
Mask Compliance Detection on Facial Images

Lorenzo Garbagna, Holly Burrows, Lakshmi Babu-Saheer, and Javad Zarrin

Anglia Ruskin University

Abstract. The Covid19 pandemic has significantly changed our ways
of living. Government authorities around the world have come up with
safety regulations to help reduce the spread of this deadly virus. Covering
the mouth and nose using facial masks is identified as an effective step
to suppress the transmission of the infected droplets from one human to
the other. While the usage of facial masks has been a common practice
in several Asian societies, this practice is fairly new to the rest of the
world including modern western societies. Hence, it can be noticed that
the facial masks are either worn incorrectly (or sometimes not worn) by
a significant number of people.
Given the fact that the majority of the world population is only get-
ting accustomed to this practice, it would be essential for surveillance
systems to monitor if the general population is abiding by the regula-
tory standards of correctly wearing a facial mask. This paper uses deep
learning algorithms to track and classify face masks. The research pro-
poses a mask detection model based on Convolutional Neural Networks
to discern between a correct usage of facial masks and its incorrect us-
ages or even lack of it. Different architectures have been tested (even on
real-time video streams) to obtain the best accuracy of 98.9% over four
classes. These four classes include correctly worn, incorrectly worn on the
chin, incorrectly worn on mouth and chin, and not wearing a mask at all.
The novelty of this work is in the detection of the type of inaccuracy in
wearing the face mask rather than just detecting the presence or absence
of the same.
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1 Introduction

The COVID-19 pandemic continues to challenge countries and governments to
control the spread of the coronavirus. As one of the important control measures,
the general public is advised to cover their mouth and nose using face masks to
stop the spread of infectious droplets. The specified places where this is now a
legal requirement may vary between nations. However, the general consensus in
most of Europe is that face masks should be worn in smaller public spaces, any
crowded outdoor settings, and all indoor public buildings [4].

A few nations around the globe are more accustomed to this practice; the use
of facial masks in Chinese and Japanese populations can be traced back to the
beginning of the 20th century [18], implemented as protection from seasonal flu
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and as a societal ethical component. However, in countries where this practice is
in its infancy, challenges arise where the masks are worn incorrectly, thus reduc-
ing their efficacy. This brings about further challenges of ensuring face masks are
worn correctly where it is deemed necessary to effectively reduce the spread of
the disease. Therefore, a solution is required to identify incorrect usage of masks
when in public spaces. It would be inefficient, if not impossible for security pro-
fessionals alone to monitor this especially among large crowds, or where this
might pave way for possible confrontations. Considering this, technical solutions
for automatically monitoring the correct usage of masks would be advantageous
to reduce the spread of coronavirus. The goal of this study is to develop a system
that is able to detect and classify if a person is wearing a mask correctly, or not.
The system will also detect type of wrong usage if it is not worn correctly. The
system is implemented using Convolutional Neural Networks (CNN) to identify
the states in which a mask is found on a person’s face. To demonstrate the ap-
plication of this system in a real-world scenario, the model was also tested on
live video stream to detect the changes in mask states in real-time. This auto-
matic real-time monitoring system could be practically implemented in airports,
supermarkets, workplaces and schools. The main novelty of this research lies in
the ability to classify images into different categories of incorrectly worn masks,
as opposed to a binary classification of mask being present or not.

2 Related Work

This section will look into the related research in the domain of face and face
mask detection.

Loey et.al.[11] aimed to annotate medical face masks using real-life images.
The research implements a transfer learning approach, developing a model com-
prising two parts. The initial phase employs feature extraction based upon
ResNet-50, and the second detects the presence of a medical face mask, based on
the state-of-the-art object detection system YOLO-v2. The dataset used a total
of 1415 images, as an amalgamation of Medical Masks dataset (MMD) and Face
Mask dataset (FMD), obtained from a Kaggle challenge. The size of the dataset
is relatively small, mainly due to the scarcity of quality data in this new domain.
This model was only able to achieve an accuracy of 81% and struggled to discern
between surgical face masks and other types of masks. The Face Mask dataset
from Kaggle was also utilised by Das et.al.[3] and this model was able to achieve
a 94.8% accuracy on validation by using a cascade classifier to identify faces from
the images and load them into the model. Another study was conducted by Loey
et.al.[10], using feature extraction on a much larger dataset (11570 images) to
feed different models and compare performances: decision trees, SVM and an en-
semble method constituting k-NN, linear regression and logistic regression. This
study was able to reach an accuracy of 99% on a simulated face mask dataset
and on a real-world face mask dataset, with around 5000 images.

Comparatively, Mohan et.al.[12] built a CNN model that achieves 99.81%
accuracy on a binary classification task, where the classes represent wearing a
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mask, and not wearing a mask. The results obtained here outperformed the
SqueezeNet model. The aim of this work entailed building a model that could be
deployed at resource constrained endpoints. The final model had 128,193 train-
able parameters and images were passed into the model at size of 32x32. Intricate
data augmentation was used to increase the size of the dataset to 131,055 im-
ages. This work is demonstrative of CNN capabilities even in application areas
where resource management is crucial to deployment.

Nagrath et.al.[13] proposed a deep learning model that makes use of Sin-
gle Shot multibox Detector (SSD) for face detection in real-life images of peo-
ples’ faces with and without face masks. Transfer learning is applied, where the
MobileNetV2 architecture is used for the classifier framework, alongside the pre-
trained weights from ImageNet. This model is suitable for real-time classification
in the application domain due to its lightweight architecture. Due to the scarcity
of suitably sized datasets in this area, the work involved using a combination of
freely available datasets, such as those from Kaggle challenges. The authors of
the work express their reluctance to use a dataset where masks are artificially
added in the image. So 5521 images of real-life people wearing, and not wearing,
masks were created. The work experimented with various pretrained models on
the augmented dataset. Results showed that the proposed model outperforms
LeNet-5 and AlexNet in accuracy, in addition to achieving the highest F1 score
compared to LeNet-5, AlexNet, VGG16 and ResNet-50.

Chavda et.al.[2] present a dual stage CNN architecture for detecting facial
masks. Firstly, a face detector identifies multiple faces in the same image as
Regions of Interest (ROI). These are grouped and forwarded to stage 2 of the
architecture, where the CNN classifies into a binary separation of masked or
not masked. The output is the input images, where the faces are highlighted
with a bounding box and their classification label. The CNN was trained with
three popular classification architectures, namely DenseNet121, MobileNetV2
and NASNetMobile. The average inference speed of the three models was also
measured, showing that DenseNet121 was the slowest at 0.353 seconds. It was
concluded that NASNetMobile is the most suitable for applications operating in
real-time.

Kayali et al.,[8] explore deep learning methods to accurately detect and clas-
sify face masks. To obtain a dataset suitable for the task, the researchers used
images from the Labeled Faces in the Wild (LFW) database, and added face
masks to the images of peoples’ faces. Three classes were created: correct wear-
ing, incorrect wearing, and no mask present (classes 0, 1, 2). Transfer Learning
was utilised, whereby the performance of NASNetMobile and ResNet50 were
compared. These pretrained models were chosen due to their contrast in depth
of parameters; ResNet50 represents the performance of a deep network for this
task, whereas NASNetMobile demonstrates lighter weight network potential.
The images were sized at 128x128; models were trained for 200 epochs; and a
small LR for Adam was used at 0.0000001. Interestingly, it took 80 minutes to
train NASNetMobile, and just 60 minutes for ResNet50, even though the former
is the lighter weight network. NASNetMobile showed poor performance for this
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task, with accurately classifying just 33/499 for class 0 and 35/485 for class 1;
but 100% accuracy for class 2. This concludes its’ architecture is not suitable
for this problem domain. On the other hand, ResNet50 demonstrated 92.38%,
89.48% and 93.61% for classes 0, 1, 2 respectively. The work concluded that this
network has an overall classification accuracy of 92%.

Fasfous et al. [5] present a low-power Binary Neural-Network (BNN) to clas-
sify face-mask wearing, and the position of the mask on the face. Furthermore,
the classifier was deployed to Edge Devices to mitigate chances of data exploita-
tion, and maintain data privacy; the research also describes how using a BNN
alongside this deployment method reduces the memory footprint of the net-
work, as parameters are represented in the binary domain. The work used the
MaskedFace-Net dataset, and reports that in its original form, a large class im-
balance exists, where 51% of the dataset is dominated by correct wearing of face
masks. To combat this, the larger classes were sampled randomly in order to
increase the contribution of the smaller classes. Heavy data augmentation tech-
niques were then applied to the now balanced data, resulting in 110k images for
training and validation, with a large test set of 28k images. With the images sized
at 32x32, the network was able to achieve a classification accuracy of 9̃8% for the
four mask-wearing positions on the face. The work boasts good model general-
isability, and therefore reliability when presented with varying facial structures,
hair types, skin tones, as well as age groups.

Bhuiyan et al. [1] develop an assistive system with Deep Learning which is
used to classify the presence of face masks. The work employs a binary clas-
sification problem, where each face in an image receives a prediction of Mask
or No Mask. The project involved extensive data analysis and preprocessing,
where a web-scraping tool was used to pinpoint 650 images of people wearing,
and not wearing, facial masks. The data was preprocessed to remove any images
considered irrelevant to the task, resulting in 600 for training; there was an even
distribution of 50% between the binary input classes. It was necessary to then
label the acquired data to ensure its suitability to the task: the use of LabelIMG
annotated all data samples. The authors describe the process of drawing bound-
ing boxes in each image, where some contain multiple bounding boxes due to the
need to identify any objects detected, and the presence of multiple people. With
regard to model development and training, 4000 epochs of training facilitated
by Google Colab achieved 96% accuracy and 0.073 loss. With this performance
level, the research was able to progress to deploying the model to classify video
captured in real-time, achieving on average 17 frames-per-second. Although the
results show good promise, the authors conclude the paper with the fact that the
dataset used to train is not highly varied. This is likely to be disadvantageous if
the application is used in-the-wild, potentially meaning that people are entering
crowded, or indoor spaces without wearing a face covering, which is detrimental
to public health. Further work for this study is outlined as experimenting with
varying object detection, such as RCNN, and YOLOv4 when available for public
use.
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Singh et al. [16] begin their works describing that current methods to address
this problem domain mainly revolve around using simple CNN networks for
binary classification of mask or no mask. However, the work advocates that the
first step in the method should always be object detection, whereby bounding
boxes are placed around faces in images. The classification of mask wearing
should be the second step in the method, so that analysis of compliance can
take place. This work brings its’ focus to loss values to judge performance of
each network; Transfer Learning with YOLOv3 achieved a validation loss of 0.25
comparatively to Faster RCNN validation loss of 0.15. The authors conclude that
although the latter network has a better performance, for real-world deployment,
YOLOv3 should be preferred due to its reduced inference time.

Koklu et al. [9] experiment with Transfer Learning, Long-Short Term Mem-
ory networks (LSTM), and bi-directionl LSTM networks for face mask determi-
nation. The work involved creating a dataset of 2000 images, where the same
person is captured three times to create enough data for four classes: masked,
non-masked, masked but with the nose exposed, and mask under the chin. A
total of six experiments were carried out using two pretrained models: AlexNet
and VGG16. The first approach was simple Transfer Learning, where the pre-
trained models are trained on the new dataset; the second involved removing
the classification header for both pretrained models and replacing it with LSTM
structure; the third, replacing the classification layers with bi-directional LSTM
architecture. All experimental results achieved accuracy scores north of 90%,
with the most modest result coming from transfer learning with AlexNet at
90.33%, and the best, 95.67% with VGG16 using bi-directional LSTM as the
classification layer. The best recall was for no mask present, and the worst was
for mask under the chin.

3 Data

3.1 Description

The dataset used, at the time of writing, is the largest available containing images
of people wearing face masks in real life. There are 250,000 images available in
total, comprising 28,000 different people, alongside showing four varying types
of face mask. The data is distributed between seven separate folders, available to
download from Kaggle [15]. The data is spread across four classes: 0- No mask,
1- Mask but nose and mouth exposed, 2- Mask but nose exposed, 3- Mask is
worn correctly. See figure 1 for examples of each class.

The research is limited by resource constraints, thus unable to utilise the
available 250,000 images, and so makes use of parts 1-4 of the available data.
This totals 1̃60k images. 30,000 of these images were reserved for the final testing
dataset. Allowing 20% of the training dataset for validation resulted in 1̃04k for
training. The original images were of varying sizes, and very large, most exceed-
ing 1024 for height and width. Inspection of the dataset demonstrated an even
distribution between the four classes, with 3̃2,438 images per class. This will be
advantageous to the performance of each model; in work by [7] it is explained
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Fig. 1. Kaggle Dataset Training Examples

that for imbalanced datasets, networks have a tendency to over-classify sam-
ples consistently to the class with the most samples. In such circumstances, the
minority class is frequently classified incorrectly, resulting in poor performance
on unseen data. However, the class balance shown in this dataset mitigates the
chance of this occurrence.

For neural networks to show the best performance when deployed as an appli-
cation, good generalisation to unseen data is imperative. This can be improved
when the training data has a large variation of samples. A variable in this dataset
is the gender of the person shown in each image; men and women present differ-
ent facial characteristics, thus providing the classifier with some variation. The
majority of images in this dataset were labelled with the gender of the person,
however 25.55% were marked as None. The dataset is heavily dominated by im-
ages of males at 51.43%, and only 23.01% are of women. Refer to figure 2(a) for
the distribution. An additional variable observed within the dataset is the age
of the person in the image. Figure 2(b) shows the distribution of age groups in
the training data. It shows that images of people aged 20-30 years old dominate
the data, but the range spans 18-79 years. On initial inspection, analysis showed
that some images contained incorrect values for age, such as 2020. This inaccu-
rately skewed the analysis, so a Python script was used to find images where the
age value exceeded 100, and the persons age was simply estimated.

(a) Gender Distribution (b) Age Distribution

Fig. 2. Data Analytics
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3.2 MaskedFace-Net

MaskedFace-Net is a dataset comprising 137,016 images of people’s faces, all of
which have had a surgical mask photoshopped onto them. There are 4 possible
classes at this stage: (1) the person in the image is wearing the face mask cor-
rectly, with chin, mouth and nose covered; (2) the mask covers the chin only;
(3) the mask covers the mouth and chin only; (4) the mask covers the nose
and mouth, leaving the chin exposed. The correctly masked class dominates this
dataset at 49%. Figure 3 shows some sample images.

Fig. 3. MaskedFace-Net Image Samples

3.3 Preprocessing

This section describes the preprocessing applied to the datasets before model
development and training could commence. Firstly, all images were resized to a
uniform 300x300; this value was chosen so that significant experimentation could
be carried out with respect to imposed hardware constraints, whilst maintaining
the significant features of the data. Second, for ease of implementation, the
images were organised into folders corresponding to their class. This was achieved
through creating a script that extracted the class label from the filename, and
using the os library to iterate files and move to a specified directory.

4 Model Experimentation

The work experiments with varied implementations of Convolutional Neural Net-
works to classify input images into one of four classes. The model demonstrating
the best performance during testing is used to classify input captured from real-
time video. Each model and it’s performance in relation to accuracy and loss on
the training and validation set are explained and analysed.
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4.1 Training and Validation

Three CNN models were trained to test for the highest accuracy.
The total number of images used for training is 1̃30k, 20% of which are used in

the validation set. Graphs plotting the train accuracy against the validation accu-
racy are recorded, along with the loss. All models consisted of 2D-Convolutional
layers, doubling the number of filters at every layer: the activation function used
is ReLU and padding has been set to ‘same’. The padding setting is set this way
to enable the application for the video-stream mask detection to work correctly,
as difference in padding would result in the methods implemented with OpenCV
having inaccurate image shapes sent to the model for classification. MaxPool-
ing2D with a size of 2x2 was implemented after every convolutional layer. Inputs
are flattened after the filters have been applied, and the data is passed into a
Dense layer before classification, a Dense layer with 5 neurons using the SoftMax
activation.

4.2 Model A

The first model used input images in the grey-scale colour space and had a total
of 2,827,205 trainable parameters. The model architecture is shown in table 1

Layer 1: Convolutional Conv2D(filters=16)

Layer 2: Pooling MaxPool2D(2x2)

Layer 3: Convolutional Conv2D(filters=32)

Layer 4: Pooling MaxPool2D(2x2)

Layer 6: Convolutional Conv2D(filters=64)

Layer 7: Pooling MaxPool2D(2x2)

Layer 8: Flatten

Layer 9: Dense Neurons=32

Layer 10: Dense (SoftMax) Neurons=4

Table 1. Model-A Layers
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Figure 4 shows the training accuracy and loss against validation accuracy
and loss respectively. The accuracy of the model on the train data grows over
the specified number of epochs. The accuracy of the validation set is steadier
but averagely lower, which could indicate that the model is over-fitting slightly.
The training loss decreases steadily over time while the validation loss decreases
only for three epochs, after that it increases constantly without improving.
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(a) Training vs Validation Accuracy
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(b) Training vs Validation Loss

Fig. 4. Model-A Training

4.3 Model B

The second model also used input images in the greyscale colour-space and had
a total of 1,424,453 trainable parameters. The model architecture is shown in
table 2.

Layer 1: Convolutional Conv2D(filters=16)

Layer 2: Pooling MaxPool2D(2x2)

Layer 3: Convolutional Conv2D(filters=32)

Layer 4: Pooling MaxPool2D(2x2)

Layer 6: Convolutional Conv2D(filters=64)

Layer 7: Pooling MaxPool2D(2x2)

Layer 8: Convolutional Conv2D(filters=128)

Layer 9: Pooling MaxPool2D(2x2)

Layer 10: Flatten

Layer 11: Dense Neurons=32

Layer 12: Dense (SoftMax) Neurons=4

Table 2. Model-B Layers

Figure 5 shows the training accuracy against validation accuracy and training
loss against validation loss respectively. There is an improvement in this model
given the fact it is over-fitting less than model-A. As shown in Model-A, the
validation loss in this model stops decreasing after epoch 3, but it reaches a
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lower value and it increases with a smaller magnitude compared to Model-A.

0 1 2 3 4 5 6 7 8
Epochs

0.75

0.80

0.85

0.90

0.95

Accuracy vs Validation Accuracy
accuracy
val_accuracy

(a) Training vs Validation Accuracy

0 1 2 3 4 5 6 7 8
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

Loss vs Validation Loss
accuracy
val_accuracy

(b) Training vs Validation Loss

Fig. 5. Model-B Training

4.4 Model C

Table 3 shows the architecture for the model-C with RGB input images and the
total number of 3,047,589 trainable parameters. Note that Batch Normalisation
was implemented after each Convolutional layer in the network.

Layer 1: Convolutional Conv2D(filters=16)

Layer 2: Pooling MaxPool2D(2x2)

Layer 3: Convolutional Conv2D(filters=32)

Layer 4: Pooling MaxPool2D(2x2)

Layer 6: Convolutional Conv2D(filters=64)

Layer 7: Pooling MaxPool2D(2x2)

Layer 8: Convolutional Conv2D(filters=128)

Layer 9: Pooling MaxPool2D(2x2)

Layer 10: Convolutional Conv2D(filters=256)

Layer 11: Pooling MaxPool2D(2x2)

Layer 12: Flatten

Layer 13: Dense Neurons=128

Layer 14: Dense (SoftMax) Neurons=4

Table 3. Model-C Layers

Figure 6 shows the training accuracy against validation accuracy and training
loss against validation loss respectively. The performances are superior compared
to the previous two models, and both accuracy and loss values for training and
validation present a smaller gap then previous architectures.
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Fig. 6. Model-C Training

This model showed good performance during validation; 0.9681 and 0.1101
for validation accuracy and loss respectively. The model was saved as a JSON
file along with the weights.

MobileNetV2 and ResNet50 have also been trained using Transfer Learning.
Table 4 compares the performance of all five experimental methods.

Model-A Model-B Model-C MobileNet-
V2

ResNet50

Color Mode Greyscale Greyscale RGB RGB RGB

Total params 2,827,172 1,424,420 3,049,444 10,294,788 24,406,916

Time/Epoch 187s 160s 277s 171s 750s

Train Accuracy 0.8797 0.9462 0.9833 0.7433 0.9502

Validation Ac-
curacy

0.8488 0.9250 0.9681 0.7277 0.9261

Train Loss 0.3188 0.1498 0.0521 0.6514 1.924

Validation Loss 0.4101 0.2179 0.1101 0.6855 4.0052

Table 4. Model Comparison

5 Application

This section describes the use of the proposed end application as a proof of
concept. A script takes the JSON and weights files of each model, and loads a
prediction method that returns the state of the mask. The argmax function from
the Numpy library (np.argmax) is used to load the ID of the class (0 to 3),
instead of the probability for each class. OpenCV [14] is then used to import
the Haar classifier [17]: when the video-stream from the webcam is activated, or
an image file is presented, the classifier detects any faces present. The Region of
Interest (ROI), the face inside the bounding-box, is resized to 300x300 and fed
to the prediction method; the state is classified, and the text associated with the
ID of the class is shown on top of the bounding box around the face. The models
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were tested on unseen images and webcam footage and results are described in
a latter section of the paper. Deployment of the classifier on unseen images and
webcam feed is representational of how it might behave in-the-wild.

Figure 7 shows an example of the concept used for the application by using
4 images with 4 different mask states.

(a) Mask (b) No Mask (c) Nose (d) Mouth Nose

Fig. 7. Example of Application by Image Classification

6 Results

Table 5 shows the result of the CNN models using the unseen test set: 7,500 im-
ages per class. Between the three custom models, the only one using RGB images
as input, Model-C, reaches the highest accuracy score of 0.9663 and lowest loss
value of 0.1272. Comparing the two models that used greyscale images, Model-B
outperformed Model-A by reaching an accuracy of 0.9241 against 0.8488: even
with fewer parameters, the additional Convolutional Layer allowed the network
to learn more significant features, thus generalising better.

Color Mode Accuracy Loss

Model-A Greyscale 0.8488 0.4104

Model-B Greyscale 0.9241 0.2323

Model-C RGB 0.9663 0.1272

MobileNet-V2 RGB 0.7353 0.6772

ResNet50 RGB 0.9261 4.2984

Table 5. CNN Models Test Results

Due to previous publications using pretrained models on new datasets, this
research also implemented two of these architectures: MobileNetV2 and ResNet50.
The first one under-performed, positioning itself last: the smaller image sizes
(224x224) and fewer parameters compared to other models influenced its poor
accuracy score of 0.7353. On the other hand, ResNet50 was the second best
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model for accuracy at 0.9261, but presented a significant loss of 4.2984: the
model could predict the class correctly most of the time, but it displayed high
uncertainty about the decision. To get a better understanding of these results,
confusion matrices for each architecture have been plotted in Figure 8 and their
numerical values noted in tables 6-10.
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Fig. 8. Confusion Matrices

Mask No Mask Mouth Nose Nose
Mask 6701 184 61 554

No Mask 105 6228 955 212
Mouth Nose 99 979 6100 322

Nose 609 285 171 6435

Table 6. Model-A Confusion Matrix

Mask No Mask Mouth Nose Nose
Mask 7167 91 18 224

No Mask 40 7077 325 58
Mouth Nose 44 1060 6286 110

Nose 135 103 69 7193

Table 7. Model-B Confusion Matrix

Mask No Mask Mouth Nose Nose
Mask 7367 34 4 95

No Mask 23 7320 133 24
Mouth Nose 18 500 6906 76

Nose 69 23 13 7395

Table 8. Model-C Confusion Matrix

Mask No Mask Mouth Nose Nose
Mask 6057 396 219 828

No Mask 575 5329 1325 271
Mouth Nose 363 920 5796 421

Nose 1555 454 613 4878

Table 9. MobileNet Confusion Matrix

Mask No Mask Mouth Nose Nose
Mask 6900 10 13 577

No Mask 29 7007 414 50
Mouth Nose 18 496 6777 210

Nose 349 13 38 7100

Table 10. ResNet50 Confusion Matrix

Tables 6-10 confirm what is shown by the evaluation on the test sets: Model-
C has very high performance in terms of any confusion. The model can identify
nearly perfectly the Mask and Nose classes by classifying correctly 7367 and 7395
respectively, against the 7500 total images per class. Although it misclassified
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180 images for the No Mask class and 594 for the Mouth Nose class, the general-
isation on test and unseen images was highly acceptable. The only other model
that has acceptable performances is ResNet50: although performing worse, es-
pecially in the Mouth Nose class where it misclassified 723 images, it confirms
the high accuracy scored on the dataset, even considering its low confidence in
classification. The other models present a lot of confusion between the classes,
classifying incorrectly many of the images, particularly in the Mouth Nose class.
This is most likely due to the additional features needed to thoroughly map the
contours on the masks, and to detect the edges on the chin.

On the other hand, Table 11 shows the result of the three same models tested
on the MaskedFace-Net test set: at first glance Model-C achieves an even higher
accuracy and a lower loss compared to the second dataset, scoring an accuracy
value of 0.9896 against 0.9706 and a lower loss at 0.0469 against 0.1115. Model-
A and Model-B also showed better performances on this dataset: the lowest
accuracy scored was achieved by Model-A at 0.9777. Although more accurate, the
MaskedFace-Net models performances on generalisation were poor, as described
in the Discussion.

Color Mode Accuracy Loss

Model-A Greyscale 0.9777 0.1239

Model-B Greyscale 0.9833 0.0892

Model-C RGB 0.9896 0.0469

Table 11. CNN Models Test Results for MaskedFace-Net

6.1 Real-Time Classifier

The web framework Flask [6] was used to show the feed captured by the webcam
to the internet browser, so the output can be shown to the user. The output
consists of a bounding box around the face(s), and the class prediction from the
model in real-time, as demonstrated in Figure 9.

(a) Mask (b) Chin (c) Mouth Chin

Fig. 9. Real-Time Mask Classification Examples
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Although working correctly, some limitations have been observed. Utilising
the model trained on MaskedFace-Net, for the video-stream, a greyscale model
trained on four classes, without the no mask label, have been utilised. The Haar
classifier from OpenCV used here had some constraints. It has been noted that
in certain conditions of poor or excessive lighting, the classifier had difficulties
to detect both the face and the mask of the subject.

7 Discussion

This work contributes a novel perspective for the application domain of Face
Mask Classification. It uses a large dataset consisting of images where people
are wearing physical face masks, in comparison to other relevant work that uses
a photoshopped technique. This work is thus more representational of how a
system such as the proposed would behave if deployed in a real-life setting,
such as entrances to public buildings and transport. The paper provides an in
depth analysis of various CNN performance in the application domain. Custom
architectures are presented for the task; the performance of varying pretrained
models with transfer learning are investigated to understand the capabilities
of shallow and deeper networks; and a comparison between available datasets
for the task is provided. The best performing network, Model-C, was trained
using RGB images to increase the numbers of trainable parameters in order to
improve training. By passing RGB inputs, time per epoch increases slightly but
the architecture is able to learn more features by mapping the colours between
the persons’ skin and the mask. Another advantage is the possibility for the
network to learn different mask colours in relation to skin tones that might
closely resemble the mask, whereas a greyscale model might get confused by the
closer intensity of the pixel values. Although the model trained on MaskedFace-
Net outperformed its results using the second dataset, some major drawbacks
have been found. Due to the nature of MaskedFace-Net, during different tests
it has been observed that the model often struggles to correctly identify images
where the person has a darker skin tone, especially if combined with a darker
face mask. Furthermore, as the images contained only surgical masks applied
with Photoshop, the model struggles to generalise to other types of masks. Due
to these problems, Model-C generalises best when trained on the real masks
dataset, as it is able to achieve a high accuracy score whilst also being able to
categorise different types of masks applied to various ethnicities. This area of
research is considered relatively new given the short amount of passed time since
the beginning of the pandemic. Therefore, the available data varies in size and
suitability. The MaskedFace-Net dataset provides a large pool of images, and,
to the best of the authors knowledge, was the first to cover all variations of
incorrect mask wearing behaviour. However, due to the photoshopped masks, it
lacks the degree of realism that the main dataset used in this paper provides. In
addition, MaskedFace-Net also demonstrates a large imbalance between classes,
where 51% represents incorrectly masked faces, but only 10% of this is populated
by nose exposure images. Without addressing the issue, this will inevitably lead
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to under-performing models. Using the other dataset somewhat mitigates this
issue, proven through an improved generalisability.

8 Conclusion and Further Work

Multiple neural networks were trained using a large dataset consisting of peo-
ple wearing real masks in one of four ways, to detect the variations in mask-
wearing behaviour. The experimentation makes use of three models using a sim-
ple CNN architecture, where two of these networks use greyscale images, and
the remaining using RGB input. The models were compared and their perfor-
mance evaluated against existing pretrained model performance with transfer
learning, namely MobileNet and ResNet50. These specific networks were cho-
sen to compare and contrast the abilities of shallow networks, and those using
more layers, for this specific problem domain. The work concludes that a sim-
pler CNN architecture taking RGB images as input yields the best performance.
This particular model was able to classify images in the test dataset with an
accuracy of 96.63%. The OpenCV implementation demonstrated that the sys-
tems’ capability to classify mask state accurately in real-time, promoting the
proof of concept. Taking the limitations of both the model and application into
consideration, further improvements can be applied to both. The dataset can
be expanded by introducing more pictures with different kinds of masks, apart
from surgical ones. Data augmentation could be applied in case the number of
new pictures would not be enough to bring any significant improvements to the
model. On the application side, a new face detection system could be applied
to reduce the limitations imposed by the Haar classifier. The work could benefit
from testing the performance of other pretrained models, such as NASNetLarge,
providing that the suitable resources are available for such heavy computation.
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