22.90   0.000     .4529816    .5383216 
       _cons |   20.48269   3.281515     6.24   0.000     14.01322    26.95217 
------------------------------------------------------------------------------ 
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Logistic Regression

Logistic regression is a commonly used multivariable method of data analysis in health 
and social sciences research. This tool can be applied to analyze the data of cross-sec-
tional, case-control, or cohort studies. Logistic regression analysis is performed when 
the outcome (dependent) variable is a categorical variable, either dichotomous (also 
called binary variable, e.g., disease – present/absent), unordered polychotomous (e.g., 
type of food preferred – rice/bread/meat) or ordinal variable (severity of pain – mild/-
moderate/severe). The predictive (independent) variables can be either categorical or 
continuous. Like other multivariable analyses, the purposes of multivariable logistic 
regression analysis are to: 

• Adjust the estimate of risk (odds ratio) for a number of independent variables  
 included in the model; 
• Determine the relative contribution of independent variables to a single outcome; 
• Predict the probability of an outcome for a number of independent variables in  
 the model; and 
• Assess the interaction of multiple independent variables on the outcome variable. 

Logistic regression analysis can be applied in several methods, depending on the type 
of outcome variable and study design. They are: 

1. Binary logistic regression: This method is used when the dependent variable is a 
dichotomous (binary) categorical variable, such as a disease (present/absent), vaccinat-
ed (yes/no), or the outcome of a patient (died/survived). The binary logistic regression 
can be applied as: 

a) Unconditional binary logistic regression: This method is used when the depen-
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 dent variable is a dichotomous categorical variable in an unmatched study  
 design (e.g., unmatched case-control studies). The term “unconditional binary  
 logistic regression” is commonly expressed as “unconditional logistic regres- 
 sion or logistic regression”; and 

b) Conditional binary logistic regression: This method is applied where the dep- 
 endent variable is a dichotomous variable and the cases are matched with  
 controls for one or more variables (e.g., matched case-control studies). The  
 word “binary” is commonly omitted from the terminology and is simply  
 expressed as “conditional logistic regression”. 

2. Multinominal logistic regression: This method of data analysis is used when the 
outcome (dependent) variable is a nominal categorical variable with more than two 
levels, such as health-seeking behavior (did not seek treatment/ received treatment 
from village doctors/ received treatment from pharmacists), type of cancer (stomach 
cancer/ lung cancer/ skin cancer) and others.

3. Ordinal logistic regression (proportional odds regression): This method is used 
when the outcome variable is an ordinal categorical variable, like severity of pain 
(mild/ moderate/ severe) and stage of cancer (stage 1/ stage 2/ stage 3/ stage 4). 

17.1 Mathematical concept of logistic regression model
In logistic regression analysis, odds are transformed into natural log (ln) of odds, i.e., 
“ln odds”. The “ln” is the log to the base of e. To reverse (antilog) the ln, we take the 
exponential (ex) of the log value. When the odds are transformed into ln odds, it is 
called the logit transformation. In logistic regression, ln odds of the outcome variable 
are put on the Y-axis. The multivariable logistic regression model is given by the equa-
tion:

Where, P denotes the probability of the outcome, β0 is the intercept (constant) and βi is 
the regression coefficient of the ith variable (i= 1, 2, …, n), and Xi represents the values 
of the predictor (independent) variables in the model, Xi  = (X1, X2, … Xn). 

The regression coefficients (β) that we get in logistic regression analysis are the ln 
odds and the exponential of the regression coefficients are the odds ratios (ORs) for the
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categorical independent variables after adjusting for other variables in the model. If the 
independent variable is a continuous variable, the interpretation is different and is 
discussed in Section 17.2.1.1. We can calculate the probability (p) of an outcome by 
using the following formula:

 
 

 
A detailed explanation of the model can be found in any standard biostatistics book. In 
this chapter, we will discuss the unconditional and conditional logistic regression 
methods, while the multinominal logistic regression method is discussed in Chapter 
18. 

Assumptions for logistic regression

Logistic regression does not make any assumption concerning the distribution of the 
predictor (independent) variables. However, it is sensitive to high correlations among 
the independent variables (multicollinearity). The outliers may also affect the results of 
logistic regression analysis. 

17.2 Binary logistic regression 

Binary logistic regression analysis is appropriate when the outcome variable is a 
dichotomous categorical variable (e.g., disease present/absent). It is commonly used 
for the adjustment of one or more confounding factors or to model (identify) the 
predictors for a dichotomous categorical outcome. For logistic regression analysis in 
Stata, the dichotomous outcome variable must be coded as “0= disease absent” and 
“1= disease present”. Stata will consider the higher value to be the predicted outcome 
and the lower value as the comparison group. 

17.2.1 Unconditional binary logistic regression

Unconditional binary logistic regression is simply called logistic regression. We will 
use the term “logistic regression” to mean unconditional logistic regression throughout 
this chapter. 

Or
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Suppose that you have conducted an unmatched study (e.g., a cross-sectional or an 
unmatched case-control study) to identify the factors (or predictors) associated with 
diabetes mellitus (dependent or outcome variable). The independent (explanatory or 
predictor) variables/factors that you have considered for logistic regression analysis 
are sex (variable name: sex), age (variable name: age), peptic ulcer (variable name: 
pulcer), family history of diabetes (variable name: fhistory), and religion (variable 
name: religion). 

To perform logistic regression analysis, recode all the dichotomous independent 
variables as "0 for no" and "1 for yes" if they are not coded like this. If they are coded 
like this, interpretation of the odds ratio (OR) is straightforward, otherwise, interpreta-
tion may be complicated (especially if you do not use the prefix "i." to the variable). 
Use the data file <Data_4.dta> for practice.

The coding scheme of the variables to be used in logistic regression analysis is shown 
in Table 17.1. You can also check the coding scheme (value labels of categorical 
variables only) of the variables by using the following command: 

label list diabetes sex pulcer fhistory religion
Or, 
codebook diabetes sex pulcer fhistory religion

To perform the logistic regression analysis, use either of the following commands:

logistic diabetes i.sex age i.pulcer i.fhistory i.religion
logit diabetes i.sex age i.pulcer i.fhistory i.religion, or
logit diabetes i.sex age i.pulcer i.fhistory i.religion

The first two commands will report the results in terms of odds ratios (ORs) with their 
95% confidence intervals (CIs) (Table 17.2), while the third command will present the 
results in terms of logistic regression coefficients with their 95% CIs (Table 17.3). In 
the second command, the option “or” indicates the odds ratio. If you use this option 
with the “logit” command, Stata will report the ORs. If the prefix “i.” is used for the 
independent variables, Stata will consider them as categorical variables during analy-
sis. Note that the first variable after the command is the dependent (outcome) variable. 
We recommend using the first command for the analysis since our interest is to get the 
ORs for easy interpretation of the categorical independent variables.

In logistic regression, Stata considers (by default) the first category (lowest value) of 
the categorical independent variables as the comparison group. For example, we have 
entered the variable “sex” in the analysis. The coding scheme of sex is 0 for females 
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and 1 for males. Therefore, the analysis will give the OR for males compared to 
females. On the other hand, the independent variable “religion” has three levels (Table 
17.1). Since Muslims are coded as 1 (first category), Muslims will be the comparison 
group for religion. The ORs that the Stata will provide for other religions (Hindus and 

Table 17.1 Codebook 

Variable name Variable label Variable codes  

diabetes Have diabetes (dependent variable) 0= no; 1= yes 
sex Sex 0= female; 1= male 
age Age in years Actual value 
pulcer Have peptic ulcer 0= no; 1= yes 
fhistory Have family history of diabetes 0= no; 1= yes 
religion Religion of the subjects 1= Muslim; 2= Hindu; 

3= Christian  

Table 17.2 Logistic regression analysis using the command “logistic” 
. logistic diabetes i.sex age i.pulcer i.fhistory i.religion 
 
Logistic regression                               Number of obs   =        210 
                                                  LR chi2(6)      =     102.61 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -57.807479                       Pseudo R2       =     0.4702 
 
------------------------------------------------------------------------------ 
    diabetes | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       Male  |    4.80143   2.555999     2.95   0.003     1.691379    13.63014 
         age |   1.262949   .0503621     5.85   0.000        1.168    1.365616 
             | 
      pulcer | 
        Yes  |   5.937446   2.947017     3.59   0.000     2.244453    15.70684 
             | 
    fhistory | 
        Yes  |    2.85935   1.531351     1.96   0.050     1.000918    8.168382 
             | 
    religion | 
      HINDU  |   1.655078   .9067061     0.92   0.358     .5655909    4.843225 
  Christian  |   .8324862   .7949383    -0.19   0.848     .1281054    5.409867 
             | 
       _cons |   .0000187   .0000296    -6.90   0.000     8.48e-07    .0004131 
------------------------------------------------------------------------------ 
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Christians) will be compared to Muslims. However, you can change the comparison 
group by using the following commands: 

logistic diabetes i.sex age i.pulcer i.fhistory ib3.religion
logistic diabetes ib1.sex age i.pulcer i.fhistory ib3.religion

The first command will consider the last category of religion (category 3 or Christians) 
as the comparison group, while the second command will consider males (because 
males are coded as 1) as the comparison group for sex, and Christians as the compari-
son group for religion during analysis. 

Occasionally, in cross-sectional studies, data is collected through cluster sampling 
methods. In such a situation, it is necessary to control (adjust) for the cluster effects 
during analysis. To adjust for cluster effects (say, the name of the cluster variable is 
“clus”), use the following command:

logistic diabetes i.sex age i.pulcer i.fhistory i.religion, vce(cluster clus)

17.2.1.1 Interpretation

In logistic regression analysis, we have entered five independent variables, among 
which one is a continuous variable (age) and the others are categorical variables (sex, 
peptic ulcer, family history of diabetes, and religion). Let us interpret the outputs 
provided in Table 17.2. 

The table shows that the data from 210 subjects were analyzed. The likelihood ratio 
(LR) chi-square [LR Chi2(4)] value is 102.61 and its p-value (Prob > chi2) is 0.000. 
We want the LR chi-square test to be significant (p<0.05). A significant LR chi-square 
test indicates that the proposed model is better than the null model (i.e., a model with-
out any independent variable) in predicting the outcome variable. Furthermore, if the 
LR chi-square test p-value is greater than 0.05, it means that the independent variables 
are unable to predict the outcome variable (a situation where none of the independent 
variables in the model are significant).

The pseudo R-square value indicates the amount of variation in the outcome variable 
that can be explained by the independent variables in the model. In this example, the 
pseudo R-square (Pseudo R2) value is 0.4702. This indicates that 47.02% of the varia-
tion in the outcome variable (diabetes) can be explained by all the independent 
variables (sex, age, peptic ulcer, family history of diabetes, and religion) in the model. 
However, the pseudo R-square value should be interpreted cautiously because it is not 
equivalent to the R-squared value that we get in a linear regression model (Sections 
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16.1.2 and 16.2.3). This information is not needed if the objective of the analysis is to 
adjust for Odds Ratio.

The table (Table 17.2) also shows the ORs (Odds Ratios) for the independent variables 
with their standard errors (Std. Err.), 95% CIs (95% Conf. Interval), and p-values 
(P>|z|). In our analysis, there are five independent variables in the model. All of them 
are categorical variables (sex, family history of diabetes, peptic ulcer, and religion), 
except for age, which is entered as a continuous variable. The interpretation of the OR 
for a categorical and a continuous variable is not the same. 

Let us first interpret the ORs for categorical variables. Table 17.2 shows that the OR 
for sex (being male) is 4.80 (95% CI: 1.69 - 13.63), which is statistically significant 
(P=0.003). Here, the comparison group is female. The OR of 4.80 suggests that males 
are 4.8 times more likely to have diabetes compared to females after adjusting (con-
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Table 17.3 Logistic regression analysis using the command “logit” 
. logit diabetes i.sex age i.pulcer i.fhistory i.religion 
 
Iteration 0:   log likelihood = -109.11177   
Iteration 1:   log likelihood = -65.686705   
Iteration 2:   log likelihood = -58.065695   
Iteration 3:   log likelihood = -57.807622   
Iteration 4:   log likelihood = -57.807479   
Iteration 5:   log likelihood = -57.807479   
 
Logistic regression                               Number of obs   =        210 
                                                  LR chi2(6)      =     102.61 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -57.807479                       Pseudo R2       =     0.4702 
 
------------------------------------------------------------------------------ 
    diabetes |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       Male  |   1.568914   .5323411     2.95   0.003     .5255445    2.612283 
         age |   .2334492   .0398766     5.85   0.000     .1552926    .3116058 
             | 
      pulcer | 
        Yes  |   1.781279   .4963443     3.59   0.000      .808462    2.754096 
             | 
    fhistory | 
        Yes  |   1.050594   .5355591     1.96   0.050     .0009176    2.100271 
             | 
    religion | 
      HINDU  |   .5038483   .5478328     0.92   0.358    -.5698842    1.577581 
  Christian  |  -.1833386   .9548967    -0.19   0.848    -2.054902    1.688225 
             | 
       _cons |  -10.88592   1.578628    -6.90   0.000    -13.97998    -7.79187 
------------------------------------------------------------------------------ 
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trolling) for age, family history of diabetes, peptic ulcer, and religion. Note that the 
ORs provided by logistic regression analysis are the adjusted ORs. Similarly, individu-
als who have a family history of diabetes are 2.85 times more likely (OR: 2.85; 95% 
CI: 1.00 to 8.16; p=0.05) to have diabetes compared to those who do not have a family 
history, after adjusting for age, sex, peptic ulcer, and religion. But the OR is not statisti-
cally significant (though the p-value is 0.05) as the null value (one) is included in the 
95% CI. Lastly, the ORs for Hindus and Christians provided in the table are compared 
to Muslims after controlling for age, sex, peptic ulcer, and family history of diabetes. 

The interpretation of OR for age is different since the variable is entered as a continu-
ous variable. In our example, the OR for age is 1.262 (95% CI: 1.168 – 1.365; 
p=0.000). This means that the odds of having diabetes will increase (since the value of 
OR is greater than one) by 26.2% (calculated as OR – 1; i.e., 1.262 – 1 = 0.262 or 
26.2%) (95% CI: 16.8% to 36.5%) with each year increase in age after adjusting for all 
other variables in the model, which is statistically significant (p<0.001). 

All the outputs in Table 17.3 are the same as the outputs in Table 17.2 except that Table 
17.3 provides the regression coefficients (with their standard errors and 95% CIs) 
rather than the ORs. Note that the z-values (Z) and p-values (P>|z|) are the same in both 
tables. The coefficients are used to calculate the predicted probabilities of the outcome 
variable with the independent variables in the model. In logistic regression, the odds 
are transformed into ln odds (logit transformation) during analysis. Therefore, the 
coefficients reported in the table are the ln odds and their exponentials (ex) are the ORs. 
For example, the coefficient for males is 1.568914 and its exponential is 4.80, which is 
the OR for males (Table 17.2). 

The table (Table 17.3) also shows the iterations. The iterations indicate the log 
likelihood values. The first iteration (iteration 0) indicates the log likelihood of the 
null model (i.e., a model without any independent variable). The table shows that the 
log likelihood has increased [from -109.11 (Iteration 0) to -57.80 (Iteration 5)] with 
the inclusion of independent variables in the model. The improvement in log likeli-
hood value is statistically significant as indicated by the p-value (0.000) of the log 
likelihood ratio chi-square test (Prob > Chi2). A significant p-value indicates that the 
model is significantly better than the null model.

17.2.2 Logistic regression diagnostics

In order to check if the analysis is valid, the model has to satisfy certain assumptions 
of logistic regression. When the assumptions are not met, the analysis may provide 

Logistic Regression
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biased estimates of the coefficients, which may lead to misinterpretation of the results. 
It is, therefore, important to check the underlying assumptions before considering the 
logistic regression analysis valid. Regression diagnostics are used to evaluate whether 
the assumptions are true or not. In this section, we will discuss how to assess some of 
the important assumptions to validate the model, like multicollinearity, model fit, and 
others.

17.2.2.1 Checking for multicollinearity

Multicollinearity occurs when one or more independent variables are in a linear combi-
nation (highly correlated) with other independent variables in the model. The degree of 
multicollinearity can vary and can have different effects on the model. When multicol-
linearity is present, the model becomes dubious (i.e., the model may not provide a 
correct estimate of the regression coefficients). It is, therefore, important to check for 
multicollinearity of the independent variables in the model.

Multicollinearity can be checked by generating a correlation matrix of the independent 
variables included in the model. To generate the correlation matrix, use the following 
command (Table 17.4): 

correlate sex age pulcer fhistory religion

Table 17.4 shows the correlation coefficients (r values) of the independent variables 
included in the analysis. If an r value is greater than 0.5, it is generally considered that 
the variable has a correlation with another variable that may affect the regression 
analysis. We don’t have any such problem in our analysis because none of the r values 
is greater than 0.5 (the highest value is 0.22). 

Another simple and subjective way to examine multicollinearity is to check the 
standard errors (SE) of the coefficients as provided in Table 17.3. If multicollinearity 
is present and affects the model, the magnitude of the standard errors (SEs) of some of 
the coefficients will be very high (greater than 5.0) or very low (less than 0.001). The 
existence of multicollinearity means that the model is not statistically stable. To solve 
the problem (in general), look at the SEs and omit the variable(s) with a very high (or 
very low) SE until the magnitude of the SEs hovers between 0.001 and 5.0.

Sometimes an independent variable may have a strong correlation with the constant 
(residuals or errors) in the model. If there is a strong correlation between the constant and 
any of the independent variables, you can omit the constant from the model. To check the 
correlation between constant and independent variables in the model, first generate a 
residual variable (representing the constant) by using the following command:

Logistic Regression
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predict residual, resid

This command will generate a new variable “residual” containing the residual values 
(errors). Now, to get the correlation matrix of independent and residual variables, use 
the following command (Table 17.5): 

correlate sex age pulcer fhistory religion residual

Table 17.5 shows a moderate correlation (r = 0.68) between age and residual (con-
stant). However, it has not affected the results since none of the SEs of coefficients are 
greater than 5.0 or less than 0.001 (Table 17.3). If it had affected the results, some of 
the SEs of the coefficients would have been either greater than 5.0 or less than 0.001. 
If there is a problem like this, it is suggested to run the logistic regression analysis 
without (omitting) the constant. The following is the command to do the analysis with-
out the constant in the model:

logistic diabetes i.sex age i.pulcer i.fhistory i.religion, nocons

17.2.2.2 Checking for model fit 

Logistic regression is commonly done to adjust the ORs for confounding factors and to 
identify predictors for the outcome variable. When the intention of analysis is predic-
tion (i.e., to identify the predictors), then the question is “How good is the model for 
prediction?” This is judged based on the Hosmer-Lemeshow goodness-of-fit test and 
the positive and negative predictive values given in the classification table.

Hosmer-Lemeshow goodness-of-fit test 

The Hosmer-Lemeshow test indicates how well the observed and predicted values fit 
with each other (i.e., the observed and predicted probabilities match with each other). 
The null hypothesis is “the model fits” and the p-value is expected to be >0.05 

Logistic Regression

Table 17.4 Correlation matrix of the independent variables  
. correlate sex age pulcer fhistory religion 
(obs=210) 
 
             |      sex      age   pulcer fhistory religion 
-------------+--------------------------------------------- 
         sex |   1.0000 
         age |   0.0586   1.0000 
      pulcer |   0.0520   0.2153   1.0000 
    fhistory |  -0.2222   0.1585   0.1282   1.0000 
    religion |  -0.1308  -0.0582  -0.1038   0.1453   1.0000 
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(non-significant). If the p-value is not significant (>0.05), it suggests that the model is 
good for prediction of the outcome variable (i.e., the observed and predicted values are 
close together). This test is done after running the logistic regression analysis, and the 
command is: 

lfit, group(10)

The above command will generate Table 17.6. The table shows that the Hosmer-Leme-
show chi-square test p-value is 0.085. Since the p-value is greater than 0.05, we can 
conclude that the model is useful for prediction of the outcome variable by the inde-
pendent variables included in the model. If the test is significant (p<0.05), we will 
conclude that the model is not good enough to predict the outcome variable by the 
independent variables in the model. This information is not needed if the objective of 
doing the logistic regression analysis is to adjust for the confounding factors.

Classification table

The classification table provides us with the sensitivity, specificity, and positive and 
negative predictive values, and overall accuracy of the model. The predictive values 
indicate how well the model is able to predict the correct category of the dependent 
variable (i.e., have or do not have the disease). To get the sensitivity, specificity, and 
positive and negative predictive values, we need to generate the classification table by 
using the following command (after running the logistic regression analysis). Usually, 
the classification table is generated at a cut-off value of 0.5 (50%). You can, however, 
change the cut-off value of your choice. 

lstat, cutoff(0.5)

This command will generate Table 17.7. The table shows that the overall accuracy of 
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Table 17.5 Correlation matrix of independent variables and residuals 
. correlate sex age pulcer fhistory religion residual 
(obs=210) 
 
             |      sex      age   pulcer fhistory religion residual 
-------------+------------------------------------------------------ 
         sex |   1.0000 
         age |   0.0586   1.0000 
      pulcer |   0.0520   0.2153   1.0000 
    fhistory |  -0.2222   0.1585   0.1282   1.0000 
    religion |  -0.1308  -0.0582  -0.1038   0.1453   1.0000 
    residual |   0.1227   0.6824   0.3096   0.1749   0.1768   1.0000 
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this model to predict diabetes (with a predicted probability of 0.5 or greater) is 90.5% 
(shown at the bottom of the table as correctly classified). The sensitivity and specificity 
of the model are 71.11% [32 ÷ 45] and 96.36% [159 ÷ 165], respectively, while the 
positive and negative predictive values are 84.2% [32 ÷ 36] and 92.4% (159 ÷ 172], 
respectively. Interpretation of these findings is a little complicated and needs further 
explanation, especially the explanation of sensitivity, specificity, and positive and 
negative predictive values. For a detailed explanation, readers may refer to any 
standard epidemiology book [10, 16]. You can see the sensitivity and specificity with 
varying cut-off points (in a graph) by using the following command (not shown): 

lsens

To conclude, the information provided in the classification table is needed if the inten-
tion of logistic regression analysis is to predict the outcome variable with independent 
variables in the model. We can ignore the information if the objective of the analysis is 
to adjust for the confounding factors.

17.2.2.3 ROC curve

We can construct the receiver-operating characteristic (ROC) curve to assess the model 
discrimination, which is an indication of the accuracy of logistic regression model. 
Discrimination is defined as the ability of the model to distinguish between those who 
have the outcome (e.g., a disease) and those who do not have the outcome. Discrimina-
tion is evaluated by using the ROC curve analysis. In ROC curve analysis, the area 
under the curve (called C-statistic) is measured. 

The area under the ROC curve ranges from 0 to 1. A value of 0.5 indicates the model 
is useless. Values between 0.7 and 0.8 are considered acceptable discrimination, values 
between 0.8 and 0.9 indicate excellent discrimination, and values ≥0.9 indicate 
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Table 17.6 Hosmer-Lemeshow goodness-of-fit test 
. lfit, group(10) 
 
Logistic model for diabetes, goodness-of-fit test 
 
  (Table collapsed on quantiles of estimated probabilities) 
 
       number of observations =       210 
             number of groups =        10 
      Hosmer-Lemeshow chi2(8) =        13.87 
                  Prob > chi2 =         0.0851 
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outstanding discrimination.

To get the ROC curve, after performing the logistic regression analysis, use the follow-
ing command (Fig 17.1):

lroc

Figure 17.1, generated by the command above, shows that the area under the curve is 
0.915 (at the bottom of Figure 17.1). Since the value is >0.9, it is an excellent model 
for prediction. However, we can separately calculate the area under the ROC curve 
with its 95% CI. To calculate the area under the curve, we need to generate a classifier 
variable (say, class). Then we will calculate the area under the curve with its 95% CI. 
Use the following commands: 

predict class
roctab diabetes class

The first command will generate the classifier variable “class”, while the second com-
mand will calculate the area under the curve with its 95% CI (Table 17.8).

Logistic Regression

Table 17.7 Classification table  

. lstat, cutoff(0.5) 
 
Logistic model for diabetes 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |        32             6  |         38 
     -     |        13           159  |        172 
-----------+--------------------------+----------- 
   Total   |        45           165  |        210 
 
Classified + if predicted Pr(D) >= .5 
True D defined as diabetes != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   71.11% 
Specificity                     Pr( -|~D)   96.36% 
Positive predictive value       Pr( D| +)   84.21% 
Negative predictive value       Pr(~D| -)   92.44% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    3.64% 
False - rate for true D         Pr( -| D)   28.89% 
False + rate for classified +   Pr(~D| +)   15.79% 
False - rate for classified -   Pr( D| -)    7.56% 
-------------------------------------------------- 
Correctly classified                        90.95% 
-------------------------------------------------- 
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17.2.2.4 Other postestimation commands

The postestimation commands are used after performing the logistic regression analy-
sis. Based on the analysis, you can calculate the estimated probability of the dependent 
variable for each subject in the dataset using the following command:

predict pre1, pr

This command will generate a variable “pre1” with the probability of having the 
outcome (diabetes) for each subject.

Stata can also provide the probability of having the outcome variable for the indepen-
dent variables in the model. Use the following command to get the predicted probabili-
ty (adjusted probability) of having diabetes for each level of sex and religion, consider-
ing the average values of the covariates in the model: 

margins religion sex, atmeans
marginsplot

The first command will provide the predicted probability of diabetes for each level of 
religion and sex (Table 17.9). The table shows that the predicted probability (Margin) of 
diabetes (i.e., the probability of having diabetes) for being a Muslim is 0.0720, while it 
is 0.113 for Hindus and 0.060 for Christians. The second command will display a graph 
of predicted probability for all the categories of religion with their 95% CIs (Fig 17.2). 
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17.2.3 Variable selection for a model

We have discussed different methods of variable selection for a model in the previous 
chapter in detail (Chapter 16). Like other multivariable analyses, independent 
variables to be selected for a logistic regression should include the risk factors of inter-
est and potential confounders, while avoiding variables with lots of missing values. 

So far in this chapter, we have used the “Enter” method for logistic regression analysis. 
The “Enter” method uses all the independent variables in the model specified by the 
researchers. We can use the automatic selection method (stepwise method) for analysis 
as well. For logistic regression, the commonly used method for the automatic selection 
of variables for a model is the “Backward LR” method. If there is evidence of multicol-
linearity, you may select the “Forward LR” method for analysis. However, stepwise 
methods are nowadays discouraged from being used because of the biased estimates 
provided by the analysis [28, 40]. The commands for stepwise logistic regression are 
provided below: 

xi: sw, pr(.1) pe(.05): logistic diabetes i.sex age i.religion i.fhistory
xi: sw, pr(.1) pe(.05) forward: logistic diabetes i.sex age i.religion i.fhistory
xi: sw, pr(.1) pe(.05) forward lockterm1: logistic diabetes (age i.religion) i.sex 
i.fhistory

The first command is for the backward LR method, while the second one is for the 
forward LR method. The third command is for the forced entry of variables “age” and 
“religion” into the model (also see section 16.2.5.1). The “pr(0.1)” indicates the 
removal criteria of independent variables from the model (i.e., if the p-value of a 
variable is ≥0.10, the variable will be removed from the model), while the “pe(0.05)” 
indicates the inclusion (entry) criteria of variables into the model (i.e., if the p-value of 
a variable is <0.05, the variable will be added to the model). You can change the crite-
ria for removal and inclusion based on your needs. The interpretation of the outputs is 
the same as discussed in section 17.2.1.1.

Logistic Regression

Table 17.8 Area under the ROC curve with 95% CI 
. predict class 
(option pr assumed; Pr(diabetes)) 
 
. roctab diabetes class 
 
                      ROC                    -Asymptotic Normal-- 
           Obs       Area     Std. Err.      [95% Conf. Interval] 
         -------------------------------------------------------- 
           210     0.9154       0.0278        0.86078     0.96993 
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17.2.4 Incorporating interaction terms in the model

Interaction and confounding are not the same. Interaction is also called “effect modifi-
cation”. Interaction is said to be present when the strength of association (OR or RR) 
of an independent variable with an outcome variable is different at different levels 
(categories) of a third variable. If the strength of association is the same at different 
levels of the third variable, there is no interaction. 

For example, a researcher is interested in determining an association between smoking 
and heart disease. He found that there is a causal association between smoking and 
heart disease. To determine if there was an interaction between smoking and hyperten-
sion (the third factor), data were stratified by hypertension (have hypertension and 
don't have hypertension), and the strength of association (OR) between smoking and 
heart disease was calculated in each stratum. If the strength of association (OR or RR) 
is the same in these two strata (hypertensive and non-hypertensive), interaction is 

Logistic Regression

Table 17.9 Predicted probabilities for religion and sex  

. margins religion sex, atmeans 
 
Adjusted predictions                              Number of obs   =        210 
Model VCE    : OIM 
 
Expression   : Pr(diabetes), predict() 
at           : 0.sex           =    .6333333 (mean) 
               1.sex           =    .3666667 (mean) 
               age             =    29.01905 (mean) 
               0.pulcer        =    .7190476 (mean) 
               1.pulcer        =    .2809524 (mean) 
               0.fhistory      =    .5428571 (mean) 
               1.fhistory      =    .4571429 (mean) 
               1.religion      =          .6 (mean) 
               2.religion      =    .2761905 (mean) 
               3.religion      =    .1238095 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    religion | 
     MUSLIM  |   .0720608   .0275834     2.61   0.009     .0179982    .1261233 
      HINDU  |     .11389   .0490783     2.32   0.020     .0176983    .2100817 
  Christian  |   .0607226   .0527785     1.15   0.250    -.0427214    .1641666 
             | 
         sex | 
     female  |   .0467855   .0199011     2.35   0.019       .00778     .085791 
       male  |   .1907179   .0637455     2.99   0.003      .065779    .3156569 
------------------------------------------------------------------------------ 
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absent. If the strength of association (OR or RR) is different in those two strata, there 
is an interaction between smoking and hypertension for the causation of heart disease 
(see Section 13.3). 

We can include the interaction terms in logistic regression analysis with other variables 
for adjustment in the model. Suppose that we are interested in assessing if there is an 
association of sex and a family history of diabetes with diabetes mellitus. We are also 
keen to know if there is an interaction between sex and family history of diabetes on 
the outcome. In such a situation, we need to include both the independent variables 
(sex and family history of diabetes) and their interaction terms in the model. Note that 
the variables for which we are looking for interaction must be included in the model 
independently. To add the interaction term (sex#fhistory) into the model, use the 
following command:  

logistic diabetes i.sex age i.pulcer i.religion i.fhistory i.sex#i.fhistory

The above command will generate Table 17.10. The interaction term included in the 
model is indicated as “male#Yes”. The table shows that the p-value for the interaction 
is 0.514 (>0.05), indicating that there is no interaction between sex and family history 
of diabetes for the outcome (i.e., the effect of sex on diabetes is not dependent on the 
family history of diabetes). If there is an interaction (p-value <0.05), data needs to be 
analyzed separately at each level of sex or family history of diabetes, depending on the 
objective.
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Figure 17.2 Marginal values of religion with the 95% CI 
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17.2.5 Sample size for logistic regression

Sample size is always a concern for the analysis of data. The sample size needed for a 
logistic regression analysis depends on the effect size (OR) you are trying to demon-
strate and the variability of the data. It is always better to calculate the sample size 
during the design phase of the study by using an appropriate formula and selecting the 
relevant parameters. However, a rule-of-thumb for planning a logistic regression 
analysis is that for every independent variable in the model, you need to have at least 
10 outcomes (some authors recommend a minimum of 15-25 cases for each indepen-
dent variable) [6, 23].

17.2.6 Conditional logistic regression

In section 17.2.1 we have discussed the unconditional logistic regression analysis, 
which is used for an unmatched design. The conditional logistic regression analysis is 
done when the cases and controls are matched for one or more variables (e.g., a 
matched case-control design).

Suppose that we have conducted a matched case-control study to identify the risk 
factors for death due to COVID infection. In this study, the cases are matched with the 
controls by gender. The outcome of interest in this study is death due to COVID (case). 
The controls are those who survived the COVID infection. Each case (1:1) is matched 
with a person who survived by gender. The risk factors that will be evaluated in this 
study are age, religion, diabetes, and hypertension. The data for this matched case-con-
trol study is given in the data file <Data_Ca-Co_matched.dta>. We will use this data 
file for conditional logistic regression analysis.

In the dataset, the variable “mID” indicates the matching ID number of cases and 
controls (we must have this variable), while the variable “death” indicates whether the 
subject survived (control; coded as 0) or died (case; coded as 1) due to COVID. The 
codebook of variables to be used in the analysis is provided in Table 17.11. You can 
also check the coding scheme (value labels) of the variables by using the following 
command:

codebook mID death gender religion diabetes htn 

In logistic regression analysis, we will use the variables death (outcome variable), age, 
religion, diabetes, and hypertension. The variable mID is needed to specify the groups. 
Since the cases and controls are matched for gender, it is meaningless to include this 
variable (gender) in the analysis. To perform the conditional logistic regression, use the 

Logistic Regression
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following command: 

clogit death age ib3.religion i.htn i.diabetes, group(mID)

The variable immediately after the command (clogit) must be the outcome (dependent) 
variable. The above command will generate Table 17.12. The table shows the logistic 
regression coefficients, which are difficult to interpret. We prefer to get the ORs, which 
are easier to interpret. To get the ORs, use the following command after the primary 
analysis: 

clogit, or

This command will give you Table 17.13 with the ORs. We will interpret the outputs 
provided in this table to draw conclusions.

Logistic Regression

Table 17.10 Logistic regression with interaction terms 

logistic diabetes i.sex age i.fhistory i.pulcer i.religion i.sex#fhistory 
 
Logistic regression                               Number of obs   =        210 
                                                  LR chi2(7)      =     103.03 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -57.595829                       Pseudo R2       =     0.4721 
 
------------------------------------------------------------------------------ 
    diabetes | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       male  |   3.421403   2.510496     1.68   0.094     .8121282    14.41398 
         age |   1.259393   .0504362     5.76   0.000      1.16432    1.362229 
             | 
    fhistory | 
        Yes  |   2.104785     1.4767     1.06   0.289     .5321228    8.325375 
             | 
      pulcer | 
        Yes  |   5.802878   2.886573     3.53   0.000     2.188887     15.3838 
             | 
    religion | 
      HINDU  |   1.692301   .9342122     0.95   0.341     .5735658    4.993121 
  Christian  |   .8405074   .8056811    -0.18   0.856     .1284131    5.501405 
             | 
sex#fhistory | 
   male#Yes  |   1.978321   2.069448     0.65   0.514     .2546167    15.37117 
             | 
       _cons |   .0000256   .0000418    -6.49   0.000     1.05e-06    .0006254 
------------------------------------------------------------------------------  
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17.2.6.1 Interpretation

The interpretation of the outputs is similar to unconditional logistic regression analysis 
as discussed earlier. Table 17.12 shows that the model explains 34% of the variation in 
the outcome variable by the independent variables (age, religion, hypertension, and 
diabetes) included in the model (Pseudo R2 = 0.3421). 

Our main interest is in ORs, 95% CIs, and p-values. Table 17.13 shows the adjusted 
ORs for all the variables in the model. The table shows that age (p= 0.004), religion 
(Muslims compared to Christians) (p= 0.020) and having hypertension (compared to 
no hypertension) (p= 0.037) are the factors significantly associated with deaths due to 
COVID. Data indicates that Muslims are more likely to die compared to Christians 
(adjusted OR: 13.0; 95% CI: 1.49 – 113.2; p= 0.020) after adjusting for age, hyperten-
sion, and diabetes. On the other hand, those who have hypertension are 2.56 times 
more likely to die compared to those who do not have hypertension (adjusted OR: 
2.56; 95% CI: 1.06 – 6.22; p= 0.037) after controlling for age, religion, and diabetes. 
The interpretation of OR for age is different since the variable is entered as a continu-
ous variable (see section 17.2.1.1). In this example, the OR for age is 1.076 (95% CI: 
1.02 – 1.13; p=0.004). This means that the odds of dying increase by 7.6% (1.076 – 1.0 
= 0.076 or 7.6%) with each year increase in age after adjusting for religion, hyperten-
sion, and diabetes, which is statistically significant at 95% confidence level.

Logistic Regression

Table 17.11 Codebook for the data file “Data_Ca-Co_matched.dta” 

Variable name Variable label Variable codes  
mID Matching ID Actual value 
death Death due to COVID 0= control/alive; 1= 

case/died 
gender  Sex of the subject 0= female; 1= male 
age Age in years Actual value 
religion Religion of the subjects 1= Muslim; 2= Hindu; 

3= Christian  
diabetes Have diabetes 0= no; 1= yes 
htn Have hypertension 0= no; 1= yes 
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17.3 Analysis of cross-sectional data: Estimation of prevalence 
ratio 

It is common practice to analyze data from a cross-sectional study using logistic 
regression when the outcome variable is dichotomous. Logistic regression analysis, 
when used for cross-sectional data, provides the adjusted ORs. The ORs provided by 
the analysis are actually the prevalence odds ratios (PORs). We can use the prevalence 
ratio (PR) to quantify the association between exposure and outcome in cross-sectional 
studies.

In cross-sectional studies, when the prevalence of an outcome (e.g., a disease) is more 
than 10%, POR overestimates the PR if PR is greater than one (i.e., if PR is greater than 
1, the POR will be greater than PR). Estimates for the confounding factors are also not 
equivalent for these two measures. As such, PR should be used in preference to POR 
while analyzing the cross-sectional data. Therefore, when the prevalence of an 
outcome of our interest is greater than 10%, our objective should be to calculate the PR 
rather than the POR for the association of exposure to the outcome.

Logistic Regression

Table 17.12 Conditional logistic regression with coefficients 
. clogit death age ib3.religion i.htn i.diabetes, group(mID) 
 
Iteration 0:   log likelihood = -47.461808   
Iteration 1:   log likelihood = -45.703307   
Iteration 2:   log likelihood =  -45.60376   
Iteration 3:   log likelihood = -45.603507   
Iteration 4:   log likelihood = -45.603507   
 
Conditional (fixed-effects) logistic regression   Number of obs   =        200 
                                                  LR chi2(5)      =      47.42 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -45.603507                       Pseudo R2       =     0.3421 
 
------------------------------------------------------------------------------ 
       death |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   .0741377   .0258347     2.87   0.004     .0235026    .1247727 
             | 
    religion | 
     MUSLIM  |   2.565603   1.104299     2.32   0.020      .401217    4.729989 
      HINDU  |   1.922886   1.091629     1.76   0.078    -.2166663    4.062439 
             | 
         htn | 
        Yes  |   .9436792   .4514828     2.09   0.037     .0587891    1.828569 
             | 
    diabetes | 
        Yes  |    .780711   .4194145     1.86   0.063    -.0413263    1.602748 
------------------------------------------------------------------------------ 
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In this section, we will discuss how to analyze cross-sectional data to get the adjusted 
PR. Several methods are available to obtain the adjusted PR with Stata. They are: 

a) Poisson regression; 
b) Cox regression (proportional hazards analysis) with constant time; and 
c) Generalized linear model (GLM). 

Of the above methods, Poisson regression is the easiest. We will, however, demonstrate 
the use of other methods in this section. 

We will use the data file <Data_4.dta> for the analysis (consider that the data is from 
a cross-sectional study). Our interest is to estimate the PR of diabetes for males com-
pared to females after controlling for age, family history of diabetes (fhistory), and 
peptic ulcer (pulcer).

Logistic Regression

Table 17.13 Conditional logistic regression with OR 
. clogit, or 
 
Conditional (fixed-effects) logistic regression   Number of obs   =        200 
                                                  LR chi2(5)      =      47.42 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -45.603507                       Pseudo R2       =     0.3421 
 
------------------------------------------------------------------------------ 
       death | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   1.076955   .0278228     2.87   0.004     1.023781    1.132891 
             | 
    religion | 
     MUSLIM  |    13.0085   14.36527     2.32   0.020     1.493641    113.2943 
      HINDU  |   6.840675   7.467477     1.76   0.078     .8051986     58.1159 
             | 
         htn | 
        Yes  |   2.569417   1.160048     2.09   0.037     1.060552    6.224974 
             | 
    diabetes | 
        Yes  |   2.183024   .9155918     1.86   0.063      .959516    4.966664 
------------------------------------------------------------------------------ 



193Logistic Regression

17.3.1 Poisson regression 

We can obtain the adjusted PR using the Poisson regression technique. To get the PR 
for sex after controlling for age, family history of diabetes (fhistory), and peptic ulcer 
(pulcer), use the following command:

poisson diabetes i.sex age i.fhistory i.pulcer, irr

This command will generate Table 17.14. The IRR (incidence risk ratio) in the table 
indicates the adjusted PR since we have analyzed the cross-sectional data. 

The analysis reported the IRRs of the independent variables, which are the adjusted 
PRs (Table 17.14). The table shows that the PR of diabetes for males (compared to 
females) is 1.93 (95% CI: 1.07 – 3.49; p= 0.028) after controlling for age, family histo-
ry of diabetes, and peptic ulcer. The findings indicate that the prevalence of diabetes 
among males is 1.9 times higher than that of females after adjusting for all other 
variables in the model, which is statistically significant. The interpretation of PR for 
other categorical variables is similar to this. The interpretation of PR for age is differ-
ent. The data shows that the IRR (PR) for age is 1.139 (~1.40). This indicates that with 
each year increase in age, the prevalence ratio of diabetes will increase by 14% (1.14 
minus 1) after adjusting for other variables in the model.

17.3.2 Cox regression with constant time

To analyze the data for Cox regression with constant time, first we need to generate a 
new variable (say, ctime) that will have the same value (say, 1) for all the subjects (con-
stant time). Then we will use the command “stset” to let Stata recognize the time 
(ctime) and failure (diabetes) variables for the Cox regression analysis. Use the follow-
ing commands to generate the constant time variable “ctime” and set the data for Cox 
regression analysis:

gen ctime=1
stset ctime, failure(diabetes)

The first command will generate a new variable “ctime” with all the values equal to 1. 
The second command will set the data for survival and Cox regression analyses (Chap-
ter 19). Now, use the following command to get the PR:

stcox i.sex age i.fhistory i.pulcer 

The command above will generate Table 17.15. You may use the option “, nolog” to 
suppress the iterations from the outputs. The hazard ratios (Haz. Ratio) reported in the 
table indicate the adjusted PRs.
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17.3.3 Generalized linear model

You can also use the generalized linear model (GLM). But the GLM with the binomial 
and log-link functions may suffer from convergence problems, especially when a 
continuous variable(s) is included in the model for adjustment (i.e., as an independent 
variable). However, to get the PR for sex after controlling for peptic ulcer and a family 
history of diabetes, use the following command: 

binreg diabetes i.sex i.fhistory i.pulcer, rr nolog

We have used the option "nolog" to suppress iterations. The risk ratios in the table 
(Table 17.16) indicate the adjusted PRs since we have analyzed the cross-sectional 
data. Whichever method is used, the interpretation is the same as described in Section 
17.3.1.

Table 17.14 Poisson regression  

. poisson diabetes i.sex age i.fhistory i.pulcer, irr 
 
Iteration 0:   log likelihood =  -81.30859   
Iteration 1:   log likelihood = -81.307121   
Iteration 2:   log likelihood = -81.307121   
 
Poisson regression                                Number of obs   =        210 
                                                  LR chi2(4)      =      66.03 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -81.307121                       Pseudo R2       =     0.2888 
 
------------------------------------------------------------------------------ 
    diabetes |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       male  |   1.938541   .5830272     2.20   0.028     1.075156    3.495254 
         age |   1.139111   .0281784     5.27   0.000     1.085199      1.1957 
             | 
    fhistory | 
        Yes  |   1.446838   .4649351     1.15   0.250      .770708    2.716125 
             | 
      pulcer | 
        Yes  |   2.359057   .7257438     2.79   0.005     1.290843    4.311251 
       _cons |   .0011379   .0010385    -7.43   0.000     .0001902    .0068073 
------------------------------------------------------------------------------ 
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 Table 17.15 Cox regression with constant time  
. stcox i.sex age i.fhistory i.pulcer 
 
         failure _d:  diabetes 
   analysis time _t:  ctime 
 
Iteration 0:   log likelihood = -240.61984 
Iteration 1:   log likelihood = -207.96213 
Iteration 2:   log likelihood = -207.60698 
Iteration 3:   log likelihood = -207.60693 
Refining estimates: 
Iteration 0:   log likelihood = -207.60693 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =          210                     Number of obs   =       210 
No. of failures =           45 
Time at risk    =          210 
                                                   LR chi2(4)      =     66.03 
Log likelihood  =   -207.60693                     Prob > chi2     =    0.0000 
 
------------------------------------------------------------------------------ 
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       male  |   1.938541   .5830272     2.20   0.028     1.075156    3.495254 
         age |   1.139111   .0281784     5.27   0.000     1.085199      1.1957 
             | 
    fhistory | 
        Yes  |   1.446838   .4649351     1.15   0.250      .770708    2.716125 
             | 
      pulcer | 
        Yes  |   2.359057   .7257438     2.79   0.005     1.290843    4.311251 
------------------------------------------------------------------------------ 
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Table 17.16 Generalized linear model (GLM)  

. binreg diabetes i.sex i.fhistory i.pulcer , rr nolog 
 
Generalized linear models                          No. of obs      =       210 
Optimization     : MQL Fisher scoring              Residual df     =       206 
                   (IRLS EIM)                      Scale parameter =         1 
Deviance         =  172.3863397                    (1/df) Deviance =  .8368269 
Pearson          =  199.3341071                    (1/df) Pearson  =  .9676413 
 
Variance function: V(u) = u*(1-u)                  [Bernoulli] 
Link function    : g(u) = ln(u)                    [Log] 
                                                   BIC             = -929.1178 
------------------------------------------------------------------------------ 
             |                 EIM 
    diabetes | Risk Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
       male  |   2.331071   .5153874     3.83   0.000      1.51133    3.595436 
             | 
    fhistory | 
        Yes  |   2.233878   .5522354     3.25   0.001     1.376051    3.626472 
             | 
      pulcer | 
        Yes  |   3.044956   .7708366     4.40   0.000     1.853948    5.001086 
       _cons |   .0574094   .0163787   -10.02   0.000       .03282    .1004216 
------------------------------------------------------------------------------ 
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Multinominal Logistic Regression

Multinominal logistic regression is an extension of binary logistic regression. It is used 
when the dependent (outcome) categorical variable has more than two levels (catego-
ries) that cannot be arranged into an order, e.g., health-seeking behavior (did not seek 
treatment, received treatment from the village doctors, received treatment from the 
pharmacists) or marital status (unmarried, married, divorced, separated). 

Suppose that a researcher has conducted a study to identify the factors associated with 
health-seeking behavior of mothers for diarrhea among their children. Here the depen-
dent variable is “health-seeking behavior”, which has three levels (Table 18.1). The 
independent (explanatory) variables included in the study are maternal age, religion, 
sex of the child, and severity of diarrhea. The coding scheme of all these variables is 
provided in Table 18.1.

Data for this study is provided in the data file <Data_5 multinominal>. We will use 
this data to demonstrate multinominal logistic regression analysis.

Table 18.1 Codebook of data file “Data_5 multinominal” 

Variable name Variable label Variable codes  
age Maternal age in years Actual value 
religion Religion of the subjects 1= Muslim; 2= Others  
behavior Health seeking behavior 1= Did not receive treatment; 

2= Treated by a village doctor; 
3= Treated by a pharmacist 

sex Sex of the child 0= female; 1= male 
sdiar Severity of diarrhea 0= Not severe; 1= Severe 
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For multinominal logistic regression analysis, it is necessary to select a reference group 
(category) of the outcome variable for comparison. We will select the first category 
(did not receive treatment) of the outcome variable as the reference category (base) for 
our analysis. The analysis will, therefore, provide estimates for the categories “treated 
by village doctors” compared to “did not receive treatment”, and “treated by pharma-
cists” compared to “did not receive treatment”. In this example, we will include two 
categorical variables (religion and severity of diarrhoea) and a quantitative variable 
(age) as explanatory variables in the model. To do the multinominal logistic regression 
analysis, use the following command:

mlogit behavior ib2.religion i.sdiar age
mlogit behavior ib2.religion i.sdiar age, rrr
mlogit behavior ib2.religion i.sdiar age, base(2) rrr

The first command will provide the regression coefficients (outputs are not shown). 
The second command will provide the relative risk ratios (RRRs) rather than the coef-
ficients. For both these commands (first and second), the first category of the outcome 
variable (did not receive treatment) will be the comparison group (Stata considers the 
first category as the comparison group by default). The third command will provide the 
RRRs with the second category of the outcome variable as the comparison group (indi-
cated by the “base(2)” option). The prefix ".ib2", used for religion, is to indicate the 
second category (other religion; coded as 2) of religion to be the comparison group. 
Since it is easier to interpret the RRRs, we have shown the outputs of the second com-
mand in Table 18.2. The RRRs are the exponentials of the coefficients that we get by 
using the first command. 

18.1 Interpretation
Table 18.2 shows the results of the analysis of the second command. The first iteration 
(iteration 0) indicates the log likelihood of the null model (i.e., a model without any 
independent variable). The table shows that the log likelihood has increased [from 
-223.23 (Iteration 0) to -174.89 (Iteration 5)] with the inclusion of independent 
variables in the model. The log likelihood chi-square p-value (Prob > Chi2) as provid-
ed in the table is significant (p= 0.000). A significant p-value indicates that the model 
is significantly better than the null model; i.e., the addition of independent variables 
(religion, severity of diarrhea, and age) in the model has improved the ability to predict 
the outcome variable compared to the null model.
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The Pseudo R-squared (Pseudo R2) value indicates how much variation in the depen-
dent variable can be explained by the independent variables in the model. The results 
show that 21.6% of the variation in the dependent variable can be explained by the 
independent variables together in the model (religion, severity of diarrhea, and age). 
However, the readers should interpret the pseudo R-squared value cautiously as it is 
not equivalent to the R-squared value that we get in linear regression analysis (Sections 
16.1.2 and 16.2.3). 

The main output has two parts, labelled with the categories of outcome variable (treat-
ed by village doctors and treated by pharmacists). The analysis provided the RRRs 
with their 95% CIs and p-values. 

The first half of the table has the results for “treated by village doctors” compared 
to “did not receive treatment”. The results indicate that Muslims (compared to other

Table 18.2 Multinominal logistic regression  
. mlogit behavior ib2.religion i.sdiar age, rrr 
 
Iteration 0:   log likelihood = -223.23547   
Iteration 1:   log likelihood =  -181.2718   
Iteration 2:   log likelihood = -175.03672   
Iteration 3:   log likelihood = -174.89221   
Iteration 4:   log likelihood = -174.89173   
Iteration 5:   log likelihood = -174.89173   
 
Multinomial logistic regression                   Number of obs   =        210 
                                                  LR chi2(6)      =      96.69 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -174.89173                       Pseudo R2       =     0.2166 
 
------------------------------------------------------------------------------------------- 
                 behavior |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------------------+---------------------------------------------------------------- 
Did_not_receive_treatment |  (base outcome) 
--------------------------+---------------------------------------------------------------- 
Treated_by_vill_doc       | 
                 religion | 
                  Muslim  |   2.627298   1.324947     1.92   0.055     .9777956    7.059443 
                          | 
                    sdiar | 
                  severe  |     4.8923   2.469855     3.14   0.002     1.818812    13.15947 
                      age |   1.271572   .0517161     5.91   0.000     1.174145    1.377083 
                    _cons |   .0000683   .0001029    -6.37   0.000     3.56e-06    .0013092 
--------------------------+---------------------------------------------------------------- 
Treated_by_pharmacist     | 
                 religion | 
                  Muslim  |   2.080179   .6647571     2.29   0.022     1.111948    3.891498 
                          | 
                    sdiar | 
                  severe  |   .8920665   .3586054    -0.28   0.776     .4057134    1.961441 
                      age |   1.002805   .0242082     0.12   0.908     .9564624    1.051392 
                    _cons |   .5782204    .395847    -0.80   0.424     .1511349    2.212188 
------------------------------------------------------------------------------------------- 
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religions) are more likely to receive treatment from village doctors after controlling for 
mothers’ age and severity of diarrhea, but the association is not statistically significant 
(adjusted RRR: 2.62; 95% CI: 0.97 – 7.05; p=0.055). However, severity of diarrhea 
(i.e., if the baby has severe diarrhea) is significantly associated with seeking treatment 
from village doctors after controlling for mothers’ age and religion (adjusted RRR: 
4.89; 95% CI: 1.81 – 13.15; p=0.002).

For the quantitative variables, an RRR greater than one indicates an increased likeli-
hood of the response category (treated by village doctors) compared to the reference 
category (did not receive treatment). The results show that with the increase in moth-
ers’ age, it is significantly more likely to receive treatment from the village doctors 
after adjusting for religion and severity of diarrhea (adjusted RRR: 1.27; 95% CI: 1.17 
– 1.37; p=0.000) [in other words, the likelihood of receiving treatment from village 
doctors increases by 27% with each year increase in mother’s age].

The second half of the table shows the results for "treated by pharmacists" compared 
to "did not receive treatment". The interpretations are similar to those mentioned 
above. The results show that only religion (being Muslim) is significantly associated 
with seeking treatment from pharmacists after adjusting for maternal age and severity 
of diarrhea (adjusted RRR: 2.08; 95% CI: 1.11 – 3.89; p= 0.022).

18.2 Post-estimation commands
After performing the regression analysis, you can get the predicted probabilities of the 
outcome variable by using the “margins” command, such as: 

margins religion, atmeans predict (outcome(1))
margins religion, atmeans predict (outcome(2))
margins religion, atmeans predict (outcome(3))

The above commands will provide the predicted values for Muslims and other 
religions for each level of the outcome variable (Table 18.3). The marginal (Margin) 
values indicate the probabilities of the outcome. For example, the marginal value for 
Muslims is 0.390 for the first category of the outcome variable (i.e., did not receive 
treatment). This indicates that the probability of not seeking treatment for being a Mus-
lim is 0.39 (which is 0.58 for other religions), considering the average values of other 
independent variables in the model. The interpretation of other outputs is similar to 
this.
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Table 18.3 Marginal values  
. margins religion, atmeans predict (outcome(1)) 
 
Adjusted predictions                              Number of obs   =        210 
Model VCE    : OIM 
 
Expression   : Pr(behavior==Did_not_receive_treatment), predict(outcome(1)) 
at           : 1.religion      =    .5571429 (mean) 
               2.religion      =    .4428571 (mean) 
               0.sdiar         =    .7190476 (mean) 
               1.sdiar         =    .2809524 (mean) 
               age             =    29.01905 (mean) 

------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    religion | 
     Muslim  |   .3902659   .0514549     7.58   0.000     .2894162    .4911156 
     Others  |   .5810089   .0563714    10.31   0.000      .470523    .6914949 
------------------------------------------------------------------------------ 
 
. margins religion, atmeans predict (outcome(2)) 
 
Adjusted predictions                              Number of obs   =        210 
Model VCE    : OIM 
 
Expression   : Pr(behavior==Treated_by_vill_doc), predict(outcome(2)) 
at           : 1.religion      =    .5571429 (mean) 
               2.religion      =    .4428571 (mean) 
               0.sdiar         =    .7190476 (mean) 
               1.sdiar         =    .2809524 (mean) 
               age             =    29.01905 (mean) 

------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    religion | 
     Muslim  |   .1166562   .0368918     3.16   0.002     .0443495    .1889628 
     Others  |   .0661029   .0283829     2.33   0.020     .0104735    .1217323 
------------------------------------------------------------------------------ 
 
. margins religion, atmeans predict (outcome(3)) 
 
Adjusted predictions                              Number of obs   =        210 
Model VCE    : OIM 
 
Expression   : Pr(behavior==Treated_by_pharmacist), predict(outcome(3)) 
at           : 1.religion      =    .5571429 (mean) 
               2.religion      =    .4428571 (mean) 
               0.sdiar         =    .7190476 (mean) 
               1.sdiar         =    .2809524 (mean) 
               age             =    29.01905 (mean) 

------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    religion | 
     Muslim  |   .4930779   .0527806     9.34   0.000     .3896299    .5965259 
     Others  |   .3528881   .0548775     6.43   0.000     .2453302     .460446 
------------------------------------------------------------------------------ 
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We can use the command "margins" to plot the predicted probabilities of each category 
of the outcome variable (behavior) by religion. Stata will create the plots based on the 
last margins command used. We can also combine 3 margins plots into a single figure 
by using the command "graph combine" (Fig 18.1). Use all the following commands 
successively:

margins religion, atmeans predict (outcome(1))
marginsplot, name (not_treated)
margins religion, atmeans predict (outcome(2))
marginsplot, name (treated_vdoc)
margins religion, atmeans predict (outcome(3))
marginsplot, name (treated_pharm)
graph combine not_treated treated_vdoc treated_pharm
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Figure 18.1 Marginal values of different categories of religion for seeking treatment 
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Survival Analysis

There are situations when researchers are interested in knowing the progress of a 
patient from a specific point in time (e.g., from the point of diagnosis or initiation of 
treatment) until the occurrence of a certain outcome, such as death or recurrence of any 
event (e.g., recurrence of cancer). The prognosis of a condition is commonly assessed 
by estimating the: a) Median survival time and b) Cumulative probability of survival 
after a certain time interval (e.g., 5-year or 3-year or others). 

For instance, a researcher may be interested in determining the median survival time of 
colonic cancer if the patient is treated (or not treated), and the estimated probability 
that a patient with colonic cancer may survive for more than 5 years (5-year cumulative 
survival probability). The methods employed to answer the above questions in a 
follow-up study are known as survival analysis (or lifetable analysis) methods. 

Survival analysis is done in follow-up studies, where subjects are usually followed 
over a specified period of time and the focus is on the time at which the event of inter-
est occurs. To do the survival analysis, we need to have data (information) from each 
of the subjects, at least on the following variables: 

• Time: It is the length of time the patient was observed in the study (called  
 “survival time”). Time can be measured in days, weeks, months, years or other  
 units of time. 
• Outcome: Whether the patient developed the outcome of interest (event) during
 the study period, or whether the patient was either lost to follow-up or remained
 alive at the end of the study (censored); and 
• Treatment group: Which treatment (e.g., treatment A or B) did the patient receive
 in the study (optional)? 
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Survival time is of two types – a) Censored time; and b) Event time. The censored time 
is the amount of time contributed by the: 

a) Patients who did not develop the outcome and remained in the study up to the  
 end of the study period, or
b) Patients who were lost to follow-up due to any reason, such as migration or  
 withdraw, or 
c) Patients who developed the outcome for reasons other than the disease of interest
 (e.g., died in a car accident)

On the other hand, the event time is the amount of time contributed by the patients who 
developed the outcome of interest during the study period. In survival analysis, the 
outcome measure of interest is survival time, which is a mixture of event time and 
censored time.

If we have the above information, it is possible to estimate the median survival times 
and cumulative survival probabilities for two or more treatment groups for compari-
son. Such a comparison allows us to answer the question, “which treatment delays the 
time of occurrence of an event?” The method commonly used to analyze survival-time 
data is the Kaplan-Meier method, and Stata can be used for the analysis of such data. 
Use the data file <Data_survival_4.dta> for practice. The codebook for the data file 
is provided in Table 19.1. Note that in this data, the event of our interest is death.

19.1 Survival analysis: Kaplan-Meier method
Suppose that a researcher has conducted a follow-up study (clinical trial) on patients 
with acute heart attack (myocardial infraction) to determine the effectiveness of a new 
drug (n=22) compared to a placebo (n=22) in reducing the time to death. The patients

Table 19.1 Codebook for the data file “Data_survival_4.dta” 

Variable name Variable label Variable codes  
time Survival time in days Actual value in days 
outcome Survival status 0= Censored; 1= Died/Event 
treatment Treatment group 0= Placebo; 1= New treatment 
age Age in years Actual value 
sex Sex  0= Male; 1= Female 
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were followed until time to death or up to six months (180 days), whichever came first. 
The outcome of interest in this study was the time to death (event) due to acute heart 
attack. The objective was to assess whether the "new treatment" delays (increases) the 
time to event (death) compared to placebo among patients with heart attack. Data from 
this study is provided in the data file <Data_survival_4.dta>, which includes the 
following necessary variables: 

• Time: The variable “time” indicates the amount of time each patient has spent 
in the study in days;
• Treatment: It specifies which treatment the patient received in this clinical trial 
(coded as 0= received placebo; 1= received new treatment);
• Outcome (event): Whether the patient developed the event, i.e., died or not 
(coded as 0= censored/did not die; 1= died).

Assumptions

• The probability of outcome is similar among the censored (lost to follow-up)  
 and under-observation individuals;
• There is no secular trend over the calendar period;
• Risk is uniform during the interval; and
• Loss to follow-up is uniform over the interval.

19.1.1 Preparing data for analysis

Before conducting the survival analysis, we need to prepare the dataset so that Stata 
can automatically recognize the time variable and the event variable (censored/event) 
during analysis. In our dataset, the time variable is “time” and the event variable is 
“outcome”.  The event variable must be coded as 1= event and 0= censored. Use the 
following command to prepare the data for survival analysis: 

stset time, failure(outcome)

When the command ”stset” is used, Stata generates some new variables, like “_st, _d, 
_t, and _t0”. You can see them at the bottom of the variables window. If you save the 
data file after using the “stset” command, you don’t need to prepare the data file again 
for survival analysis in the subsequent sessions. But if you don’t save the data file, you 
need to prepare it before survival analysis every time during the subsequent sessions. 
In fact, we need to set the data using the “stset” command for any analysis that uses the 
commands beginning with “st…”, for example, stdescribe, stcox, sts test, or others. 
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19.1.2 Commands for Kaplan-Meyer method

Before analyzing data for survival analysis, let us check our data for the number of 
subjects in each treatment group, including the number of events that occurred. To get 
the summary of the data, use the following command: 

tab2 treatment outcome, row

This command will generate a two-by-two table (Table 19.2) of the treatment group 
and outcome. The table shows that there are 44 subjects enrolled in this study (22 in 
both the placebo and new treatment groups). In total, 27 patients died (events) during 
the study period, of which 16 (59.26%) were in the placebo group and 11 (40.74%) 
were in the new treatment group.

The primary objectives of survival analysis are to get the median survival time and 
cumulative survival probability (survival functions) for each treatment group and the 
significance of the difference (log-rank test) in survival functions between the treat-
ment groups. Once the data set is prepared (by the "stset" command), use the following 
commands to get the median survival time and its 95% CI by treatment group. The 
option "by(treatment)" will present the results separately for the placebo and new treat-
ment groups.

Table 19.2 Area under the ROC curve with 95% CI 
. tab2 treatment outcome, col 
 
-> tabulation of treatment by outcome   
 
+-------------------+ 
| Key               | 
|-------------------| 
|     frequency     | 
| column percentage | 
+-------------------+ 
 
    Treatment |    Survival status 
        group |  Censored       Died |     Total 
--------------+----------------------+---------- 
      Placebo |         6         16 |        22  
              |     35.29      59.26 |     50.00  
--------------+----------------------+---------- 
New treatment |        11         11 |        22  
              |     64.71      40.74 |     50.00  
--------------+----------------------+---------- 
        Total |        17         27 |        44  
              |    100.00     100.00 |    100.00  
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To get the survival functions disaggregated by treatment group, use the following com-
mands: 

sts list, by(treatment) 
sts list, by(treatment) compare 

The first command will provide a long table showing the survival functions (cumula-
tive survival probabilities) at different time points (Table 19.4), while the second com-
mand will provide a table showing a comparison of survival functions between placebo 
and new treatment groups (Table 19.5). 

stsum, by(treatment)
stci, by(treatment)

The first command will provide the median survival times of the placebo and new 
treatment groups, while the second command will provide the same but with their 95% 
CIs (Table 19.3).

Table 19.3 Median survival time by treatment group 
. stsum, by(treatment) 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
         |               incidence       no. of    |------ Survival time -----| 
treatm~t | time at risk     rate        subjects        25%       50%       75% 
---------+--------------------------------------------------------------------- 
 Placebo |         1422   .0112518            22         22        40         . 
New trea |         2409   .0045662            22         89       146         . 
---------+--------------------------------------------------------------------- 
   total |         3831   .0070478            44         29        89         . 
 
 
. stci, by(treatment) 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
             |    no. of  
treatment    |  subjects         50%     Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------------------- 
     Placebo |        22          40      12.89864           22         71 
    New trea |        22         146      10.79461           89          . 
-------------+------------------------------------------------------------- 
       total |        44          89      21.23218           41        168 
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We need to use a statistical test to objectively assess the significance of the difference 
in survival functions between the treatment groups. The most commonly used statisti-
cal test is the log-rank test. However, there are alternatives to this test. They are the 
Tarone-Ware and Peto tests. The commands to get these test statistics are:

Table 19.4 Survival functions at different time points by treatment group 
. sts list, by (treatment) 

         failure _d:  outcome 
   analysis time _t:  time 

           Beg.          Net            Survivor      Std. 
  Time    Total   Fail   Lost           Function     Error     [95% Conf. Int.] 
------------------------------------------------------------------------------- 
Placebo  
     2       22      1      0             0.9545    0.0444     0.7187    0.9935 
     3       21      1      0             0.9091    0.0613     0.6830    0.9765 
     4       20      1      0             0.8636    0.0732     0.6344    0.9539 
     7       19      1      0             0.8182    0.0822     0.5853    0.9276 
    10       18      1      0             0.7727    0.0893     0.5374    0.8985 
    22       17      1      0             0.7273    0.0950     0.4910    0.8671 
    28       16      1      0             0.6818    0.0993     0.4462    0.8338 
    29       15      1      0             0.6364    0.1026     0.4029    0.7988 
    32       14      1      0             0.5909    0.1048     0.3610    0.7621 
    37       13      1      0             0.5455    0.1062     0.3207    0.7239 
    40       12      1      0             0.5000    0.1066     0.2818    0.6843 
    41       11      1      0             0.4545    0.1062     0.2444    0.6433 
    54       10      1      0             0.4091    0.1048     0.2085    0.6007 
    61        9      1      0             0.3636    0.1026     0.1743    0.5567 
    63        8      1      0             0.3182    0.0993     0.1418    0.5111 
    71        7      1      0             0.2727    0.0950     0.1112    0.4637 
   127        6      0      1             0.2727    0.0950     0.1112    0.4637 
   140        5      0      1             0.2727    0.0950     0.1112    0.4637 
   146        4      0      1             0.2727    0.0950     0.1112    0.4637 
   158        3      0      1             0.2727    0.0950     0.1112    0.4637 
   167        2      0      1             0.2727    0.0950     0.1112    0.4637 
   180        1      0      1             0.2727    0.0950     0.1112    0.4637 
New treatment  
     2       22      1      0             0.9545    0.0444     0.7187    0.9935 
     6       21      1      0             0.9091    0.0613     0.6830    0.9765 
    12       20      1      0             0.8636    0.0732     0.6344    0.9539 
    54       19      1      0             0.8182    0.0822     0.5853    0.9276 
    56       18      0      1             0.8182    0.0822     0.5853    0.9276 
    68       17      1      0             0.7701    0.0904     0.5325    0.8973 
    89       16      1      0             0.7219    0.0967     0.4822    0.8645 
    96       15      2      0             0.6257    0.1051     0.3883    0.7926 
   125       13      0      1             0.6257    0.1051     0.3883    0.7926 
   128       12      0      1             0.6257    0.1051     0.3883    0.7926 
   131       11      0      1             0.6257    0.1051     0.3883    0.7926 
   140       10      0      1             0.6257    0.1051     0.3883    0.7926 
   141        9      0      1             0.6257    0.1051     0.3883    0.7926 
   143        8      1      0             0.5475    0.1175     0.2979    0.7410 
   145        7      0      1             0.5475    0.1175     0.2979    0.7410 
   146        6      1      0             0.4562    0.1285     0.2047    0.6782 
   148        5      0      1             0.4562    0.1285     0.2047    0.6782 
   162        4      0      1             0.4562    0.1285     0.2047    0.6782 
   168        3      1      0             0.3041    0.1509     0.0676    0.5910 
   173        2      0      1             0.3041    0.1509     0.0676    0.5910 
   180        1      0      1             0.3041    0.1509     0.0676    0.5910 
------------------------------------------------------------------------------- 
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sts test treatment
sts test treatment, tware
sts test treatment, peto

The above commands will provide the results of the log-rank, Tarone-Ware, and Peto 
tests, respectively (Table 19.6). 

The cumulative survival probabilities are usually portrayed visually by a graph called 
the survival curve. You can generate the survival curve by using the following com-
mand:

sts graph, by(treatment)
sts graph, by(treatment) ci

The first command will display the survival curve by treatment groups, as shown in 
Figure 19.1. The second command will also display the curve, but with 95% CIs. You 
can also generate the cumulative incidence curve (1 – cumulative survival) by using 
the following command (Figure 19.2):

sts graph, by(treatment) failure

19.1.3 Interpretation

In total, 44 subjects were enrolled in this study, of which 22 received a placebo and

Table 19.5 Comparison of survival functions at different time points by treatment 
groups 

. sts list, by (treatment) compare 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
                 Survivor Function 
treatment       Placebo  New treat 
---------------------------------- 
time       2     0.9545     0.9545 
          24     0.7273     0.8636 
          46     0.4545     0.8636 
          68     0.3182     0.7701 
          90     0.2727     0.7219 
         112     0.2727     0.6257 
         134     0.2727     0.6257 
         156     0.2727     0.4562 
         178     0.2727     0.3041 
         200          .          . 
---------------------------------- 
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another 22 received the new treatment. There were a total of 27 deaths during the study 
period, among which 16 (59.26%) were in the placebo group and 11 (40.74%) were in 
the new treatment group (Table 19.2).

Table 19.6 Significance tests for survival functions  
. sts test treatment 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Log-rank test for equality of survivor functions 
 
              |   Events         Events 
treatment     |  observed       expected 
--------------+------------------------- 
Placebo       |        16          10.62 
New treatment |        11          16.38 
--------------+------------------------- 
Total         |        27          27.00 
 
                    chi2(1) =       4.66 
                    Pr>chi2 =     0.0309 
  
. sts test treatment, tware 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Tarone-Ware test for equality of survivor functions 
 
              |   Events         Events        Sum of 
treatment     |  observed       expected        ranks 
--------------+-------------------------------------- 
Placebo       |        16          10.62    33.847597 
New treatment |        11          16.38   -33.847597 
--------------+-------------------------------------- 
Total         |        27          27.00            0 
 
                    chi2(1) =       6.07 
                    Pr>chi2 =     0.0138 
 
. sts test treatment, peto 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Peto-Peto test for equality of survivor functions 
 
              |   Events         Events        Sum of 
treatment     |  observed       expected        ranks 
--------------+-------------------------------------- 
Placebo       |        16          10.62    4.3863004 
New treatment |        11          16.38   -4.3863004 
--------------+-------------------------------------- 
Total         |        27          27.00            0 
 
                    chi2(1) =       6.03 
                    Pr>chi2 =     0.0141 



211Survival Analysis

Table 19.3 shows the median survival times for both the placebo and new treatment 
groups, including their 95% CIs. The median survival time is the time when the cumu-
lative survival probability is 0.50 (i.e., the time when 50% of the patients develop the 
event). The table indicates that the median survival time, if a patient is in the placebo 
group, is 40 days (95% CI: 22 to 71), while it is 146 days (95% CI: 89 to .), if a patient 
is in the new treatment group. This means that the new treatment increases the survival 
time, i.e., the new treatment is associated with a longer time-to-event (and the placebo 
is associated with a shorter time-to-event). We, therefore, conclude that an individual 
will live longer if s/he receives the new treatment compared to the placebo. 

Table 19.4 shows the cumulative survival probability (survivor function) at different 
points in time in the placebo and new treatment groups. In this table, we can see that 
the cumulative survival probability at the end of 71 days (in the time column), in the 
placebo group, is 0.272 (27.2%). Since there is no death after that, the cumulative 
survival probability at the end of 180 days will be the same (0.272). 

On the other hand, the cumulative survival probability is 0.304 (30.4%) at the end of 
168 days for the patients who were in the new treatment group. As there is no death 
after that, the cumulative survival probability at the end of 180 days will be the same 
(0.304). In the new treatment group, the cumulative survival probability at the end of 
71 days (68 days in the table) is about 0.770 (77.0%), which is much higher than the 
placebo group (0.273). This indicates that the probability of surviving at the end of 71 
days is higher among the patients who received the new treatment compared to place-
bo. This also indicates the benefit of the new treatment (i.e., the new treatment is better 
than the placebo). A comparison of the survival functions at different points in time is
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provided in Table 19.5. For instance, at the end of 90 days, the cumulative probability 
of survival is 0.2727 in the placebo group compared to 0.7219 in the new treatment 
group. 

However, if we consider the cumulative survival probability of patients in both groups 
at the end of 180 days, the probabilities are not that different (0.272 in the placebo 
group and 0.304 in the new treatment group). This information suggests that though 
survival experiences are significantly different between the treatment groups (as 
indicated by the log rank test), the difference in survival probability at the end of 180 
days is small.  

Now, the question is whether the survival experiences of both these groups in the popu-
lation are different or not. For an objective comparison of survival experiences in two 
groups, it is desirable to use a statistical method that will tell us whether the difference 
in survival experiences in the population is statistically significant or not. Here, the 
null hypothesis is that “the survival experiences in the placebo and new treatment 
groups are the same in the population”. Such a null hypothesis can be tested by the 
log-rank test. We have done the log-rank test and the results are provided in Table 19.6. 
The p-value (Pr>chi2) of the test is 0.030, which is <0.05. This indicates that survival 
experiences of both these groups in the population are not the same. In other words, it 
tells us that the survival probability is better (since the median survival time is higher 
in the new treatment group) if the patient is in the new treatment group compared to the 
placebo group (i.e., the new treatment is more effective/better than placebo in improv-
ing the patients’ survival).

There are alternative procedures for testing the null hypothesis that the two survival 
curves are identical. They are the Breslow test, the Tarone-Ware test, and the Peto test. 
Here, we have performed the Tarone-Ware and Peto tests, and the results are shown in 
Table 19.6. The log-rank test ranks all the deaths equally, while the other tests give 
more weight to early deaths. 

Survival curve: The cumulative survival probability is usually portrayed visually by a 
graph called the survival curve (Fig 19.1). The steps in the graph represent the times 
when events (deaths or any other event of interest) occurred. The graph allows us to 
represent visually the median survival time and the cumulative survival probability for 
any specific time period (e.g., 30-day, 60-day, or 90-day cumulative survival probabili-
ty). In general, the line above indicates the better survival probability. We can see that 
the line for the new treatment is above the line for the placebo, indicating that the new 
treatment delays (increases) the time to event compared to the placebo.
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19.2 Cox regression 

Cox regression is also called proportional hazards analysis. In the previous section 
(Section 19.1), we discussed the survival analysis using the Kaplan-Meier method. 
Like other regression analyses (e.g., multiple linear regression and logistic regression), 
Cox regression is a multivariable analysis technique where the dependent measure is a 
mixture of time-to-event and censored-time observations. Cox regression is commonly 
done in follow-up studies (e.g., randomized trials) to assess the prognosis. Cox regres-
sion with constant time can be used for the analysis of cross-sectional data to estimate 
the prevalence ratio, which is discussed in Section 17.3.2. For the Cox regression 
analysis, we will use the same data file (Data_survival_4.dta) that was used for the 
survival analysis. 

Returning to our previous example (survival analysis; Section 19.1), where we 
analyzed the data to assess the effectiveness of a new treatment against a placebo. Our 
objective was to determine whether the new treatment delays the time-to-death com-
pared to the placebo among patients with heart disease. We found that the new treat-
ment significantly delayed the time-to-death compared to the placebo, as indicated by 
the higher median survival time and cumulative survival probability, and a significant 
log-rank test. However, the effectiveness of the new treatment might be influenced 
(confounded) by other factors, such as age, hypertension, diabetes, or other character-
istics. All these factors, therefore, need to be controlled during analysis to assess the 
effectiveness of the new treatment. Cox regression is a statistical method that is used 
to control the confounding factors (categorical, continuous, or discrete covariates) that 
may influence the effectiveness of a treatment.  

Cox regression gives us the hazard ratio (HR) after adjusting the variables included in 
the model, which is analogous to relative risk (RR). A hazard ratio (also called a 
relative hazard) is the ratio of the hazard rate if the individuals are exposed (e.g., to a 
new treatment) compared to the individuals not exposed (e.g., to placebo). In Cox 
regression, the dependent variable is the log of hazard.

19.2.1 Commands

In Cox regression analysis, we will consider the variables age and sex for adjustment. 
The command for Cox regression is “stcox” and it reports the hazard ratios (HRs). We 
only use the independent variables with the “stcox” command. In survival analysis, 
once the data are set with the “stset” command (see Section 19.1.1), Stata automatical-
ly recognizes the time and event variables. To perform the Cox regression analysis, use
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the following command: 

stcox i.treatment ib1.sex age
stcox ib1.treatment ib1.sex age
stcox ib1.treatment ib1.sex age, nolog nohr

The first command will provide HR for the new treatment compared to the placebo 
(Table 19.7). The second command will report the HR for the placebo group compared 
to the new treatment group (Table 19.8). In the third command, we have used the 
options “nolog” and “nohr” to suppress the iteration history and to get the coefficients 
instead of HRs, respectively. We have used the prefix “.ib1” for the variables “treat-
ment” (in the second command) and “sex” to indicate the new treatment and females 
as the comparison groups (since new treatment and females are both coded as 1). 

You may prefer using the second command for the analysis. Because if the new treat-
ment is the comparison group, we expect an HR greater than one for the placebo group 
(since we assume that the new treatment is better than placebo), which is easier to 
interpret.  

Stepwise methods are also available for modeling with Cox regression. For the back-
ward stepwise method with a removing criteria of p≥0.2 and an adding (entry) criteria 
of p<0.1, use the following command: 

xi: stepwise, pr(.2) pe(.1): stcox ib1.treatment ib1.sex age 

For the forward stepwise method with a removing criteria of p≥0.2 and an adding 
(entry) criteria of p<0.10, use the following command:

xi: stepwise, pr(.2) pe(.10) forward: stcox ib1.treatment ib1.sex age

The outputs of these commands are not provided. For further information, see Section 
16.2.5. You can generate the survival curve for the treatment groups after adjusting for 
age and sex by using the following command: 

sts graph, by(treatment) adjust(age sex)

This command will display the survival curve for the treatment groups after controlling 
for age and sex (Figure 19.3). You can also get the cumulative incidence curve adjusted 
for age and sex by using the following command (Fig 19.4):

sts graph, by(treatment) failure adjust(age sex)
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19.2.2 Interpretation

We have analyzed the data of 44 subjects (22 in the new treatment group and 22 in the 
placebo group). The variables included in the analysis are “treatment”, “sex”, and 
“age” to get the estimated effect of the new treatment (compared to placebo) after 
adjusting for sex and age. Table 19.7 shows the results of the Cox regression analysis.

The table at the beginning shows the iteration history. The first iteration (iteration 0) 
indicates the log likelihood of the null model (i.e., a model without any independent 
variable). The table shows that the log likelihood has increased (from -88.96 to -83.98) 
with the inclusion of independent variables in the model. The log likelihood ratio 
chi-square p-value (Prob > chi2), as shown in the table, is significant (p= 0.018). A 
significant p-value indicates that the addition of independent variables in the model has 
improved the ability to predict the outcome compared to the null model.

Table 19.7 Cox regression with placebo as comparison group 

. stcox i.treatment ib1.sex age 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Iteration 0:   log likelihood = -88.962207 
Iteration 1:   log likelihood = -84.097071 
Iteration 2:   log likelihood = -83.983381 
Iteration 3:   log likelihood = -83.983329 
Refining estimates: 
Iteration 0:   log likelihood = -83.983329 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           44                     Number of obs   =        44 
No. of failures =           27 
Time at risk    =         3831 
                                                   LR chi2(3)      =      9.96 
Log likelihood  =   -83.983329                     Prob > chi2     =    0.0189 
 
-------------------------------------------------------------------------------- 
            _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------------+---------------------------------------------------------------- 
     treatment | 
New treatment  |   .3665283   .1678311    -2.19   0.028     .1493989    .8992233 
               | 
           sex | 
         male  |   2.433823   1.060213     2.04   0.041     1.036315    5.715921 
               | 
           age |   1.008859   .0229496     0.39   0.698     .9648665    1.054857 
-------------------------------------------------------------------------------- 
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Table 19.7 shows that out of a total of 44 subjects included in the analysis, 27 died 
(number of failures). In our analysis, placebo is the comparison group for the variable 
“treatment” and females are the comparison group for “sex”. We will, therefore, get the 
HRs for the new treatment group compared to placebo and for the males compared to 
females. 

The table (Table 19.7) shows the HRs and their corresponding p-values (P>|z|) with the 
95% CIs. The HR for the new treatment is 0.366 (95% CI: 0.149 to 0.899) with a p-val-
ue of 0.028. This finding indicates that compared to the placebo, patients in the new 
treatment group are less likely (63.4%; one minus 0.366) to have a shorter time to 
event (i.e., have greater survival time or survive longer) after controlling for age and 
sex, which is statistically significant (p=0.028) at 95% confidence level. Furthermore, 
males are more likely (2.43 times) to have a shorter time to event (have a shorter 
survival time) compared to females (p=0.041) after controlling for the variables “treat-

Table 19.8 Cox regression with new treatment as comparison group 

. stcox ib1.treatment ib1.sex age 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Iteration 0:   log likelihood = -88.962207 
Iteration 1:   log likelihood = -84.097071 
Iteration 2:   log likelihood = -83.983381 
Iteration 3:   log likelihood = -83.983329 
Refining estimates: 
Iteration 0:   log likelihood = -83.983329 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           44                     Number of obs   =        44 
No. of failures =           27 
Time at risk    =         3831 
                                                   LR chi2(3)      =      9.96 
Log likelihood  =   -83.983329                     Prob > chi2     =    0.0189 
 
------------------------------------------------------------------------------ 
          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   treatment | 
    Placebo  |   2.728302   1.249273     2.19   0.028     1.112071    6.693488 
             | 
         sex | 
       male  |   2.433823   1.060213     2.04   0.041     1.036315    5.715921 
             | 
         age |   1.008859   .0229496     0.39   0.698     .9648665    1.054857 
------------------------------------------------------------------------------ 
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ment” and “age”. Age, independently, does not have any significant effect on the 
survival time since the p-value is greater than 0.05.

If you consider the new treatment as the comparison group (second command; Table 
19.8), you will get the HR for the placebo group, which is 2.728. This value (2.728) is 
actually the inverse of the HR (0.366) that we had for the new treatment group com-
pared to the placebo. Interpretation is simple. An HR of 2.7 indicates that the patients 
in the placebo group are 2.7 times more likely to have a shorter time to event (i.e., the 
patients in the placebo group are more likely to die early) compared to patients in the 
new treatment group. 

The interpretation of a continuous variable (e.g., age) when included in the model is 
different. If the HR for age is greater than 1 (say, 1.3), it indicates that the HR will 
increase (or decrease) by 30% (1.3 minus 1) with each year of increase (or decrease) in 
age. On the other hand, if the HR is less than 1 (say, 0.7), it means that with each year 
increase in age, the HR will be reduced by 30% (1 minus 0.7). 

19.2.3 Checking for assumptions

Before we conclude the results of Cox regression, we have to check for the important 
assumptions, such as: 

a) There is no multicollinearity among the independent variables; and 
b) Relative hazards over time are proportional (also called the proportionality  
 assumption of proportional hazards analysis).
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Figure 19.3 Survival curve after 
controlling for age and sex 

Figure 19.4 Cumulative incidence curve 
after controlling for age and sex 
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To check for the presence of multicollinearity, look at the standard errors (std. err.) of 
the coefficients of the variables included in the model (Table 19.9). Since there is no 
value which is very small (<0.001) or very large (>5.0) (also see Section 17.2.2.1), 
there is no problem of multicollinearity in the model.

The second assumption (the proportionality assumption) is the major one. If this 
assumption is violated, the simple Cox regression model is invalid, and more sophisti-
cated analyses are required. Formal statistical tests and graphical methods (log-mi-
nus-log plot) can be used for detecting violation of this assumption.

The statistical test for checking the proportional hazards assumption is performed by 
the following command (this command needs to be used after performing the Cox 
regression analysis since this test is based on the most recent use of the Cox regression 
results): 

estat phtest, detail

This command will provide Table 19.10. The table shows the p-values for the variables 
“treatment” (new treatment), “sex” (male) and “age”. The p-value for age is less than 
0.05, while the p-values for other variables are greater than 0.05. A p-value of less than 
0.05 indicates that the assumption is violated. This suggests that there are some poten-
tial problems with age, while there is no problem with sex and treatment groups (since 
the p-values are greater than 0.05). The overall test (global test) p-value is also <0.05. 
In such a situation, you can either omit age from the model (since it is not significant) 
or use the time-dependent Cox regression method. For further details, readers are 
referred to any standard text book.

As an alternative, we can also check the assumption by using the graphical method (by 
a log-minus-log plot). To generate the log-minus-log plot for the treatment groups, 
after adjusting for age and sex, use the following command: 

stphplot, by(treatment) adjust(age sex)

The above command will display the log-minus-log plot for the treatment groups after 
adjusting for age and sex (Fig 19.5). If there is a constant vertical difference between 
the two curves (i.e., the curves are parallel to each other), it means that the relative 
hazards over time are proportional. If the curves cross each other or are much closer 
together at some points in time and much further apart at other points in time, then the 
assumption is violated. In our example (Fig 19.5), the two lines are not really parallel, 
indicating that the assumption may be violated. When the proportional hazards 
assumption is violated, it is recommended to use the Cox regression with a time-depen-
dent covariate.
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Table 19.9 Cox regression with coefficients of HR 
. stcox ib1.treatment ib1.sex age, nolog nohr 
 
         failure _d:  outcome 
   analysis time _t:  time 
 
Cox regression -- Breslow method for ties 
 
No. of subjects =           44                     Number of obs   =        44 
No. of failures =           27 
Time at risk    =         3831 
                                                   LR chi2(3)      =      9.96 
Log likelihood  =   -83.983329                     Prob > chi2     =    0.0189 
 
------------------------------------------------------------------------------ 
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   treatment | 
    Placebo  |   1.003679   .4578939     2.19   0.028     .1062239    1.901135 
             | 
         sex | 
       male  |   .8894631   .4356164     2.04   0.041     .0356707    1.743255 
             | 
         age |   .0088198    .022748     0.39   0.698    -.0357655    .0534051 
------------------------------------------------------------------------------ 

Table 19.10 Test for proportional hazards assumption  

. estat phtest, detail 
 
      Test of proportional-hazards assumption 
 
      Time:  Time 
      ---------------------------------------------------------------- 
                  |       rho            chi2       df       Prob>chi2 
      ------------+--------------------------------------------------- 
      0b.treatment|            .            .        1             . 
      1.treatment |      0.05039         0.07        1         0.7892 
      0.sex       |      0.20439         1.12        1         0.2901 
      1b.sex      |            .            .        1             . 
      age         |     -0.53299         9.22        1         0.0024 
      ------------+--------------------------------------------------- 
      global test |                     12.40        3         0.0061 
      ---------------------------------------------------------------- 
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Figure 19.5 Log-minus-log plot for checking the proportionality assumption 
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Nonparametric Methods

Nonparametric methods, in general, are used when the continuous dependent variable 
is not normally distributed. Nonparametric tests are also used when the data is 
measured on nominal and ordinal scales. Table 20.1 shows the types of nonparametric 
methods recommended against parametric tests when the dependent variable is not 
normally distributed in the population. Nonparametric tests are less sensitive compared 
to parametric tests and may, therefore, fail to detect differences between groups that 
may actually exist. Use the data file <Data_4.dta> for practice.

20.1 Mann-Whitney U test
The Mann-Whitney U test is also called the Wilcoxon rank-sum test. This test is the 
nonparametric equivalent of the independent samples t-test. This test compares the 
differences between two samples (groups) on a continuous measure (variable) when

Table 20.1 Nonparametric methods against the alternative parametric methods 

Nonparametric test Alternative parametric test 
Mann-Whitney U test Independent-samples t-test 
Wilcoxon Signed Ranks test Paired t-test 
Kruskal-Wallis test One-way ANOVA 
Friedman test  One-way repeated measures ANOVA 
Chi-square test of independence None 
Spearmen’s correlation Pearson’s correlation 
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the sample distributions are not normal or the sample size is small (<30). This test is 
based on ranks of observations and is more efficient than the median test. This test tests 
the null hypothesis that the two populations have the same median. For example, we 
may want to know whether the median systolic BP (where the distribution of systolic 
BP is non-normal) of males and females is the same. To test this hypothesis, use the 
following command: 

ranksum sbp, by(sex)

This command will provide Table 20.2. The table shows the p-value (Prob > |z|) of the 
test, which is 0.167 (greater than 0.05). This indicates that the distribution of systolic BP 
among males and females is not different (or, the median systolic BP of males and 
females is not different). With this test result, the median systolic BP of females and males 
should be reported. To get the median systolic PB by sex, use the following command:

Table 20.2 Rank-sum (Mann-Whitney) test 

. ranksum sbp, by(sex) 
 
Two-sample Wilcoxon rank-sum (Mann-Whitney) test 
 
         sex |      obs    rank sum    expected 
-------------+--------------------------------- 
      female |      133     14616.5     14031.5 
        male |       77      7538.5      8123.5 
-------------+--------------------------------- 
    combined |      210       22155       22155 
 
unadjusted variance   180070.92 
adjustment for ties     -130.90 
                     ---------- 
adjusted variance     179940.02 
 
Ho: sbp(sex==female) = sbp(sex==male) 
             z =   1.379 
    Prob > |z| =   0.1679 
 
. tabstat sbp, by(sex) stat(median) 
 
Summary for variables: sbp 
     by categories of: sex (Sex: numeric) 
 
   sex |       p50 
-------+---------- 
female |       124 
  male |       122 
-------+---------- 
 Total |       123 
------------------ 
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tabstat sbp, by(sex) stat(median)

This command will report the median (p50) systolic BP for males and females (Table 
20.2). 

20.2 Median test
The median test is an alternative to the Mann-Whitney U test. Like the Mann-Whitney 
U test, this test also compares the difference in medians between two categories/levels 
on a continuous variable. This test is based on the number of observations below and 
above the common median. Suppose that we want to determine whether or not the 
median age of diabetics and nondiabetics is the same in the population. Here, the null 
hypothesis is “the median age of diabetics and nondiabetics is the same in the popula-
tion”. Use the following commands to get the median test results, and the median age 
for diabetic and nondiabetic individuals: 

median age, by(diabetes)
tabstat age, by(diabetes) stat(median)

The results are shown in Table 20.3. The table (at the bottom) shows the median (p50) 
age of diabetic (39 years) and nondiabetic (26 years) individuals. The table also shows 
the frequency distribution of diabetic and nondiabetic individuals above and below the 
common median, which is 28 years (provided as Total under the “tabstat” command). 
For instance, 41 individuals with diabetes are aged over 28 years (common median), 
while only 4 are below 28 years. However, our interest is in the p-value given by the 
median test. The median test p-value is 0.000 (<0.05), which indicates that the median 
age of diabetics and nondiabetics is different in the population.
 

20.3 Wilcoxon signed ranks test 

This test is the nonparametric alternative to the paired samples t-test. This test com-
pares the distribution of two related samples (e.g., pre-test and post-test results). The 
Wilcoxon test converts the scores into ranks and then compares them. For example, in 
order to evaluate the impact of a training session, you have taken the pre- and post-tests 
before and after the training session. You want to assess if there is an improvement in 
the post-test scores compared to pre-test scores due to the training session. Use the 
following command for the Wilcoxon signed rank test:  

signrank post_test = pre_test
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This command will provide Table 20.4. Just look at the p-value of the test, which is 
0.000. This indicates that the pre- and post-test scores (medians) are significantly 
different. We may, therefore, conclude that the training has significantly improved the 
post-test scores compared to the pre-test scores. You can get the medians of the pre- 
and post-test scores by using the “tabstat” command as shown earlier (Section 20.2). 

20.4 Kruskal-Wallis test
It is the nonparametric equivalent of the one-way ANOVA test. In this test, scores are 
converted into ranks, and the mean rank of each group is compared. Suppose that we 
want to test the hypothesis of whether or not the systolic BP (variable name "sbp") is 
different among religious groups (Muslim, Hindu, and Christian). Here the null 
hypothesis is "the systolic BP is not different across the religious groups". Use any of 
the following commands to test the hypothesis: 

Table 20.3 Median test  

. median age, by(diabetes) 
 
Median test 
 
   Greater | 
  than the |   Diabetes mellitus 
    median |        No        Yes |     Total 
-----------+----------------------+---------- 
        no |       106          4 |       110  
       yes |        59         41 |       100  
-----------+----------------------+---------- 
     Total |       165         45 |       210  
 
          Pearson chi2(1) =  43.4324   Pr = 0.000 
 
   Continuity corrected: 
          Pearson chi2(1) =  41.2416   Pr = 0.000 
 
. tabstat age, by(diabetes) stat(median) 
 
Summary for variables: age 
     by categories of: diabetes (Diabetes mellitus) 
 
diabetes |       p50 
---------+---------- 
      No |        26 
     Yes |        39 
---------+---------- 
   Total |        28 
-------------------- 
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kwallis sbp, by(religion)
Or, 
median sbp, by(religion)

The first command will provide Table 20.5. Since the p-value of the Chi-square test is 
0.973 (greater than 0.05), we are unable to reject the null hypothesis. We may, there-
fore, conclude that the median systolic BP among the religious groups is not signifi-
cantly different. The median systolic BP in different religious groups can be obtained 
by using the "tabstat" command.

20.5 Friedman test
The Friedman test is the nonparametric alternative to the one-way repeated measures 
ANOVA test. Suppose that we are interested in assessing the mean blood sugar levels 
at four different time intervals (e.g., at hour-0, hour-7, hour-14, and hour-24) after 
administration of a drug on 15 study subjects. The objective of this study is to deter-
mine whether or not the drug reduces blood sugar levels over time (i.e., whether the 
average blood sugar levels over time are the same or different).  

To conduct this study, we randomly selected 15 individuals from a population and

Table 20.4 Wilcoxon signed ranks test 

. signrank post_test = pre_test 
 
Wilcoxon signed-rank test 
 
        sign |      obs   sum ranks    expected 
-------------+--------------------------------- 
    positive |       32         528         264 
    negative |        0           0         264 
        zero |        0           0           0 
-------------+--------------------------------- 
         all |       32         528         528 
 
unadjusted variance     2860.00 
adjustment for ties       -1.50 
adjustment for zeros       0.00 
                     ---------- 
adjusted variance       2858.50 
 
Ho: post_tes = pre_test 
             z =   4.938 
    Prob > |z| =   0.0000 
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measured their blood sugar levels at the baseline, i.e., before administration of a drug 
(hour-0). All the individuals were then administered a drug (say, drug A), and their 
blood sugar levels were measured again after 7 hours, 14 hours, and 24 hours. We are 
interested in knowing if the blood sugar levels over time after giving the drug are the 
same or not (in other words, whether the drug is effective in reducing the blood sugar 
levels over time). The variable "time" in the dataset indicates the times of measurement 
of blood sugar levels. In this example, we have only one treatment group (received 
drug A) but the outcome is measured (blood sugar) at four different points in time on 
the same subjects (i.e., we have one treatment group with four levels of measurements 
on the same subjects). Use the data file <Data_Repeat_anova_3.dta> for the exercise.

To perform the Friedman test, we need to install a module (emh package), which does 
not come preinstalled in Stata. To install the module, use the following command: 

ssc install emh

For the Friedman test, Stata needs a dataset which is in long format (our dataset is in 
long format). If your dataset is in wide format, you need to convert it into long format 
as discussed in Section 5.12. After installing the module, let us first check the number 
of study subjects and the mean and median blood sugar levels at different time points 
by using the following command (Table 20.6): 

tabstat sugar, by(time) stat(n mean p50)

Table 20.5 Kruskal-Wallis test  

. kwallis sbp, by(religion) 
 
Kruskal-Wallis equality-of-populations rank test 
 
  +----------------------------+ 
  |  religion | Obs | Rank Sum | 
  |-----------+-----+----------| 
  |    MUSLIM | 126 | 13298.50 | 
  |     HINDU |  58 |  6175.00 | 
  | Christian |  26 |  2681.50 | 
  +----------------------------+ 
 
chi-squared =     0.054 with 2 d.f. 
probability =     0.9733 
 
chi-squared with ties =     0.054 with 2 d.f. 
probability =     0.9733 
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Now, use the following command to perform the Friedman test: 

emh sugar time, strata(subject) anova transform(rank)

The basic syntax of the command is:

emh outcome_variable explanatory_variable, strata(repeated variable) anova 
transform(rank). 

The output of the Friedman test is provided at the bottom of Table 20.6. 

Table 20.6 shows the summary of the blood sugar levels at different time points of 
measurement. It shows that the mean and median (p50) blood sugar levels have gradu-
ally decreased over time. For instance, the median blood sugar at the baseline was 110, 
while it was 98 at 24 hours after treatment. 

The output of the Friedman test is provided at the bottom of Table 20.6. In the table, 
Q(3) (=27.56) is the test statistic of the Friedman test, and the p-value of the test is 
0.000. This indicates that there is a significant difference in blood sugar levels across 4 
time points (p<0.001). In other words, the findings suggest that the drug is effective in 
reducing blood sugar levels since the median blood sugar levels have reduced over 
time.

Table 20.6 Friedman test  

. tabstat sugar, by(time) stat(n mean p50) 
 
Summary for variables: sugar 
     by categories of: time (Time of measurement) 
 
            time |         N      mean       p50 
-----------------+------------------------------ 
before treatment |        15  110.5333       110 
7 hrs after trea |        15     105.2       105 
14 hrs after tre |        15  101.5333       100 
24 hrs after tre |        15  100.4667        98 
-----------------+------------------------------ 
           Total |        60  104.4333       105 
------------------------------------------------ 
 
. emh sugar time, strata(subject) anova transformation(rank) 
 
Extended Mantel-Haenszel (Cochran-Mantel-Haenszel) Stratified Test of Association 
 
ANOVA (Row Mean Scores) Statistic: 
Q (3) = 27.5625, P = 0.0000  
Transformation: Ranks 
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Analysis of Covariance (ANCOVA)

ANCOVA, or analysis of covariance, is a useful technique to statistically control the 
extraneous variable(s) [called covariate] for the comparison of means of two or more 
groups. It is similar to ANOVA. In ANOVA, one can incorporate only the categorical 
independent variables to have the main effect and interaction. But in ANCOVA, one 
can incorporate both categorical and quantitative variables in the model, including the 
interaction between categorical and quantitative independent variables. ANCOVA can 
be performed as a one-way, two-way, or multivariate ANCOVA technique. Use the 
data file <Data_3.dta> for practice.

21.1 One-way ANCOVA
The purpose of using the one-way ANCOVA test is to assess the difference in the mean 
of the dependent variable (e.g., systolic BP) against a categorical variable (e.g., sex, or 
effect of a drug) after controlling for one or more quantitative variables [called covari-
ates, such as age and diastolic BP] in the model. The one-way ANCOVA test involves 
at least three variables, such as: 

• One quantitative dependent variable (e.g., systolic BP, post-test score, or blood  
 sugar level); 
• Only one categorical independent variable with two or more levels (e.g., sex,  
 type of intervention, or type of drug); and 
• One (or more) covariate (continuous quantitative variable), e.g., diastolic BP,  
 age, pre-test score or baseline blood sugar level. 

The covariates to be selected for a model should be one or more continuous variables
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that are significantly correlated with the dependent variable. One can also include 
categorical variables as covariates in the model. 

Suppose that a researcher is interested in comparing the effectiveness of 3 drugs (drug 
A, drug B, and drug C) in reducing systolic BP. To conduct the study, the researcher 
randomly selected three groups of people and assigned a drug to each group. In this 
scenario, one-way ANOVA could be used. However, it was observed that the mean age 
and pre-treatment systolic BP of these three groups were not the same. Since age and 
pre-treatment systolic BP may influence the effectiveness of the drugs in reducing 
systolic BP, it requires adjustment for these variables (age and pre-treatment systolic 
BP) to conclude the results. In such a situation, one-way ANCOVA can be used. In 
ANCOVA, the independent variable must be a categorical variable (here it is "type of 
drug"). ANCOVA can adjust more than one covariate, either continuous or categorical.  

Another example: Assume that you have organized a staff training. You have taken the 
pre-and post-tests of the participants to evaluate the effectiveness of the training. Now, 
you want to conclude if males and females (independent variable "sex") have similar 
performance in the post-test (dependent variable), after controlling for age and pre-test 
scores (covariates). If the assumptions are met, one-way ANCOVA is the appropriate 
test for this situation as well.

Hypothesis

Assume that you want to assess if the mean systolic BP (dependent variable; variable 
name is “sbp”) is the same among males and females (independent variable; variable 
name is “sex_1”) after controlling for diastolic BP (covariate; variable name is “dbp”). 

H0: There is no difference in mean systolic BP between males and females in the 
population, after controlling for diastolic BP. 

HA: The mean systolic BP of males and females is different in the population, after 
controlling for diastolic BP. 

Assumptions

1. The dependent variable is normally distributed at each level of the independent  
 variable; 
2. The variances of the dependent variable at each level of the independent  
 variable are the same (homogeneity of variances); 
3. The covariates (if more than one) are not strongly correlated with each other  
 (r<0.8);
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4. There is a linear relationship between the dependent variable and the covariates
 at each level of the independent variable; 
5. There is no interaction between the covariate (diastolic BP) and the independent
 variable (sex) [called homogeneity of regression slopes].

21.1.1 Commands 

Before performing the ANCOVA, it is better to check the descriptive statistics of the 
dependent variable (systolic BP) at each level of the independent variable (sex). Use 
the following command to get the descriptive statistics of systolic BP by sex (Table 
21.1):

tabstat sbp, by(sex_1) stat(n mean sd)

Now, to perform the ANCOVA, use the first of the following commands. Here, the 
dependent variable is systolic BP (sbp), the independent variable is sex (sex_1), and 
the covariate is diastolic BP (dbp). 

anova sbp i.sex_1 c.dbp i.sex_1#c.dbp
regress
margins sex_1, atmeans

The outputs of the above commands are displayed in Tables 21.2 (first and second 
commands) and 21.3 (third command). The prefix “i.” when used before the name of 
an independent variable, tells Stata that it is a categorical variable. It also tells Stata to 
generate dummy variables (a set of dichotomous or indicator variables) if the categori-
cal variable has more than two levels (see Sections 5.11 and 16.2). On the other hand, 
the prefix “c.” is used before a variable to indicate that the variable is a continuous 

Table 21.1 Descriptive statistics (unadjusted) of systolic BP by sex  

. tabstat sbp, by(sex_1) stat(n mean sd) 
 
Summary for variables: sbp 
     by categories of: sex_1 (Sex: numeric) 
 
 sex_1 |         N      mean        sd 
-------+------------------------------ 
Female |       133  129.5714  21.37695 
  Male |        77  124.5584  17.22108 
-------+------------------------------ 
 Total |       210  127.7333  20.05794 
-------------------------------------- 
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variable. The follow-up “regress” command without any argument will display results 
in the form of a regression table (Table 21.2). The last command will provide the 
predicted (adjusted) mean of systolic BP at each level of sex considering the average 
value of the covariate (diastolic BP) (Table 21.3).

You can get the pairwise comparison of predicted means of the dependent variable 
when the main effect of the independent variable (with more than two levels) is statisti-
cally significant. If the main effect is not significant (in our example, sex is not signifi-
cantly associated with systolic BP; Table 21.2), it is not really necessary. However, for 
the purpose of demonstration, we have performed the pairwise comparison with the 
Bonferroni option, using the following command: 

Table 21.2 ANCOVA table: between-subjects effects   
. anova sbp i.sex_1 c.dbp i.sex_1#c.dbp 
 
                           Number of obs =     210     R-squared     =  0.7188 
                           Root MSE      = 10.7136     Adj R-squared =  0.7147 
 
                  Source |  Partial SS    df       MS           F     Prob > F 
              -----------+---------------------------------------------------- 
                   Model |  60440.1719     3   20146.724     175.52     0.0000 
                         | 
                   sex_1 |  1.82547561     1  1.82547561       0.02     0.8998 
                     dbp |  41991.2066     1  41991.2066     365.84     0.0000 
               sex_1#dbp |  .024723806     1  .024723806       0.00     0.9883 
                         | 
                Residual |  23644.8947   206  114.781042    
              -----------+---------------------------------------------------- 
                   Total |  84085.0667   209  402.320893    
. regress 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  3,   206) =  175.52 
       Model |  60440.1719     3   20146.724           Prob > F      =  0.0000 
    Residual |  23644.8947   206  114.781042           R-squared     =  0.7188 
-------------+------------------------------           Adj R-squared =  0.7147 
       Total |  84085.0667   209  402.320893           Root MSE      =  10.714 
 
------------------------------------------------------------------------------ 
         sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       sex_1 | 
       Male  |   1.569876   12.44837     0.13   0.900    -22.97267    26.11242 
         dbp |   1.458842   .0732245    19.92   0.000     1.314476    1.603207 
             | 
 sex_1#c.dbp | 
       Male  |   .0022405   .1526608     0.01   0.988    -.2987373    .3032184 
             | 
       _cons |   6.348646   6.254367     1.02   0.311    -5.982131    18.67942 
------------------------------------------------------------------------------ 



233Analysis of Covariance (ANCOVA)

pwcompare sex_1, mcompare(bon) effects

This command will provide a comparison of adjusted means of the dependent variable 
(systolic BP) between the levels (categories) of sex (Table 21.4). The option “effects” 
used with the command is to get the p-values. 

21.1.2 Interpretation: One-way ANCOVA

Table 21.1 shows the mean and SD of systolic BP by sex. The table shows that the 
unadjusted mean systolic BP of females is 129.5 mmHg and that of males is 124.5 
mmHg. 

Table 21.2 shows the results of one-way ANCOVA. This is the main table to interpret 
the results. We have tested the null hypothesis that the population mean of systolic BP 
in males and females is the same after controlling for diastolic BP. Look at the p-value 
(Prob > F) for sex (sex_1) in the table, which is 0.899 (main effect). Since the p-value 
is >0.05, we cannot reject the null hypothesis. We may, therefore, conclude that the 
mean systolic BP of males and females in the population is not different after 
controlling for diastolic BP.

We can also assess the influence (association) of the covariate (diastolic BP) on the 
dependent variable (systolic BP). The p-value for diastolic BP is 0.000, which is highly 
significant. This indicates that there is a significant association between systolic and 
diastolic BP after controlling for sex.

Table 21.3 Mean systolic BP by sex after adjustment for diastolic BP 
. margins sex_1, atmeans 
 
Adjusted predictions                              Number of obs   =        210 
 
Expression   : Linear prediction, predict() 
at           : 0.sex_1         =    .6333333 (mean) 
               1.sex_1         =    .3666667 (mean) 
               dbp             =    82.76667 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       sex_1 | 
     Female  |   127.0921   .9372843   135.60   0.000     125.2442      128.94 
       Male  |   128.8475   1.282687   100.45   0.000     126.3186    131.3763 
------------------------------------------------------------------------------ 
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However, before we conclude the results, it is important to check whether the assump-
tion of homogeneity of regression slopes is violated or not. To check this, we need to 
look at the significance level (p-value) of the interaction term (sex_1#dbp) in the table 
(Table 21.2). We can see that the p-value for interaction is 0.988 (>0.05), suggesting 
that there is no interaction. This indicates that the homogeneity of regression slopes 
assumption is not violated. A p-value of <0.05 (i.e., if there is an interaction) suggests 
the regression slopes are not homogeneous and the ANCOVA test is inappropriate.

Table 21.3 shows the outputs of the “margins” command. Margins are the statistics 
calculated from predictions of a previously analyzed model. In our example, we have 
used the option “atmeans” with the “margins” command (there are other options like 
“asbalanced” and “asobserved”) to get the predicted values (adjusted values) consider-
ing the average value of the covariate. Therefore, the “margins” command has provid-
ed us with the adjusted (predicted) mean of systolic BP for each level of sex, consider-
ing the average value of diastolic BP (82.76 mmHg). We can see that the mean systolic 
BP of females is 127.09 mmHg, while it is 128.84 mmHg for males after adjusting for 
the average value of diastolic BP (the adjusted means are different from the unadjusted 
means as shown in Table 21.1).  

Table 21.4 shows the pairwise comparison of the predicted means. This analysis is not 
necessary in our example since the independent variable (sex) is not significantly asso-
ciated with the dependent variable. If the independent variable has more than two 
levels and is statistically significant, then the table for pairwise comparison is import-
ant. 

Table 21.4 shows that there is no significant difference in mean systolic BP between

Table 21.4 Pairwise comparison of adjusted means  

. pwcompare sex_1, mcompare(bon) effects 
 
Pairwise comparisons of marginal linear predictions 
 
Margins      : asbalanced 
 
note: option bonferroni ignored since there is only one comparison 
--------------------------------------------------------------------------------- 
                |                            Unadjusted           Unadjusted 
                |   Contrast   Std. Err.      t    P>|t|     [95% Conf. Interval] 
----------------+---------------------------------------------------------------- 
          sex_1 | 
Male vs Female  |   1.569876   12.44837     0.13   0.900    -22.97267    26.11242 
--------------------------------------------------------------------------------- 
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males and females as the p-value is 0.90 (>0.05). The analysis ignored the Bonferroni 
option since the variable “sex” has only two levels. The Bonferroni test is a type of 
multiple comparison test (there are other tests for pairwise comparisons, such as Schef-
fe’s, Sidak’s, and Tukey’s tests) used for pairwise comparison of means. The Bonfer-
roni correction is done to adjust the type I errors when multiple pairwise tests are 
performed on a single variable. 

21.2 Two-way ANCOVA
In two-way ANCOVA, there are two independent categorical variables with two or 
more levels/categories, while in one-way ANCOVA, there is only one independent 
categorical variable with two or more levels. At least four variables are involved in the 
analysis of two-way ANCOVA. They are: 

• One continuous dependent variable (e.g., diastolic BP, blood sugar, or post-test  
 score); 
• Two categorical independent variables (with two or more levels) [e.g., occupation, 
 diabetes, or type of drug]; and 
• One or more continuous covariates (e.g., age, systolic BP, or income). 

Two-way ANCOVA provides information, after controlling for the covariate(s), on:

• Whether there is a significant main effect of the first independent variable  
 (e.g., occupation) on the dependent variable;
• Whether there is a significant main effect of the second independent variable  
 (e.g., diabetes) on the dependent variable; and
• Whether there is an interaction between the independent variables (e.g., occupation
 and diabetes). 

Suppose that we want to assess, after controlling for age (covariate):  

1. Whether or not occupation influences the diastolic BP (i.e., is the mean diastolic
 BP same in different occupational groups?); 
2. Whether or not diabetes influences the diastolic BP (i.e., is the mean diastolic  
 BP same for diabetics and non-diabetics?); and 
3. Does the influence of occupation on diastolic BP depend on the presence of  
 diabetes (i.e., is there an interaction between occupation and diabetes)?

Questions 1 and 2 refer to the main effect, while question 3 explains the interaction 
of two independent variables (occupation and diabetes) on the dependent variable
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(diastolic BP). For the analysis, we will use the data file <Data_3.dta>. The variable 
names are for diastolic BP is “dbp”, occupation is “occupation (1= govt. job; 2= private 
job; 3= business; 4= others)”, diabetes is “diabetes1 (0= no diabetes; 1= have diabe-
tes)”, and age is “age”. 

Assumptions

All the assumptions for the one-way ANCOVA are applicable to two-way ANCOVA. 

21.2.1 Commands

To perform the two-way ANCOVA, use the following command. The variables includ-
ed in the analysis are dbp (diastolic BP; as dependent variable), occupation, diabetes1, 
and age.

anova dbp i.occupation i.diabetes1 c.age i.occupation#i.diabetes1
regress

The first command is the basic command for ANCOVA. The follow-up command 
"regress" will display the outputs in the form of a regression table, as we have seen 
earlier in one-way ANCOVA. The outputs of both the commands are displayed in 
Table 21.5.  

To get the predicted (adjusted) mean of diastolic BP at each level of occupation and 
diabetes considering the average values of age (covariate), use the following com-
mand: 

margins occupation diabetes1, atmeans

The outputs are displayed in Table 21.6. You can also get the marginal means for a 
combination of occupation and diabetes (e.g., govt. job with diabetes, govt. job without 
diabetes, etc.), if you use the following command (outputs not shown): 

margins occupation#diabetes1
Or, 
margins occupation#diabetes1, atmeans

You can generate a plot of predicted values (adjusted means) of the dependent variable 
for the independent variables in the model. To generate a plot of adjusted mean diastol-
ic BP for occupation and diabetes, use the following commands successively (Fig 
21.1): 
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You can perform the pairwise comparison of predicted means of the dependent 
variable when the main effects of the independent variables are statistically significant. 
If the main effect is not significant for an independent variable, it is not necessary to do 
the pairwise comparison test. In our example, the main effects of both occupation (p= 
0.76) and diabetes (p= 0.84) are not statistically significant. However, for the purpose

margins occupation, within(diabetes1) atmeans
marginsplot

Table 21.5 Results of two-way ANCOVA 
. anova dbp i.occupation i.diabetes1 c.age i.occupation#i.diabetes1 
 
                           Number of obs =     210     R-squared     =  0.0133 
                           Root MSE      = 11.9008     Adj R-squared = -0.0260 
 
                  Source |  Partial SS    df       MS           F     Prob > F 
    ---------------------+---------------------------------------------------- 
                   Model |  384.062807     8  48.0078509       0.34     0.9499 
                         | 
              occupation |   161.42117     3  53.8070567       0.38     0.7676 
               diabetes1 |  5.41875169     1  5.41875169       0.04     0.8451 
                     age |   15.420277     1   15.420277       0.11     0.7418 
    occupation#diabetes1 |  126.776448     3  42.2588161       0.30     0.8265 
                         | 
                Residual |  28467.5039   201  141.629372    
    ---------------------+---------------------------------------------------- 
                   Total |  28851.5667   209  138.045774    
 
. regress 
 
      Source |       SS       df       MS              Number of obs =     210 
-------------+------------------------------           F(  8,   201) =    0.34 
       Model |  384.062807     8  48.0078509           Prob > F      =  0.9499 
    Residual |  28467.5039   201  141.629372           R-squared     =  0.0133 
-------------+------------------------------           Adj R-squared = -0.0260 
       Total |  28851.5667   209  138.045774           Root MSE      =  11.901 
 
-------------------------------------------------------------------------------------- 
                 dbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
---------------------+---------------------------------------------------------------- 
          occupation | 
        PRIVATE JOB  |  -1.370739   2.507417    -0.55   0.585    -6.314954    3.573477 
           BUSINESS  |  -.9578347   2.602651    -0.37   0.713    -6.089838    4.174168 
             OTHERS  |  -3.433968   2.561338    -1.34   0.182    -8.484508    1.616571 
                     | 
           diabetes1 | 
                yes  |  -1.513519   4.127483    -0.37   0.714    -9.652241    6.625204 
                 age |  -.0365282   .1107028    -0.33   0.742    -.2548161    .1817597 
                     | 
occupation#diabetes1 | 
    PRIVATE JOB#yes  |  -1.536793   6.179707    -0.25   0.804    -13.72217    10.64858 
       BUSINESS#yes  |   2.673676    5.64161     0.47   0.636    -8.450656    13.79801 
         OTHERS#yes  |   3.312635   5.554671     0.60   0.552    -7.640267    14.26554 
                     | 
               _cons |   85.12535   3.322763    25.62   0.000     78.57341    91.67729 
-------------------------------------------------------------------------------------- 
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of demonstration, we have performed the pairwise comparisons with the Bonferroni 
option by using the following command: 

pwcompare occupation diabetes1, mcompare(bon) effects

This command will provide a comparison of adjusted mean diastolic BP within the 
levels (categories) of occupation and diabetes (Table 21.7). The option “effects”, used 
with this command, is for obtaining the p-values of the test.

21.2.2 Interpretation: Two-way ANCOVA

Table 21.5 shows the results of the two-way ANCOVA test. We have tested the null 
hypothesis that: 

• The mean diastolic BP (in the population) among the occupational groups is  
 the same after controlling for age and diabetes; 
• The mean diastolic BP (in the population) among diabetics and non-diabetics  
 is the same after controlling for age and occupation; and 

Table 21.6 Adjusted means (predicted values) of diastolic BP by occupation and 
diabetes 
. margins occupation diabetes1, atmeans 
 
Adjusted predictions                              Number of obs   =        210 
 
Expression   : Linear prediction, predict() 
at           : 1.occupation    =    .2857143 (mean) 
               2.occupation    =    .2333333 (mean) 
               3.occupation    =    .2333333 (mean) 
               4.occupation    =     .247619 (mean) 
               0.diabetes1     =    .7857143 (mean) 
               1.diabetes1     =    .2142857 (mean) 
               age             =    26.51429 (mean) 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  occupation | 
   GOVT JOB  |   83.83251   1.549116    54.12   0.000      80.7779    86.88711 
PRIVATE JOB  |   82.13245   1.717086    47.83   0.000     78.74664    85.51827 
   BUSINESS  |    83.4476   1.712003    48.74   0.000     80.07181    86.82339 
     OTHERS  |   81.10839   1.663185    48.77   0.000     77.82886    84.38792 
             | 
   diabetes1 | 
         no  |   82.76318     .92934    89.06   0.000     80.93067    84.59569 
        yes  |   82.33521   1.830683    44.98   0.000      78.7254    85.94501 
------------------------------------------------------------------------------ 
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• There is no interaction between occupation and diabetes after controlling for  
 age.  

Look at the p-values for occupation, diabetes, and the interaction term “occupation#di-
abetes1” in Table 21.5. They are 0.767, 0.845, and 0.826, respectively, indicating that 
none of them is statistically significant (we are unable to reject any of the null hypothe-
ses). This means that occupation (after controlling for age and diabetes) and diabetes 
(after controlling for age and occupation) do not have any significant influence on 
diastolic BP. There is also no interaction between occupation and diabetes after 
controlling for age. However, we should always check the p-value of the interaction 
first. If the interaction is significant (p-value <0.05), then the main effects (of occupa-
tion and diabetes) are not important because the effect of one independent variable is 
dependent on the levels of the other independent variable.

We also have information about the influence of covariates on the dependent variable. 
We can see (Table 21.5) that the p-value for age is 0.741, which is not statistically 
significant. This indicates that there is no significant association between age and 
diastolic BP after controlling for occupation and diabetes. 

Table 21.6 shows the adjusted (predicted) mean (Margin column) diastolic BP (depen-
dent variable) at different levels of the independent variables (occupation and diabe-
tes). As an example, the adjusted mean diastolic BP of the government job holders is 
83.8 mmHg and that of diabetics (diabetes1 yes) is 82.3 mmHg. 
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Figure 21.1 Adjusted mean diastolic BP at different levels of occupation by diabetes 
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Table 21.7 depicts the pairwise comparison of adjusted mean diastolic BP within 
different occupational groups and diabetes. When the independent variable(s) with 
more than two levels is significantly associated with the dependent variable, a pairwise 
comparison is required. Examine the p-values (P> |t|) in Table 21.7. Since all the p-val-
ues are >0.05, there is no significant difference in mean diastolic BP among the occu-
pational groups and diabetes.

Figure 21.1 plotted the adjusted mean diastolic BP with 95% CI of different occupa-
tional groups disaggregated by diabetes. Finally, from the data, we can conclude that 
the diastolic BP is not influenced (there is no association) by occupation and diabetes 
after controlling for age and the independent variables (diabetes for occupation and 
occupation for diabetes) included in the model.

Table 21.7 Pairwise comparison test for occupation and diabetes  
. pwcompare occupation diabetes1, mcompare(bon) effects 
 
Pairwise comparisons of marginal linear predictions 
 
Margins      : asbalanced 
 
--------------------------- 
             |    Number of 
             |  Comparisons 
-------------+------------- 
  occupation |            6 
   diabetes1 |            1 
--------------------------- 
 
------------------------------------------------------------------------------------------ 
                         |                            Bonferroni           Bonferroni 
                         |   Contrast   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------------------+---------------------------------------------------------------- 
              occupation | 
PRIVATE JOB vs GOVT JOB  |  -2.139135   3.089479    -0.69   1.000    -10.37143    6.093161 
   BUSINESS vs GOVT JOB  |   .3790031   2.821173     0.13   1.000    -7.138358    7.896364 
     OTHERS vs GOVT JOB  |   -1.77765   2.778096    -0.64   1.000     -9.18023    5.624929 
BUSINESS vs PRIVATE JOB  |   2.518138    3.00248     0.84   1.000    -5.482339    10.51862 
  OTHERS vs PRIVATE JOB  |   .3614848   2.963006     0.12   1.000     -7.53381    8.256779 
     OTHERS vs BUSINESS  |  -2.156654   2.677556    -0.81   1.000    -9.291331    4.978024 
                         | 
               diabetes1 | 
              yes vs no  |  -.4011393   2.050795    -0.20   0.845    -4.444971    3.642693 
------------------------------------------------------------------------------------------ 
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Miscellaneous

In this chapter, we will discuss two important and useful statistical methods that are 
frequently needed during data management and analysis, such as how to test the 
reliability of a scale and develop the wealth quintiles. 
 

22.1 Reliability of scales: Cronbach’s alpha
When researchers select a scale (e.g., a scale to measure depression) for their study, it 
is important to check that the scale is reliable. One of the ways to check the internal 
consistency (reliability) of a scale is to calculate the Cronbach’s alpha coefficient. 
Cronbach’s alpha indicates the degree to which the items that make up the scale 
correlate with each other in the group. 

Ideally, Cronbach’s alpha coefficient should have a value above 0.7 to indicate that the 
scale is reliable. However, this value is sensitive to the number of items on the scale. If 
the number of items on the scale is less than 10, Cronbach’s alpha coefficient tends to 
be low. In such a situation, it is appropriate to use the “average interitem correlation”. 
The optimum range of the average (mean) interitem correlation value is between 0.2 
and 0.4. Use the data file <Data Cronb. dta> for practice.

Before using the procedure, be sure that all the negatively worded values are 
“reversed” by recoding (see Section 5.2). If this is not done, it will produce a very low 
(or negative) value of Cronbach’s alpha coefficient. Hopefully, Stata can automatically 
reverse the negatively worded values if an appropriate option is used with the main 
command (see below). Assume that a researcher has used a scale to measure depres-
sion. The scale has 4 items (questions), q1, q2, q3, and q4. To get the Cronbach’s alpha 
coefficient, use the following commands:
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alpha q1-q4
alpha q1-q4, std
alpha q1-q4, std item detail
alpha q1-q4, item reverse(q3 q4)

The first command will provide Cronbach’s alpha coefficient based on unstandardized 
items (Table 22.1) (q1-q4 indicates the variables from q1 to q4). When the option “std” 
is used (second command), Stata will provide the coefficient based on standardized 
values of the items (Table 22.1). This option is used when items are not measured on 
the same scale. It also provides an unbiased estimate. Our suggestion is to use the 
option “std” to get the alpha coefficient even though items are on the same scale of 
measurement.

The third command (with the use of options "std", "item", and "detail"), Stata will 
provide the item-wise values of coefficients in a table and an interitem correlation 
matrix (Table 22.2). The last command [with the use of option "reverse(q3 q4)"] will 
reverse the coding of variables q3 and q4. This option is used when one or more nega-
tively worded variables need to be reversed (we don’t have such a problem in our data).

22.1.1 Interpretation

Table 22.1 shows the unstandardized (0.839) and standardized (0.840) values of Cron-
bach’s alpha coefficients. The standardized value is especially important when all the 
items are not on the same scale of measurement. It also provides an unbiased estimate.

Table 22.1 Cronbach’s alpha coefficients 
. alpha q1-q4 
 
Test scale = mean(unstandardized items) 
 
Average interitem covariance:     .6564501 
Number of items in the scale:            4 
Scale reliability coefficient:      0.8390 
 
 
 
. alpha q1-q4, std 
 
Test scale = mean(standardized items) 
 
Average interitem correlation:      0.5675 
Number of items in the scale:            4 
Scale reliability coefficient:      0.8400 



243Miscellaneous

In our example, the standardized Cronbach’s alpha coefficient is 0.840, which 
indicates a very good correlation among items on the scale (i.e., the scale is reliable).

However, before considering the value of Cronbach’s alpha coefficient, look at the 
"Interitem correlations matrix" displayed at the bottom of Table 22.2. All the values in 
the matrix must be positive (all the values are positive in our example). The presence 
of one or more negative values indicates that some of the items have not been "reverse 
scored" correctly. This information is also provided in the first part of the table under 
the "Sign" column (all the items have a positive sign). 

The “item-rest correlation” in Table 22.2 indicates the degree to which each item 
correlates with the total score. In our example, the values for q1 to q4 are 0.60, 0.71, 
0.67, and 0.70, respectively. A small value (<0.30) for any item could be a problem. If 
the Cronbach’s alpha coefficient (alpha) and item-rest correlation values for any item 
are small (<0.7 and <0.3, respectively), one may consider omitting the item from the 
scale that has a small value. In our example, there is no such problem. 

If the number of items is small on the scale (fewer than 10), it may be difficult to get 
a reasonable Cronbach’s alpha coefficient value. In such a situation, consider the aver-
age interitem correlation value provided in Table 22.2. In this example, the average

Table 22.2 Item-wise values of Cronbach’s alpha 
. alpha q1-q4, std item detail 
 
Test scale = mean(standardized items) 
                                                            average 
                             item-test     item-rest       interitem 
Item         |  Obs  Sign   correlation   correlation     correlation     alpha 
-------------+----------------------------------------------------------------- 
q1           |   60    +       0.7761        0.5991          0.6178      0.8290 
q2           |   60    +       0.8444        0.7101          0.5429      0.7808 
q3           |   60    +       0.8257        0.6789          0.5633      0.7947 
q4           |   60    +       0.8416        0.7054          0.5460      0.7830 
-------------+----------------------------------------------------------------- 
Test scale   |                                               0.5675      0.8400 
------------------------------------------------------------------------------- 
 
Interitem correlations (obs=60 in all pairs) 
 
        q1      q2      q3      q4 
q1  1.0000 
q2  0.5122  1.0000 
q3  0.4911  0.6346  1.0000 
q4  0.5483  0.6295  0.5892  1.0000 
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interitem correlation value ranges from 0.542 to 0.617, and the scale mean (average) is 
0.567).

22.2 Constructing wealth quintiles
The wealth index is an indicator of the economic status of households or individuals 
that is commonly used in demographic health and other surveys. The measure of the 
wealth index may be linked with inequalities in individual characteristics, use of health 
and other services, and health outcomes. The wealth index is commonly calculated 
from information on dwelling and household characteristics, access to a variety of 
consumer goods and services, and assets, which together are used as a measure of the 
economic status of an individual. The wealth index is constructed using the household 
asset data via principal component analysis (PCA). 

After calculating the composite wealth index scores for each individual, they are 
categorized into wealth quintiles. A quintile of a dataset represents 20% (one-fifth) of 
a given sample. Therefore, the calculated wealth index, after arranging them into 
ascending order, is classified into five categories, or quintiles. The lowest index group 
(the first quintile) is the poorest section of the sample, while the highest index group 
(the fifth quintile) is the richest section of the sample. In this section, we will discuss 
how to construct the wealth quintiles from household information. 

We will use the data file <Wealth.dta> for this exercise. There are 18 variables in this 
data file with information on household assets and other characteristics. We will use all 
this information to construct the wealth quintiles using the PCA technique. Follow the 
succeeding steps to construct the wealth quintiles. 

Step 1: All the variables to be used for constructing wealth quintiles must be dichoto-
mous variables with the coding scheme of 0/1. In our dataset, there are 18 variables, of 
which two are categorical variables with more than two levels (water and toilet). We 
need to dichotomize them with a 0/1 coding scheme. Let us first check the value labels 
and coding schemes of the variables “water” and “toilet” by using the following com-
mand:

label list water toilet

Table 22.3 shows the code numbers and value labels of the variables. The table shows 
that the variable "water" has 14 categories and the variable "toilet" has 11 categories. 
We need to dichotomize (0/1) both these variables using some guidelines (e.g., demo-
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graphic health survey guidelines). Let us consider that the categories (code numbers) 
11 to 13, 21, and 91 are the safe sources of drinking water and will code them as 1. The 
other categories will be coded as 0. Similarly, for the variable "toilet (use of latrine)", 
let us consider the code numbers 11 to 13, and 22 as hygienic practices, and will code 
them as 1, while the others will be coded as 0. Use the following commands to recode 
the variable "water":

gen water1=0
replace water1=1 if water==11
replace water1=1 if water==12
replace water1=1 if water==13
replace water1=1 if water==21
replace water1=1 if water==91

All these commands will generate a new variable “water1” with the coding scheme of 
0/1 as stated before. Now to label the new variable (water1) and put the value labels,

Table 22.3 Coding schemes of water and toilet  

. label list water toilet 
water: 
          11 Piped water into dwelling 
          12 Piped to yard/plot 
          13 Public tap/stand pipe 
          21 Tubewell or borehole 
          31 Protected well 
          32 Unprotected well 
          41 Protected spring 
          42 Unprotected spring 
          51 Rainwater 
          61 Tanker truck 
          71 Cart with small tank 
          81 Surface water (River/Lake/pond/stream/canal) 
          91 Bottled water 
          96 Other 
toilet: 
          11 Flush or pour slush toilet flush to piped sewer system 
          12 Flush to septic tank 
          13 Flush to pit latrine 
          14 Flush to somewhere else 
          15 Flush don't know where 
          22 Pit latrine with slab 
          23 Pit latrine without slab/open pit 
          31 Bucket toilet 
          41 Hanging toilet/hanging latrine 
          51 No facility/bush/field 
          96 Other 
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use the following commands: 

lab var water1 "drinking water source"
la de water1 0"unsafe " 1"safe"
la values water1 water1

In the same manner, recode the second variable “toilet” as “toilet1”. 

Step 2: Once the multinominal variables are dichotomized, check the prevalence (rela-
tive frequency) of all the variables to be included in the PCA by using the following 
command: 

sum electricity-toilet1

This command will provide Table 22.4 (“electricity-toilet1” as used with the command 
indicates all the variables from electricity to toilet1). We can see that all the variables 
are coded as 0/1 (columns Min and Max). The column "Mean" in the table indicates the 
relative frequency (proportion) of code 1. For example, the mean of the variable "elec-
tricity" is 0.42. This indicates that 42% of the subjects use electricity. Now, identify the 
variables with very small proportions (<0.01 or <1%). In our example, the variables 
"car" and "boat" have very low proportions (0.005 or 0.5% and 0.004 or 0.4%, respec-
tively) and we will not include them in the PCA. 

Step 3: Now we will do the principal component analysis (PCA) of all the variables 
except for “car” and “boat” and calculate the wealth index by using the following com-
mands: 

pca electricity radio tv mobile refrigerator almirah table chair watch ///
cycle motorcycle rikshow hhland firmland water1 toilet1, factor(1)
Or, 
pca electricity - motorcycle rikshow - toilet1, factor(1)
predict comp1
ren comp1 w_index 

The first or second command will do the PCA (output not shown). The third command 
(which must be used after performing the PCA) will generate a new variable "comp1" 
with a wealth index for all the study subjects. The last command will rename "comp1" 
to "w_index" (we did it for our understanding).
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Step 4: We will now construct the wealth quintiles from the wealth index variable 
(w_index) by using the following command: 

xtile w_quintile=w_index, nq(5)

Table 22.4 Relative frequency of the variables  

. sum electricity-toilet1 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
 electricity |      1185    .4236287    .4943416          0          1 
       radio |      1185    .1316456    .3382478          0          1 
          tv |      1185    .2962025    .4567742          0          1 
      mobile |      1185    .8185654    .3855406          0          1 
refregerator |      1185    .0270042    .1621641          0          1 
-------------+-------------------------------------------------------- 
     almirah |      1185    .4194093    .4936707          0          1 
       table |      1185    .5738397    .4947264          0          1 
       chair |      1185    .5848101    .4929628          0          1 
       watch |      1185    .5797468    .4938079          0          1 
       cycle |      1185    .5409283    .4985325          0          1 
-------------+-------------------------------------------------------- 
  motorcycle |      1185    .0801688     .271669          0          1 
         car |      1185    .0059072    .0766631          0          1 
        boat |      1185    .0042194    .0648472          0          1 
     rikshow |      1185    .1063291    .3083885          0          1 
      hhland |      1185    .9611814    .1932439          0          1 
-------------+-------------------------------------------------------- 
    firmland |      1185    .3772152    .4848941          0          1 
      water1 |      1185    .8700422     .336399          0          1 
     toilet1 |      1185    .8624473    .3445754          0          1 
 

Table 22.5 Wealth quintiles  
. la de w_quintile 1"poorest" 2"poorer" 3"middle" 4"richer" 5"richest" 
 
. la values w_quintile w_quintile  
 
. tab w_quintile 
 
5 quantiles | 
 of w_index |      Freq.     Percent        Cum. 
------------+----------------------------------- 
    poorest |        237       20.00       20.00 
     poorer |        237       20.00       40.00 
     middle |        238       20.08       60.08 
     richer |        236       19.92       80.00 
    richest |        237       20.00      100.00 
------------+----------------------------------- 
      Total |      1,185      100.00 
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The above command will construct the wealth quintiles in a new variable “w_quintile”. 
Finally, label the new variable and give the value levels by using the first two com-
mands below, and check the wealth quintiles by generating a frequency distribution 
table using the last command. The outputs are provided in Table 22.5. 

lab var w_quintile "wealth quintile"
la de w_quintile 1"poorest" 2"poorer" 3"middle" 4"richer" 5"richest"
la values w_quintile w_quintile
tab w_quintile
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