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Globally, species across multiple taxonomic groups have suffered 
local reductions in abundance due to land-use change and intensi-
fication (Newbold et al., 2015; Seibold et al., 2019), with large po-
tential impacts on ecosystem functioning (Allan et al.,  2015). The 
majority of these studies have focussed on aboveground biodiver-
sity, whilst the belowground realm has often been ignored. There 
have been multiple calls, however, to open up the ‘black box’ of be-
lowground biodiversity patterns and identify the threats these spe-
cies face (Phillips et al., 2017; White et al., 2020).

Li et al. (2022) delve into this black box by providing insight into 
the effects of land-use intensity on the most abundant type of ani-
mal on Earth; nematodes (Bardgett & van der Putten, 2014; van den 

Hoogen et al.,  2019). Nematode abundances are already known to 
vary between biomes (van den Hoogen et al., 2019) and vegetation 
types (Song et al.,  2017), and land-use effects on abundance have 
been studied at a local scale (Li et al., 2020; Pothula et al., 2019). Li 
et al.  (2022), however, advance our knowledge of nematode spatial 
ecology by unpicking the impacts of human activity on global patterns 
of nematode abundances. They show that, unlike their aboveground 
counterparts, nematode abundance is higher in managed primary and 
secondary habitats than in unmanaged ones, and remains unchanged 
in pasture, cropland and urban habitats (Table 1; Figure 1a).

Nematode distributions are strongly influenced by soil char-
acteristics (Raymond et al.,  2013), which are thought to be the 
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most important drivers of nematode abundance globally (Nielsen 
et al., 2014; van den Hoogen et al., 2019). Given the impact of land 
use on soil quality and structure (Neal et al., 2020), we might, there-
fore, expect to observe changes in nematode abundance between 
land-use types and land-use intensity.

In addition to understanding how total abundances of taxonomic 
groups vary under different land uses, it is important to determine 
how abundance changes within different functional or trophic 
groups are affected. Higher trophic level species are believed to be 
more vulnerable to anthropogenic pressures than those lower down 
(Barnes et al., 2014; Purvis et al., 2000). For example, a global anal-
ysis of multiple taxonomic groups showed that carnivores are dis-
proportionately negatively affected by human land use compared 
to the abundances of animals within other trophic groups (Newbold 
et al., 2020). Furthermore, land-use intensification can cause mul-
titrophic homogenisation of both belowground and aboveground 
biodiversity (Gossner et al.,  2016) and the effect of different soil 
characteristics on nematode abundance varies between trophic 
groups (Nielsen et al.,  2014). Changes in the trophic structure of 
communities can have huge impacts on ecosystem functioning and 
are particularly important to consider for nematodes due to their 
pivotal roles in the soil food web and carbon and nutrient cycles 
(Hunt & Wall, 2002; van den Hoogen et al., 2019).

Li et al.  (2022) show that abundance differences between 
managed and unmanaged habitats vary between trophic groups 
(Table 1), which can impact the functional composition of nematode 
communities. For example, anthropogenic influences in terms of 

management and urbanisation appear particularly beneficial to al-
ready numerically dominant bacterivores and herbivores, whilst the 
negative effects of management were observed in omnivores and 
predators in urban regions. These changes will alter the soil food 
web and may impact ecosystem functioning (Setälä, 2002), although 
the degree to which these changes will occur depend on soil commu-
nity stability mechanisms (Hunt & Wall, 2002). For example, Kostin 
et al. (2021) showed that soil microbial biomass stability was in fact 
higher in intensively managed meadows than other less-intensive 
agricultural land-use types.

Li et al. (2022) suggest that the increase in abundance of bacteri-
vores and herbivores in human modified habitats may be a result of 
the increased nutrient addition that accompanies human activities, 
for exampl fertiliser addition or the use of cover crops, which pro-
mote plant growth, and in turn benefit microbes and microbivores. 
This corresponds with previous findings that the proportion of the 
nematode community consisting of bacterivores increases with ag-
ricultural management intensity (Yeates,  1999). They also use this 
mechanism to explain why the hypothesis that higher trophic levels 
are more negatively affected by management was only observed in 
urban areas; the positive impact of an increase in abundance of their 
prey (bacterivores and fungivores) may outweigh the negative im-
pact of human activities.

Climate can also be an important driver of nematode abun-
dance (Song et al., 2017). Management, however, appears to aug-
ment this relationship with the positive effect of precipitation 
and the negative effect of mean temperature both weakened 

TA B L E  1  Li et al. (2022) investigated the difference in nematode abundance between managed and unmanaged habitats. They show 
that, in some instances, abundances were higher in managed than unmanaged areas (green arrows), but often there was no difference in 
abundances between the two land-use intensities (grey boxes), both when all nematodes were considered or when split into trophic groups. 
Only fungivorous nematodes in pasture and predators in urban areas showed lower abundances in managed compared to unmanaged 
habitats (red arrows)

Habitat Type Total Bacterivores Fungivores Herbivores Omnivores Predators

Primary

Secondary

Pasture

Cropland
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in managed compared to unmanaged habitats (Li et al.,  2022; 
Figure 1b,c). This matches results previously found at more local 
scales (Li et al., 2020; Vazquez et al., 2019). This interaction be-
tween climate and land-use intensity can make the impact of fu-
ture climate change difficult to predict. Land use may reduce the 
resilience of species to climate change and vice versa (Schulte to 
Bühne et al., 2021).

Given the important role of nematodes, as well as other soil fauna, 
in ecosystem functioning, understanding how management and an-
thropogenic activity influence their abundance is a vital knowledge 
gap that needs addressing. The results of Li et al.  (2022) challenge 
the general consensus that the intensive management of habitats 
leads to declines in species abundances, particularly of those at 
higher trophic levels. In fact, human activity can increase nematode 
abundance for many trophic groups. This is a striking result as not 
only does it contrast with global scale analyses of aboveground di-
versity (e.g. Newbold et al., 2015) but also may have serious con-
sequences for soils and their functioning across large spatial scales 
through trophic restructuring (Setälä,  2002). Combined with a 

weakened effect of climate and soil organic carbon on abundance 
under human-modified habitats, this by no means suggests that in-
tensive management is beneficial for belowground biodiversity as 
species abundances become less regulated by environmental filter-
ing and the natural balance of the soil ecosystem is perturbed.
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