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Abstract

One of the main obstacles in publishing in a Linked Data way is to con-
nect the dataset being published externally with related data sources in
the cloud, known as Data Interlinking. This paper proposes LinkD, a new
element-based interlinking approach. LinkD interlinks an RDF dataset,
resulted from transformed semi-structured data, with its counterparts in
the web of Linked Data. To provide similarity links, the existence of pub-
lished data in the Linked Data cloud is done in the first place. Different
algorithms for similarity measurement are employed while the domain
of the dataset being interlinked is taken into account. The techniques
utilised allow the processing of a large number of Linked Data datasets.
The evaluation of LinkD shows high precision, recall and performance.

Keywords: Data interlinking, Linked Data, Semi-structured Data, Link
Discovery, Instance Matching, Semantic Web

1 Introduction

Linked Data is the paradigm that enables meaning that is both machine and
human-readable; a longstanding aim of the Semantic Web community. The
reduction of restrictions in publishing Linked Data led to dramatic growth in
the Web of Data, and an extension to many areas and domains [1].
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The value of the Web of Data rises and falls with the amount and the quality
of links between different data sources [2]. Datasets residing on dispersed data
sources without links resemble islands of data [3], where every island stores
part of the data needed by the user. To gather all the necessary pieces of
information, the user needs to manually find each island.

The ideal scenario in publishing Linked Data is to allocate a unique URI
to every real-world entity. Having multiple identities for the same resource
reduces its discoverability and, therefore, significantly reduces its value and the
chances of it being reused. Considering the distributed nature of the Linked
Data paradigm [4] and the massive number of real-word things that exist, this
ideal scenario is practically unachievable. Hence, alternative solutions, such as
data interlinking, have to be used.

Other data sources employing semi-structured data are also still growing
and publishing in the Web. Figure 1 shows the steady increase of the number of
Web APIs, which are access tools that use semi-structured data in exchanging
information, and considered one of their primary sources. Other indications
exhibit that this rapid growth of semi-structured data will be maintained by
their usage in emerging technologies such as remote sensors, social media,
smartphones and archives [5].

Fig. 1 The increasing growth of Web API. [6]

Although semi-structured data are linked implicitly and enable the machine
readability side of the story, semantic links in Linked Data allow Web publish-
ers to make these links explicit, giving therefore access to more data [7]. This
leads to a Web where data is more discoverable and usable for both machine
and human users. Generating semantic links between different datasets creates
the Web of Data, a global database where data is connected to other relevant
data.

Unlike publishing semi-structured data in the Web of Data, there are many
tools and approaches proposed to interlink Linked Data. Most of these tools
are proposed as part of the yearly event of OAEI [8]. Their aims are to link
structured RDF datasets with the Web of Data. These approaches employ
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frequently unavailable or incomplete information, such as the structure and
resource types, in order to find identical instances between sets of source and
target resources. Additionally, the ontology-based transformation process is
time-consuming and requires a significant amount of input and manual settings
to convert a considerable amount of semi-structured data, in order to generate
some structural information, which can be incomplete, imprecise, or inaccurate
[9] (see Section 2.3.3).

The scope of this paper is to provide a new approach, LinkD, and an imple-
mentation tool to externally link transformed semi-structured data with the
Linked Data cloud. LinkD initially verifies the existence of the URI of the
resource being published in the cloud to establish similarity links with the find-
ings. LinkD takes in an RDF file resulted from transformed semi-structured
data. We have introduced a domain detection phase to impose variable weights
to the properties of the data being interlinked. LinkD utilises element-based
data interlinking that takes into account solely the properties of the source
and target datasets, without the need to process or align the overall structures
or ontologies. We have used an asymmetric and unsupervised algorithm to
compute the similarities. This approach is different to other existing interlink-
ing solutions that take in already published data both as the source and the
target. The overall aim of the research is to facilitate the best practices and
recommendations [10] in publishing data into the Linked Open Data cloud.

The rest of the paper is structured as follows: Section 2 introduces an
overview of concepts and the techniques employed to build our method. Section
3 gives a summary of existing works related to our research. Section 4 presents
the proposed approach, LinkD including the extraction of the semantically dis-
tinct properties and the creation of the global schema. The implementation of
LinkD is described in Section 5. In Section 6, the testing and evaluation are dis-
cussed. Finally, the conclusions are drawn in Section 7 stating the limitations
of our approach and the future works envisaged.

2 Background

This section presents the background needed to understand the methods/al-
gorithms used in the LinkD approach that we introduce in this paper.

2.1 Linked Data

Linked Data is a pragmatic approach for the transformation from a document-
based Web to a Web of interlinked structured data. The idea was to create a
Web where anything can be linked to anything. Linked Data aims to provide
links between different data sources in order to create a single global data
space, ”the Web of Data” [11]. These links ought to be machine-readable and
connect to related data whether from the same or from other external sources.
This objective can be achieved by utilising RDF, URIs and HTTP to publish
and interlink structured data on the Web. More formally, Linked Data refers
to a set of best practices for publishing and interlinking structured data on the
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Web, described by Tim Berners-Lee in his Web architecture note on Linked
Data [10]:

• Using URIs as names for things.
• Using HTTP URIs so that people can look up those names.
• When someone looks up a URI, provide useful information.
• Include links to other URIs, so that they can discover more things.

2.2 Structuring Semi-structured Data

Semi-structured data are ”schema-less” data [12], meaning they do not have
any rigid and predetermined schema upfront, and ”self-describing” [12], which
refers to the fact that the structure and the values are embedded in the same
file), being therefore the most suitable and natural data model to accommodate
heterogeneity.

The problem of converting hierarchical or tree-based data models (such
as JSON and XML) to graph-based data models has existed for more than
a decade. Various solutions have been proposed [13–16] that can be classified
into two categories: ontology-dependent RDF transformation and fixed RDF
transformation.

The systems in the first class are based on ontologies when converting semi-
structured data schema, frequently XML, to an RDF schema. It is a challenging
task to project the representation of concepts and the relationships between
them of a given ontology while converting from one data model to another. An
example of this approach is [17] that proposes a system that takes as inputs
an XML file, an OWL ontology and the mapping document describing the
links between the XML file and the ontology. RDF instances conforming to
the OWL ontology are the outcome of this tool.

The fixed RDF transformation consists of syntactical and generic conver-
sions from one data model and format to another. The transition consists of
mainly restructuring and reorganising different components of semi-structured
data (namespace, root, tags, attributes and values) into a subject, predicate
and object RDF structure. The RDF file generated is a set of triples describ-
ing resources according to the hierarchy of the transformed tree-based XML
or JSON file. This operation is not considered challenging as an XSLT1 script
or the combination of JSON/XML parser with Jena framework can achieve
an acceptable result. The disadvantage of this operation is the fact that no
meaning will be associated with the resultant RDF file. Many examples of
tools appertain to this class of systems can be stated including [18] or the Java
library XmlToRdf2.

The fixed transformation is selected to be used in this paper because it
can be automated and requires less pre-transformation effort, which is neces-
sary for the system we propose to be adapted to interlink large-scale datasets.
Interlinking datasets with the Web of Data necessitates the utilisation of

1Extensible Stylesheet Language Transformations
2https://github.com/AcandoNorway/XmlToRdf
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lightweight processes and avoidance of operations such as type identification
or type-related comparisons.

2.3 Data Interlinking

Data interlinking provides owl:sameAs links, as illustrated in Figure 2,
between items representing the same resources that may be situated in the
same or in different data sources. owl:sameAs links, as provided by OWL
semantics, allow the discoverability of references to identical resources resid-
ing in different machine readable data repositories. They are also used to
materialise inferable knowledge and to potentially generate additional results
[19].

Fig. 2 The Data Interlinking Process

In this section we identify and explain four of the main phases and concepts
related to the interlinking task; two of these are fairly indispensable, being
blocking and instance matching. Figure 3 shows how these stages are positioned
in the data interlinking process. The use of ontologies and similarity measures
are two popular methods employed to determine whether two descriptions or
labels, respectively, refer to the same real-world entity.

Fig. 3 General architecture of data interlinking approaches
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2.3.1 Blocking

Blocking, in this context, means grouping similar objects using a blocking key.
It is the initial stage in the interlinking process whereby the number of candi-
dates is reduced. As a result, a block that consists of a set of potential identity
pairs of instances is generated. This is an important step as it affects the per-
formance of the system, considering that the inputs of the heavy processing
operations in the instance matching stage will have resulted from the blocking.
The blocking stage aims to optimise two evaluation metrics, Reduction Ratio
and Pair Completeness.

1. Reduction Ratio
This measure represents the efficiency of the blocking [20]. It quantifies

the ability of a blocking algorithm to minimise the number of comparisons
(in further stages) by removing obvious non-matches. More formally:

RR (Reduction Ratio) = 1− N

| S | · | T |
(1)

where | S | · | T | is the number of all pairs between S (number of inputs
of the source dataset) and T (number of inputs of the target dataset).

N indicates the number of pairs produced by the blocking.
2. Pair Completeness This value measures the number of true matches (Cm)

identified by the blocking algorithm versus the number M of those that
exist in the entire dataset, as described in the equation 2:

PC (Pair Completeness) =
Cm

M
(2)

Therefore, theoretically: Cm ≤M

2.3.2 Instance Matching

Instance matching goes by a number of different names, these being: record
linkage, data matching, the merge-purge problem and entity resolution [21, 22].
Instance matching is the problem of matching pairs of instances that refer to
the same underlying entity [23]. Instance matching is a technique originating
from knowledge discovery and data mining algorithms [22]. But recently, it
has seen numerous applications in Web Semantics.

In data interlinking, this is the stage that immediately succeeds the block-
ing step. The matching status of the resulted pairs is verified in order to
discover identity pairs [24].

Three measures are utilised to verify the effectiveness of an instance
matching approach, and all of them have been used in the evaluation of LinkD:

1. Recall The recall measure represents the ability to retain the true matches,
or true owl:sameAs links in the Linked Data terms. It is calculated using
the equation below:

Recall =
The number of true sameAs discovered links

The number of actual links
(3)
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2. Precision The precision measure represents the percentage of true matches
that lie within the discovered links. The equation to calculate the precision
is similar to that used to calculate recall, but instead of dividing the number
of true matches by the number of actual links, for precision they are divided
by all the discovered links.

Precision =
The number of true sameAs discovered links

The number of all discovered links
(4)

3. F1 score
Neither precision nor recall separately will accurately reflect the match

quality since their values can be maximised at the expense of each other
(high recall can be easily achieved at the cost of poor precision by return-
ing as many candidates as possible, and to maximise the precision at the
expense of poor recall the matcher may return only a few correct correspon-
dences) [25]. Therefore, it is necessary to take into account both measures or
a combined measure. F1 is the combined measure and the harmonic mean
of the recall and the precision.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5)

2.3.3 Using Ontologies in Data Interlinking Alignment

Ontology alignment is the process of finding correspondences [26] between
concepts, properties, or instances in two or more ontologies, based on their
similarities [27]. Ontologies in data interlinking are generally used to identify
and compare instances that are part of the same classes, based on them having
the same properties.

Using ontologies does not exclude the possibility of using other similarity
techniques. Their utilisation can serve as a hint that materialises as a coefficient
or as an element of a similarity algorithm, for example. Experiments have
revealed also ”that the use of ontology features increases accuracy of instance
matching for data integration” [28, p. 1].

There are many methods by which ontologies can take part in an inter-
linking process. They can be summarised, however, under two broad headings.
The first approach is to describe the two resources using a common ontology
before the interlinking and matching process takes place, as Figure 4 illus-
trates. The second approach is to align the independent ontologies of the two
resources to draw correspondence that will then be used in the interlinking, as
Figure 5 shows.

2.3.4 Similarity Measures

Similarity algorithms are used to measure the distances between the properties
of the elements of the source and target datasets. They can be sorted into one
of two categories: Syntactic or Semantic.
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Fig. 4 Data interlinking via a Common
Ontology

Fig. 5 Ontology Alignment in Data Inter-
linking

Syntactic similarity refers to the set and string similarity algorithms that
are used in some instance matching approaches to calculate the syntactic dis-
tance between two predicates or entity labels. Jaro-Winkler [29] is a popular
example of a string similarity algorithm. This algorithm uses a mixture of
string and set similarity, meaning that the compared values may be tokenised
before the standard Jaro-Winkler algorithm is applied and the maximal total
score is selected.

In semantic similarity algorithms and tools, the distance used is based on
the meaning of the word rather than on its label or lexical form. The UMBC
tool is an example of one kind of tool which has been proposed for semantic
similarity measurement. It is constructed by combining the use of LSA word
similarity and WorldNet knowledge. UMBC focuses on the semantics of the
word but not on its lexical category. This makes it a typical similarity mea-
surement mean for data interlinking and integration approaches which take
Linked Data as at least one of their inputs, since the available vocabularies for
describing resources in this paradigm vary between nouns and verbs.

3 Related Work

This section presents a review of the most popular and more related solutions
that differ significantly in terms of how they addressed the data interlinking
issue.

SERIMI and SLINT are two approaches presented as part of the yearly
OAEI event [30] [31]. Both tools do not require any ontology alignment upfront
or prior knowledge of the data or the schema. SERIMI is based on existing
traditional information retrieval and string matching algorithms, whilst SLINT
uses coverage and discriminability to select important predicates.

The limitation of SERIMI and similar approaches is their restriction and
focus on a single (or few) property(ies) considered in the matching phase
[32]. Additionally, the similarity threshold and other parameters ought to be
specified manually.

Risk Minimization based Ontology Mapping (RiMOM) [33], first developed
in 2006 [34], is an instance of a multi-strategy ontology matching and property
matching approach. It is based on the combination of three lexical strategies
being: EditDistance, Vector-Distance and WordNet [35]. AgreementMaker is
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another example of a powerful and extensible ontology matching system that
has been in development since 2001 [36]. It was first proposed to map large-
scale schemas and ontologies that are extracted from relational, XML, and
RDF sources. Initially it was designed to focus on geospatial applications but
has since expanded to cover other domains including biomedical applications
[37].

Among the projects aiming at interlinking data in a specific domain, Event-
Media [38] and the approach proposed by [39] are more close to the approach
proposed in this paper. As part of their projects, the authors tried to find the
most accurate weights to be given to the properties in the selected domain.

The Link Discovery Framework (SILK) [2] and LIMES [40] are link dis-
covery systems that provide support to publishing data while setting explicit
links between the source and target datasets. SILK utilises its own declarative
language, Silk - Link Specification Language (Silk-LSL), that data publishers
can use to choose which types of RDF links ought to be discovered between
data sources and which conditions the data items must fulfil in order to be
interlinked. LIMES, however, focuses on improving the processing time when
mapping large knowledge bases. It views the problem of data interlinking from
a metric space perspective. It uses mathematical characteristics, such as tri-
angle inequality, to compute pessimistic approximations of distances and to
estimate the similarity between instances [41]. Based on these approximations,
LIMES finds and excludes a large number of computations without losing links.
LIMES, however, is limited to utilise only frequently used properties [42] and
does not perform as efficiently with uncommon properties.

Legato [43] and [44] are two good examples of approaches aiming at rec-
onciling the heterogeneity of two graph-based datasets described in multiple
ontologies, in order to provide similarity links. Legato does not require any
prior user input, and as initially proposed, does not compare property values,
as opposed to SILK or Limes. It utilises a concept called a bag-of-words that
consists of all extractable literal values. Whereas in [44], the authors intro-
duced a new concept called linkkey, which is a set of properties that are a key
for two classes at the same time, suggesting similarities between resources that
have identical values for the set of these properties. In contrast with the topic
covered in this paper, Legato and [44] address heterogeneity at an ontological
level; hence, accommodating other data structures is beyond its scope.

When the authors designed LinkD, one of their objectives was to auto-
mate the process and nullify the manual input to avoid the limitations of the
existing systems such as the use of a dedicated syntax or a declarative lan-
guage, and of a specific implementation of the approach. LinkD is based on
instance matching and similarity measurement algorithms that allow process-
ing a large number of Linked Data datasets. Moreover, this paper aims at
breaking free from any dependency on a specific domain or topic, and using
tools, such a string measurement, to generalise the mapping of properties. Bal-
ancing between performance and precision is another important aspect that
was not the scope of any of the presented approaches specifically, and reviewed
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approaches generally. The comparison carried out in the evaluation of these
tools is mainly centred on the precision and recall but not the performance.

One common feature shared by the approaches discussed in this section,
apart from SILK, is to discover identity and/or other links in existing published
data. Taking the performance into account, it would be theoretically more
efficient finding links in the publishing stage. Meaning that the tool should
automatically interlink the data being published with its existing counterpart
in the Web of Linked Data.

LinkD has similarities with SERIMI system [30], and is based on the
assumptions of a variety of domain-dependent interlinking systems, such as
EventMedia [38] and the system proposed by [39]. However, LinkD uses prop-
erty weights of the instances that have not been taken into consideration in
the SERIMI approach.

4 LinkD architecture

The scope of this section is to present LinkD, that aims at interlinking an
RDF dataset with its counterpart in the Linked Data cloud using different
algorithms for similarity measurement, and taking into account the domain
of the dataset being interlinked. Following the best practices, publishing data
into the Linked Data cloud is challenging because of the scale of the data.
Therefore, LinkD also aims to facilitate and automate this process.

LinkD externally links an RDF file with no explicit meaning or structure
associated with it. The RDF file is the result of the fixed RDF transformation
from a semi-structured file, as described in Section 2.2. The labels of the semi-
structured data are the only features that can be confirmed to be maintained
after the fixed transformation (see Section 2.2).

One of the novel ideas presented in this paper is to add a domain detection
phase, before matching the instances, in order to impose variable weights to
the properties of the data being interlinked. The weights are extracted from the
existing observations of the specialised systems (EventMedia [38] and [39]) and
extended by the authors’ observation in other domains. The variable weights
are applied to the value of the matched resource properties according to the
domain extracted. For instance, the similarity of the values of the resource
properties longitude and latitude will be given more weights in the case where
the domain detected is geospatial; whereas, if the domain is an event, the
coefficient of the similarity index between the value of resource properties time
and place will be higher than other properties.

LinkD is based on string and set similarity as it takes in account the char-
acteristics of the RDF file, and aims at using lightweight processes and avoid
operations such as type identification or type-related comparisons. An asym-
metric and unsupervised approach is used in LinkD to compute the similarities.
It would be impractical to gather all the prerequisites needed to process a large
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Fig. 6 General architecture of LinkD

source of Linked Data using manual or supervised techniques [30]. The com-
mon drawback of unsupervised algorithms, however, is the high computational
cost required to implement them.

Figure 6 shows that the source dataset goes through many stages before
matches in the cloud can be found. These stages can be organised and grouped
in two main phases being Blocking (described in Section 2.3.1) and Data Inter-
linking (described in Section 2.3). Figure 7 shows the interactions between the
LinkD’s processes represented as rectangles, where the labels on the arrows
are the output of one process that is the input of the next one. The labeled
arrow has been replaced with a data block, the parallelogram, for the output
of the ”Extraction and pre-process properties” as it is the input of more than
one process.

Contrary to the common instance matching approaches, LinkD starts with
one dataset, which is the source dataset. The source dataset is an RDF file
derived from XML/JSON files that might not be described by an ontology or
associated with any meaningful structure. The target datasets are retrieved
after running a keyword SPARQL search query on the Linked Data namespaces
considered. The SPARQL query is composed by extracting the domain and
the entity label (labels that represent the dataset) of the source dataset. The
latter is generally the content of the property title, name or label that has a
literal value shorter than 200 characters [30].

The domain extraction is an important phase in finding the counterparts
of a dataset in Linked Data cloud in the proposed system. The domain is
determined by extracting the content of the property rdf:type and classifying
it with one of the pre-defined domain categories available in the system. In the
case where rdf:type is not used, the domain is selected manually.

Having the domain extracted, the potential candidate for the interlinking
will be significantly reduced and limited as a result of more specific SPARQL
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Fig. 7 Flowchart of LinkD’s processes

keyword search. In the next stage (Data interlinking), different weights will be
applied according to the domain detected. More weight will be given to the
properties that define more the identity of the dataset (properties with unique
values) and create less conflict with the other datasets. For example, longitude
and latitude for location or ISBN number for books.

Listing 1 is an example of the SPAQRL template implementation. Key-
words, such as ”London”, are the entity label properties extracted from the
fixed RDF transformation of XML/JSON file, and are every literal value
with less than 200 characters (detailed more in Section 4.1.3). The domain
”schema:Movie” is extracted from the domain tags of the XML/JSON file, or
from the pre-categorisation of their source Web APIs.
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Listing 1 SPARQL query to search for target datasets from DBpedia using a keyword

PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX dbp : <http :// dbpedia . org / property/>
SELECT ∗ WHERE {

? t i t l e rd f : type schema : Movie ;
dbp : t i t l e ?keyword .

FILTER(REGEX(? keyword , ”London ” , ” i ” ) )
}
LIMIT 4

4.1 Data Interlinking

After the blocking stage, the system compares the properties of each of the
candidates (from the target datasets) with the properties of all sources of the
datasets in order to determine which candidate can be linked with it. Three
types of links exist in Linked Data: relationship, identity or vocabulary links.
Identity links or owl:sameAs are the most common type of links addressed by
the existing interlinking systems and this relationship is the focus of LinkD.
Along with allowing the representation of semantic equivalence in an indepen-
dent and reusable way, owl:sameAs can serve as hints to a reasoner system on
how to unify data.

The LinkD data interlinking stage consists of four steps described in the
following sub-sections.

4.1.1 Preparing the Datasets

A pre-processing step is performed to extract the value from the resources
that are described using URIs. According to Linked Data principles, the value
is the last part of an URI. Commas and underlines will be also replaced by
spaces to improve the accuracy of the matching algorithms.

Example: the output of the http://dbpedia.org/page/London River after
pre-processing is London River.

4.1.2 Property Alignment (SimiMatch)

This stage is responsible for matching between the semantically similar proper-
ties of the source and the target (candidate for interlinking) datasets. It is based
on a schema matching approach called SimiMatch, previously proposed by the
authors [45, 46]. SimiMatch is an element-based schema matching approach
that targets two data models, the semi-structured (hierarchical) model and
Linked Data (graph) model. SimiMatch does not utilise any reference, such as
a knowledge base or an ontology in generating the matching rules. As a result,
it has the ability to process large-scale sources. It is used in LinkD to generate
matching rules between the two schemas instead of creating a global schema.

Algorithm 1 is the adaptation of SimiMatch [47] to align properties of two
property sets in LinkD. SimiMatch measures the semantic distance between

http://dbpedia.org/page/London_River
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the label of the source’s predicates and the candidate datasets, and compares
it to a threshold. The matching rules are expressed using a map data structure.
The map (called matches) stores data in the form of (key, value) pairs where
every key is unique. As a result, Algorithm 1 iterates, for each key, through
values in order to find the pair with the highest semantic similarity (or the
lowest similarity distance) score that is above the threshold. If a new pair with
a higher similarity score is discovered, the new value of the key in the matches
map will replace the previous one. A candidate property is matched with one
of the source properties.

An optimal threshold (0.75) used by SimiMatch was chosen after experi-
menting with different values on the same datasets [46].

SimiMatch utilises a semantic similarity tool called SemanticDistance
which is based on a reimplementation of UMBC [48]. The local version helps
to eliminate the time penalty of connecting to the API every time a semantic
distance is calculated.

Algorithm 1 SimiMatch in LinkD

Require: set1, set2: PropertiesSets
threshold

Ensure: matches: Map

1: sizeSet1 = size (set1)
2: sizeSet2 = size (set2)

3: while i < sizeSet1 do
4: temp similarity=0;
5: while j < sizeSet2 do
6: similarity = SemanticSimilarity(set1[i], set2[j]);
7: if similarity > threshold AND similarity > temp distance then
8: matches.add(set1[i], set2[j])
9: temp similarity = similarity

10: end if
11: end while
12: end while
13:

14: return matches;

4.1.3 Domain Weight Allocation

It is observed and validated in [49] that RDF datasets referring to the same
real world object or describing resources in the same domain share roughly the
same properties even though the syntax may be expressed differently. More
importantly, it is noticed in many systems for interlinking domain-dependent
Linked Data, that some properties are more precise in defining the identity
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of a dataset [49]. Having a prediction of a limited list of the properties that
will be matched in a particular domain, it becomes feasible to set rules for
allocating weights for the similarity index of the content of these properties.

Many factors come into play in defining the weight of the properties in
Data interlinking with the Web of Linked Data. Three decisive criteria are
identified in this paper:

• Number of repetitions of the property and its content: Similarly
to the primary key in a database, the property or the instance with higher
weight needs to be unique; thus, its value should not repeat in the candidate
set or in a particular domain.

• Content length: the result of the string similarity (both semantic and
syntactic) applied in LinkD can be negatively affected by long literals.

• Time relatedness: this criterion identifies unique properties that do not
change over time, something that can mislead the interlinking process. To
find whether a property is time related, at least two versions of the published
resource need to be compared.

Several approaches attempted to improve data interlinking, and instance
matching performance and precision using property weights, such as: RIMOM
[50], CODI [51] and BOEMIE [52]. These approaches are not adapted to be
utilised in LinkD for many reasons, including:

• They do not consider all three criteria listed above, or
• The properties with distinct values are not domain-dependent, or
• The processing of the weight is embedded in the matching process, or
• They are not element based and depend on the structure.

The first and second reasons can make the weight allocation process incom-
plete. The third and last reasons can make the interlinking system not suitable
to process large scale of data as it can affect considerably the performance and
computational time.

The weight allocation used by LinkD is based on the weight generator
proposed by [53] as it is close to meeting the criteria identified above. The
approach is based on penalising repeated properties by a negative probability
factor. LinkD adds two other negative factors that represent ”properties’ con-
tent length” and ”properties’ time-relatedness”. This allows LinkD to cover all
the identified requirements including the calculation of the uniqueness of the
properties and their abilities to define the datasets they describe. Equation 6
defines the function λ used by LinkD to calculate the weight of a property p.

λ(p) = (1.0− np1(p))(1.0− np2(p))(1.0− np3(p))(1.0− np4(p)) (6)

The weight λ is penalised by three factors np1, np2, np3 and np4.
np1 is the ratio of the number of repetitions to the number of instances the

property belongs to, as described in equation 7.
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np1 =
Rep(p)

| p ∈ I |
(7)

np2 represents the repetition of the content of resource properties over the
total number of instances (I) (which it does not necessarily belongs to), as
defined in equation 8.

np2 =
Rep(p)

| I |
(8)

The value np3 penalises properties with literals that are longer than 200
characters. This value has been chosen as a result of various tests done by
the authors. It is also considered by the SERIMI’s authors as a representative
entity label.

np3 =


0 length(obj(p)) 6 200

1

length(obj(p))
otherwise

(9)

The value of np4 is 1 if the object of the property can change from version to
version (ver1..n) and/or depends on time. For example: the values of the predi-
cates http://dbpedia.org/ontology/address and http://dbpedia.org/ontology/
currentMember are examples of properties that may change over time.

np4 =

{
1 if obj(pver1) 6= obj(pver2)

0 otherwise
(10)

4.1.4 Instance Matching

Having the list of matched properties between the source dataset and each
of the target datasets, LinkD extracts their content (instance). The similarity
of the instances is then measured using Jaro-Winkler algorithm. The Jaro
distance d between two strings (s1 and s2) is the result of the equation 11.

d(s1, s2) =


0 if m = 0

1

3

(
m

s1
+
m

s2
+
m− t
m

)
otherwise

(11)

Where:

• s1 and s2 are the labels of the instances of source and target datasets
respectively.

• m is the number of matching characters.
• t is half the number of transpositions.

Finally, the similarities of the properties and their instances are combined in
a linear combination of the measures described in Tversky’s contrast model as
shown in the equation below:

http://dbpedia.org/ontology/address
http://dbpedia.org/ontology/currentMember
http://dbpedia.org/ontology/currentMember
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Tversky(A,B) = λf(A ∩B)− αf(A−B)− βf(B −A) (12)

Where: α, β, and λ ≥ 0. Three parts can be noticed in the Tversky model:

• (A ∩ B) represents the set of common properties between A and B
• (A - B) are the set of distinct properties found in A but not B
• (B - A) are the set of distinct properties found in B but not A

The coefficients α, β, and λ represent the weights of the commonalities and
differences in the equation. Since the distinctness between the resources is not
relevant in our case, α and β are set to 0. The authors decided to set the value
of λ according to the domain of the source dataset.

f is a function that calculates the distances between the values of all the
properties passed as parameters, as described in equation 11. The final value
is the average of all the distances divided by the sum of considered weights.
A large scale study carried out in [54] showed that LinkD performs best when
the threshold is above 0.75, and more specifically around 0.82, which is the
value used in the evaluation presented in this paper.

The Instance Matching is the last step of establishing owl:sameAs links
between the source dataset and the target datasets.

5 Implementation

The IM@OAEI [55] benchmark is a popular measure of data connectedness
that was chosen to evaluate LinkD due to its ability to cover datasets from
different domains.

LinkD 3 4 and the semantic similarity tool are implemented using Java and
Jena libraries. As explained previously in this paper, Linked Data sources are
changing quickly over time. For example, in DBpedia version 2016-04, triples
are filtered from the Raw Infobox Extractor and some properties will not be
loaded on the public endpoint. Thus, running the system at a different time
can require a different method to prepare the input and may display different
results but the trend will be maintained. The public services (SPARQL end-
points) of Linked Data sources frequently apply resource limits and they are
occasionally unavailable [56]. Therefore, RDF dumps were downloaded locally
in HDT5 (Header, Dictionary, Triples) format to avoid this limitation. HDT is
a compact data structure and binary serialisation format for RDF that keeps
big datasets compressed to save space while maintaining search and browse
operations without prior decompression.

In the implementation of LinkD, the blocking stage is run separately from
the data interlinking. The output of the blocking is the input of the Data
Interlinking stage. The implementation of the Data Interlinking system follows
the description in Section 4.1.3. It consists of four modules:

3https://github.com/medke/LinkD-tool
4https://github.com/medke/SimiMatch-tool
5http://www.rdfhdt.org/
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• A pre-processing module that is responsible for extracting and preparing
the labels of the properties.

• SimiMatch project was linked to the LinkD project in order to create an
instance and use some of its functionalities, particularly the semantic distinct
and distance.

• the WeightAllocator module is called at different stages of the running of the
program to prioritise properties over others according to their significance
in the defining the resource being interlinked.

• InstanceMatcher utilises WeightAllocator, the semantic distance of Simi-
Match (re-implementation of UMBC tool) and Jaro-Winkler set similarity
in order to perform the last step of establishing owl:sameAs Links between
resources.

6 Testing and Evaluation

Five datasets from IM@OAEI2011 were utilised containing four identified
domains (movies, people, locations and organisations) and three Linked Data
sources (DBpedia, LinkedMDB and NYTimes). In the other approaches utilis-
ing this benchmark, the number of target pairs is the same as the source pairs
as their aims are to find identity links between two sets. In LinkD, however,
the aim is to provide links with the Linked Data cloud; hence, the target pairs
are the entire DBpedia repository (English DBpedia 3.96). Although DBpedia
is not the Linked Data cloud, it is the largest Linked Data repository that can
be used as a target to evaluate LinkD against large-scale data. Having many
Linked Data providers on the target side removes the possibility of approxi-
mate numerical comparison against other related systems. Table 1 gives the
overview of the considered datasets (D1 to D5).

Table 1 Details of the considered datasets from IM@OAEI

ID Source Target Domain
Source
Pairs

Target
Pairs

Target Domain
Pairs

D1 LinkedMDB DBpedia movies 10108

474M

77769
D2 LinkedMDB DBpedia people 3650 831558
D3 NYTimes DBpedia locations 2083 639450
D4 NYTimes DBpedia people 4588 831558
D5 NYTimes DBpedia organisations 1274 209471

6.1 Evaluation of the Blocking stage

Table 2 shows the result of the evaluation of the blocking stage. To calculate
the pair completeness (PC), the evaluation needs to have a gold standard upon
which the true positive (correct) candidates can be counted. It is something

6https://downloads.dbpedia.org/3.9/
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that related approaches do not clarify in their evaluation and the results are
displayed without giving details about the values of the components of the
equation.

It can be seen from the results that the blocking stage fulfills its role effec-
tively, by reducing the amount of potential matches by more than 0.97 (column
RR) - except in dataset D1 - while preserving the vast majority of true can-
didates. The results obtained at this stage have a significant impact on the
comparable end results, which serve as an input for the next stage; hence, have
a significant impact on the performance and precision of overall evaluation.

Table 2 Results of the blocking stage

ID
Instance
Pairs

Target Pairs
(after blocking)

Correct
Candidates

Candidate
Pairs

RR PC

D1 786079023 16868 9829 170501744 0.78 0.97
D2 3035186700 24123 3447 88048950 0.97 0.94
D3 1331974 350 12545 2000 42044235 0.98 0.96
D4 3815188104 18740 4496 85155120 0.98 0.98
D5 266866054 6672 1269 8500128 0.97 0.97

The correct candidates in Table 2 are based on estimating the number of
occurrences of the actual sameAs links of the datasets in the target pairs.

6.2 Evaluation of Instance Matching Stage

Three metrics are used to evaluate the Instance Matching Stage: recall,
precision and F1 [57].

Table 3 reports the results of the instance matching stage. These values
represent the lower band results as the benchmark utilised is created in 2011,
which means new resources that may contain true positives that are not listed
could have been published since then.

Table 3 Results of the instance matching stage

ID
Source
Pairs

Links
Discovered

Matched
Instances

Unmatched
Instances

Properties
Aligned

Runtime
(seconds)

Rec Pr F1

D1 10108 10989 9586 522 1044776 51007 0.95 0.87 0.91
D2 3650 3896 3388 262 706400 2241 0.93 0.87 0.9
D3 2083 1825 1811 272 327825 1774 0.87 0.99 0.93
D4 4588 4765 4476 112 338037 2247 0.98 0.94 0.96
D5 1274 1306 1198 76 135015 1519 0.94 0.92 0.93

The weight allocation stage is run before the interlinking. It is a separate
process that is not repeated for every interlinking unless new datasets that
belong to a domain that has not been previously processed are added. The
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result is an array for every domain considered that contains properties labels
and their weights.

The results of this stage are generally good, as shown in the F1 column of
Table 3, and sufficiently high to enable comparison with other similar systems.
Comparison is not carried out at this stage because instance matching efficacy
represents only one aspect in interlinking approaches, and does not take into
consideration other measures, such as the amount of targeted the data as well
as the performance, which will be covered in the next section.

6.3 Comparison with Previous Interlinking Systems

Figure 8 provides a comparison between LinkD and the selected interlinking
systems. It can be clearly noticed the extent of the improvements that LinkD
introduced to SERIMI. Whilst D1 and D2 are joined together in the other
approaches, in LinkD, however, they are separated into two domains being
movies and people (actors, writers, directors, etc.).

Table 4 Comparison of LinkD with related systems

ID Target Pairs

LinkD SLINT SERIMI Agree.Maker

D1 10108
D2 3650
D3 474M 2083
D4 4588
D5 1274

Although Figure 8 shows that SLINT is performing better in terms of F1
score in all the datasets considered, the scale of the targeted data is significantly
larger in LinkD, as highlighted in table 4. This points out the distinction
between the nature of the problem addressed by LinkD as opposed to the other
approaches. It is the only way, however, to numerically evaluate LinkD and to
show its performance, despite the difference in terms of the scale of the data
targeted.

Table 5 reports the time it took LinkD to process the datasets D1-D5 com-
paring to SLINT. It is not a direct comparison given the discrepancy between
the amount of target pairs considered by each system, as highlighted in Table
4. For instance, with the presumption that SLINT performance strongly and
directly correlates with the amount of the target datasets, its performance for
D1 would be 474 Millions divided by 10108, multiplied by 67, the results is
approximately 3,141,867 seconds.

Table 6 reaffirms the features enabled by LinkD comparing to the state-
of-the-art. LinkD and SERIMI are both unsupervised approaches that enable
higher automation and less relatedness to a training data, thus to a specific
domain. LinkD also does not rely on the ontology of the input data, something
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Fig. 8 Comparison of LinkD with related systems

that could negatively impact the scalability and performance if otherwise. It
employs, on the other hand, many string based tools to first filter the amount
of candidates through blocking, along with other less resource-hungry tools,
such as the property weight technique, to achieve compareable precision and
recall. Overall, the system we proposed in this paper can produce, on average,
93% correct owl:sameAs links between an input data and its counterpart in
Linked Data cloud that consists of over 474M pairs.

7 Conclusion

This paper presented a new data interlinking approach, LinkD, that takes
only a source dataset as input and provides identity external links with many
sources of Linked Data cloud. The characteristics of the RDF file are used
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Table 5 Performance evaluation of LinkD against SLINT

ID LinkD (seconds) for 474M SLINT (seconds)
D1 51 007

67 (for 13758)

D2 2 241
D3 1 774 3.55(for 2083)
D4 2 247 12.74 (for 4588)
D5 1 519 4.29 (for 1274)

Table 6 Comparison of LinkD with related systems

LinkD SLINT SERIMI AgreementMaker

Learning based n y n y
Ontology matching n n n y

Data Input RDF RDF SPARQL SPARQL
Supported Link type owl:sameAs owl:sameAs owl:sameAs owl:sameAs

Blocking y n n n
String similarity measure y y y y

Property weights y n n n
Domain detection phase y n n n

Blocking strategy Filtering Indexing Indexing Indexing

as requirements in designing LinkD. A variety of novel distance measurement
tools and algorithms were used to calculate the similarity between the labels
describing the resources. Neither the structure nor the ontology of the dataset
were considered on the proposed system in order to maintain its feasibility
to target large-scale datasets. The major challenges faced are the high com-
putational cost and the incorporation of dynamic allocation of the weights
according to the domain and the number of the matched properties.

Further work will explore ways to extend LinkD to a publishing approach
of semi-structured data as Linked Data. LinkD would also benefit from disam-
biguation stage since it focuses on the label of the properties. This allows to
include data sources that are not data mining and parsing friendly; therefore,
expanding its use to other use cases.

References

[1] Abele, A., McCrae, J.: The Linking Open Data cloud diagram (2017).
http://lod-cloud.net/ Accessed 25 June 2017

[2] Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk-a link discovery frame-
work for the web of data. In: Proceedings of the WWW2009 Workshop
on Linked Data on the Web-Volume 538 (2009). CEUR-WS.org

[3] Groza, T., Grimnes, G.A., Handschuh, S., Decker, S.: From raw publi-
cations to linked data. Knowledge and Information Systems 34(1), 1–21
(2013)

http://lod-cloud.net/


Springer Nature 2021 LATEX template

LinkD: Element-based Data Interlinking of RDF datasets in Linked Data 23

[4] Hu, W., Yang, R., Qu, Y.: Automatically generating data linkages using
class-based discriminative properties. Data & Knowledge Engineering 91,
34–51 (2014)

[5] Yuliana, O.Y., Chang, C.-H.: A novel alignment algorithm for effec-
tive web data extraction from singleton-item pages. Applied Intelligence
48(11), 4355–4370 (2018)

[6] ProgrammableWeb: ProgrammableWeb Research Center (2019). https:
//www.programmableweb.com/api-research Accessed 20th January 2020

[7] Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge
discovery: A comprehensive survey. Web semantics: science, services and
agents on the World Wide Web 36, 1–22 (2016)

[8] Jimenez-Ruiz, E.: Ontology Alignment Evaluation Initiative (2017). http:
//oaei.ontologymatching.org/ Accessed 08 May 2017

[9] Pomp, A., Lipp, J., Meisen, T.: Enabling the continuous evolution of
ontologies for ontology-based data management. International Journal of
Robotic Computing (2019)

[10] Berners-Lee, T.: Linked Data (2006). http://www.w3.org/DesignIssues/
LinkedData.html Accessed 04 January 2017

[11] Hausenblas, M.: Utilising linked open data in applications. In: Proceed-
ings of the International Conference on Web Intelligence, Mining and
Semantics, p. 7 (2011). ACM
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