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Abstract. Trees are essential for climate change adaptation or even
mitigation to some extent. To leverage their potential, effective forest
and urban tree management is required. Automated tree detection, lo-
calisation, and species classification are crucial to any forest and urban
tree management plan. Over the last decade, many studies aimed at tree
species classification using aerial imagery yet due to several environmen-
tal challenges results were sub-optimal. This study aims to contribute
to this domain by first, generating a labelled tree species dataset using
Google Maps static API to supply aerial images and Trees In Cam-
den inventory to supply species information, GPS coordinates (Latitude
and Longitude), and tree diameter. Furthermore, this study investigates
how state-of-the-art deep Convolutional Neural Network models includ-
ing VGG19, ResNet50, DenseNet121, and InceptionV3 can handle the
species classification problem of the urban trees using aerial images. Ex-
perimental results show our best model, InceptionV3 achieves an average
accuracy of 73.54 over 6 tree species.
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1 Introduction

Trees are well recognised for their importance to the climate and human life. En-
vironmentally, trees slow surface runoff from rainfall, reducing the risk of flood,
water pollution and soil erosion [4]. In urban areas, trees improve overall air
quality by absorbing particulate matter and create a cooling effect which helps
in adapting to the “heat island” effect [17]. Moreover, urban trees play a key
role in climate change adaptation or even mitigation by reducing CO2 levels,
the main contributor to climate change. Urban trees also improve the percep-
tion of an area by blocking noise, dust, wind and glare [7]. Studies indicate,
urban trees can reduce indoor heating and cooling expenses by blocking the
wind, weather and casting shade around the housing area [33]. In order to ex-
ploit this potential, effective forest and urban tree monitoring and management
is essential. This requires information about composition, species, age, health,
and location of trees which helps in better planning of plantation programs,
growth monitoring and pruning. This also facilitates biodiversity of the vegeta-
tion and promotes robust ecosystem with greater resilience to disease and pests
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and better productivity [9, 1]. Such management system demands for a reliable
yet economically viable platform to automatically detect, classify and monitor
forests and urban trees to guide policy makers to devise better long term man-
agement strategy and ensures long term sustainability. Historically, experts and
volunteers on the ground were in charge of this laborious and time-consuming
management system. However, advent of aerial, satellite and LiDAR imagery
has now put a new dimension to these practices[25]. LIDAR technology repeat-
edly used to estimate the number of trees in an area [32] and categorise their
species [12, 22, 13]. Despite numerous advantages, LIDAR surveys are costly due
to the specialist equipment and skilled analysts requires to interpret it [24]. An
alternative technology for tree management and monitoring is the use of hyper-
spectral and remote sensing satellite images. These techniques have advanced
significantly over the last couple of decades and are now able to produce high-
resolution images which facilitates individual tree crown detection and species
classification [8, 18, 6]. A limited number of studies are looking into urban tree
classification using RGB aerial images [27, 30]. The study by Wegner & Bran-
son [30] have proposed a CNN based system to catalogue and classify urban trees
using publicly available Google satellite images. Their model has been trained
and tested on tree crown images from the Pasadena region of California. In an-
other research, Nezami [21] achieved 97% accuracy in tree classification using
aerial images and convolutional Neural Networks that testifies the effectiveness
of these approaches. Despite staggering accuracy, this study focused on only 3
species which is limited and less practical in the real-world.

The aim of this study is to first generate a labelled tree species dataset
of aerial images to facilitate detection, classification and localization of urban
trees using publicly available Google Maps aerial images and Trees In Camden
inventory to supply with GPS locations (Latitude and Longitude) , diameter
and species information for trees. This study also aims to assess performance of
various state of the art pre-trained deep convolutional neural networks including
VGG19, ResNet50, DenseNet121 and InceptionV3 in tree species classification
under various training scenarios and parameters. The next section of this paper
outlines the dataset preparation process.

2 Dataset Generator Framework

This study proposes a Dataset Generator framework, designed to generate la-
belled dataset of tree species using aerial RGB images and any given tree inven-
tory to supply species information, GPS coordinates (Latitude and Longitude)
and tree diameter. This study uses Google Maps static API to supply aerial
RGB images which is a quick and cost effective way of image data collection.
This method is especially useful for urban trees as Google offers aerial images
with significantly high quality in urban areas. To supply species information,
GPS coordinates and tree diameter, this study uses Trees In Camden inventory
which contains over 23,000 locations of Council owned trees on highways and in



Urban Tree Detection and Species Classification 3

parks and open spaces in London Borough of Camden. Each data point contains
tree species, height, spread, diameter at breast height (DBH), and maturity [5].
While this inventory consists of hundreds of different tree species, this study
only investigates top 6 species with highest frequencies including Ash, Silver
Birch, Common Lime, London Plane, Norway Maple and Sycamore. The data
is split into subsets with 70% for training, 20% for validation and 10% reserved
as unseen test data. The proportional representation of each species is preserved
across the subsets so that any class imbalance is retained at each stage. The
latitude and longitude co-ordinates of each tree were used as the centre point
for each aerial image. A patch of 600x600 with the zoom level of 20 covers large
enough area to contain any tree in Trees In Camden inventory. A 2D Gaussian
kernel which is centred to the tree’s GPS coordinates and expands across tree’s
diameter has been used to generate the ground-truth density maps. Tree images
along with density maps will be used to train tree species classification and local-
isation deep models however this study only focuses on the classification issue.
Figure 1 shows some examples of urban tree images with their corresponding
ground-through density maps. Since, the number of data samples in the train-
ing set is fairly limited and traditionally convolutional neural networks require
a very large number of data samples for effective training process. In order to
tackle this issue and increase the size and variation of the training data, image
augmentation techniques including Rotation, width and height shift, horizontal
flip, zoom and brightness are used, thus artificially expanding the size of the
training set with new, plausible examples as shown in the Figure 2 [14].
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Fig. 1. Examples of urban tree images with their corresponding ground-through density
maps.

3 Tree Species Classification

The project explores performance of various state of the art deep convolutional
neural networks including VGG19, ResNet50, DenseNet121 and InceptionV3 in
tree species classification. Each model was trained with three different training
configurations including fully pre-trained, fine-tuning and training from scratch.
In all cases, the top fully connected classification layers are modified to accom-
modate the 6 tree species of our dataset. All the models in this study are trained
and tested based on the training, validation and testing sets shown in the Fig-
ure 3. This study also investigates the possibility of a reliable tree localisation
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Fig. 2. Examples of the augmentation applied to images in the training data subset

through class activation mapping which demonstrates the discriminative region
of the image, which influenced the deep learning model to make the decision [34].
Other training parameters including learning rate, learning decay, loss function,
batch size and optimiser are held constant across all models and training con-
figurations. Training samples are shuffled prior to the training process to avoid
possible skew toward a certain class and to ensure uniform distribution of classes
(tree species) across batches and maximise the information gain per iteration.
We used categorical cross-entropy loss function across all models in this study
while optimiser of choice is set to Adam. The maximum number of epochs is set
to 200 and call-backs are implemented to monitor the validation loss in order
to stop the model training if the loss has failed to improve after 10 consecutive
epochs. During training iterations, the model with the least amount of loss is
saved and used as a benchmark for comparison with other models.

3.1 VGG19 Model

VGG19 [28] is arguably one of the most popular CNN models in image classi-
fication. This was the chosen model in similar tree species classification studies
by Branson, et al. [2] and Lang [15]. Hence, this study adopted the VGG19
model as it is likely to yield desirable results. Three different training configu-
rations including pre-trained, fine-tuning and training-from-scratch are used to
train the VGG19 model. In pre-trained (ImageNet) configuration, weights and
biases across all convolutional blocks (feature extractors) are frozen while fully
connected layers have been reshaped and retrained to accommodate the 6 tree
species of our dataset. In fine-tuning configuration, we have adopted two meth-
ods, the first of which unfreezes and retrains 4th and 5th convolutional blocks
while keeping the first three blocks frozen. The second method only unfreezes
and retrains the last (5th) convolutional block. Similar to pre-trained configura-
tion, fully connected layers have been reshaped and retrained to accommodate
the 6 tree species of our dataset. In training-from-scratch configuration, weights
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Fig. 3. Training, validation and testing sets counts across top 6 species in Camden
dataset

and biases across all convolutional and fully connected layers are initialised us-
ing Glorot_uniform algorithm. Regardless of training configuration, categorical
cross-entropy loss function and Adam optimiser are used to train the VGG19
model.

3.2 ResNet50 Model

ResNet, short for Residual Networks is a classic neural network used as a back-
bone for many computer vision tasks. The fundamental breakthrough with ResNet
was it allowed us to train extremely deep neural networks with 150+ layers with-
out facing problems like vanishing gradients. ResNet uses skip-connections that
allows gradients to flow easily from layer to layer and helps even the deep-
est layer receive activations from the top layers. ResNet50 model is chosen in
many similar tree classification studies including [19, 3]. Analogous to VGG109,
pre-trained, fine-tuning, and training-from-scratch configurations used to train
ResNet50 Model. In fine-tuning configuration, all layers prior to conv5_block2_add
remained frozen while the subsequent layers have been unfrozen and fine-tuned.
Also, the last fully connected dense layer has been reshaped to accommodate
the 6 tree species of our dataset. In training-from-scratch configuration, weights
and biases across all convolutional and dense layers are initialised using Glo-
rot_uniform algorithm. In pre-trained (ImageNet) configuration, we have only
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reshaped and retrained the last dense layer to accommodate the 6 tree species
of our dataset. Categorical cross-entropy loss function and Adam optimiser used
to train the ResNet50 Model across all training configurations.

3.3 DenseNetl121 Model

DenseNet model is similar to ResNet with some structural difference. ResNet
uses addition (+) that merges the previous layer (identity) with the future layer,
whereas DenseNet concatenates (.) the output of the previous layer with the fu-
ture layer. DenseNets connects all layers with matching feature-map sizes directly
with each other. To preserve the feed-forward nature, each layer obtains addi-
tional inputs from all preceding layers and passes on its own feature-maps to all
subsequent layers[10]. DenseNet aims to address vanishing gradients with signif-
icantly lesser number of parameters compared to ResNet. DenseNet model was
employed in many similar tree classification studies [20, 16]. Similar to VGG19
and ResNet50 models, pre-trained, fine-tuning, and training-from-scratch con-
figurations are used to train DenseNet121 Model. Pre-trained and training-from-
scratch configurations are both using similar training strategy and parameters
as previous models while fine-tuning configuration, unfreezes and fine-tunes lay-
ers subsequent to convi_block15_concat and reshapes the final dense layer to
accommodate the 6 tree species of our dataset. Similar to previous models, cat-
egorical cross-entropy loss function and Adam optimiser are used to train the
DenseNet121 Model across all training configurations.

3.4 InceptionV3 Model

InceptionV3 is the third evolution of Inception architectures family by Google.
Inception v3 mainly focuses on lowering computational power by modifying the
previous Inception architectures. InceptionV3 model features techniques like fac-
torized convolutions, regularization, dimension reduction, and parallelised com-
putations which set it apart from the competition [29]. Several tree classification
studies including [26, 23] employed InceptionV3 model which urged us to ex-
plore its efficiency in this research. Similar to previous models, pre-trained, fine-
tuning, and training-from-scratch configurations are used to train InceptionV3.
In fine-tuning configuration, all layers prior to mized9 remained frozen while
the subsequent layers have been unfrozen and fine-tuned. In other words, we
have attempted to retrain the last Inception module. Moreover, the top fully
connected dense layer has been reshaped to accommodate the 6 tree species of
our dataset. Pre-trained and training-from-scratch configurations are both using
similar training strategy and parameters as previous models. Similar to previ-
ous models, categorical cross-entropy loss function and Adam optimiser are used
to train the InceptionV3 Model across all training configurations. Also, unlike
other models in this study, InceptionV3 has been trained on input image size
of 299x299x3. Hence, we made the necessary adjustments in the pre-processing
and training process to address this issue.
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3.5 Proposed Model

4 Results and Discussion

The training, validation and testing process are performed using the 6 tree
species including Ash, Silver Birch, Common Lime, London Plane, Norway Maple
and Sycamore. The VGG19, ResNet50, DenseNet121, and InceptionV3 have
been trained in three different configurations including pre-trained, fine-tuning
(FT), and training-from-scratch (TFS). Categorical cross-entropy has been em-
ployed as the loss function of choice across all experiments in this study. All
models in this study use Adam optimiser with initial learning rate of le-2 and
scheduled exponential decay to lower the learning rate as the training progresses.
Batch size of 32 has been used across all experiments.

The VGG19 with over 140 million parameters is the most computationally
expensive model in this study and consequently took the longest to train and
fine-tune. The VGG19 model with fine-tuned 4th and 5th convolutional blocks
achieved an accuracy of 71.84 and F1-score of 0.626, outperformed other training
configurations of VGG19 model with a reasonable margin. Freezing the 4th con-
volutional block led to a slight reduction across majority of the evaluation met-
rics. Freezing the entire convolutional blocks (pre-trained configuration) further
reduced the model performance. This indicates textural and geometric features
of Google Map’s aerial images of urban trees are slightly different to ImageNet’s
and fine-tuning can positively impact the model performance. Experimental re-
sults also show that training-from-scratch (TFS) consistently outperformed other
configurations possibly due to lack of training samples. The performance mea-
sures obtained by the VGG19 model are recorded in Table 1. Figure 4 shows
confusion matrices of different VGG19 training configurations. It appears that
regardless of the training configuration, VGG19 struggles at identifying Ash tree
species.

Table 1. Evaluation metrics for different VGG19 training configurations

Accuracy Avg Class Avg Class

Model Loss (%) Precision (%) Recall (%) F1-Score
XS}? 535 pry 108 7184 0.628 0.633 0.626
?;?f 1;1% 112 69.42  0.595 0.600 0.596
?;(ig‘;i:ine q) 114 68.08 0583 0.595 0.585
2&%(;;19 1.21 66.99  0.565 0.583 0.570

The ResNet50 model with just over 25 million parameters is significantly
faster in training and inference. In general, ResNet50 consistently under-performed
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Fig. 4. Confusion matrices for different VGG19 training configurations

VGG19 regardless of training configurations. Just like VGG19, ResNet50’s per-
formance topped at fine-tuned training configuration, where the maximum accu-
racy of 68.93 and F1-score of 0.583 have been registered. We believe ResNet50’s
performance could be further improved by investigating different fine-tuning
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(freezing/unfreezing) possibilities. Experiments shows significant drop in ResNet50

performance in both pre-trained and training-from-scratch (TFS) configuration.
This is consistent with what has been observed in the VGG19 experiments. We
believe insufficient training samples is the main reason of such behaviour. The
performance measures obtained by the ResNet50 model are recorded in Table 2.
Figure 5 shows confusion matrices of different ResNet50 training configurations.



Urban Tree Detection and Species Classification 9

It appears ResNet50 not only struggles with identification of Ash tree species
but also performs poorly at Silver Birch classification.

Table 2. Evaluation metrics for different ResNet50 training configurations

Accuracy Avg Class Avg Class

Model Loss (%) Precision (%) Recall (%) F1-Score
F;%Iewo 1.12 68.93  0.576 0.601 0.583
gf:gf::ge gy 1446201 0.486 0.502 0.491
E{Te?gwo 1.49 61.77  0.486 0.503 0.493

The DenseNet121 with just over 8 million parameters is the lightest and
fastest model to train in this research. However, this comes with the cost of per-
formance. At its peak, the DenseNet121 achieved accuracy of 66.55 and F1-score
of 0.56 which is considerably lower than its counterparts in this study. Just like
ResNet50 and VGG19 the highest performance observed under fine-tuning con-
figuration. DenseNet121 under training-from-scratch (TFS) configuration, regis-
tered the lowest accuracy (59.95) and F1-score (0.461) across all the experiments
in this study. The performance measures obtained by the DenseNet121 model are
shown in Table 3. Figure 6 shows confusion matrices of different DenseNet121
training configurations. Similar to ResNet50, DenseNet121 struggles with clas-
sification of Ash and Birch Silver tree species.

Table 3. Evaluation metrics for different DenseNet121 training configurations

Accuracy Avg Class Avg Class

Model Loss (%) Precision (%) Recall (%) F1-Score
DenseNet121

(FT) 1.24 66.55 0.548 0.570 0.560
DenseNet121 oo 60 59 0470 0.473 0.468
(Pre-trained)

DenseNet121

(TFS) 1.67 59.95 0.465 0.463 0.461

Last but not least, InceptionV3 model with over 23 million parameter is the
second fastest model in this study. However unlike DenseNet121 (fastest model
in this study) its speeds comes with no performance penalty. The InceptionV3
model achieved impressive accuracy of 73.54 and Fl-score of 0.646, the highest
recorded across all the experiments in this study. We believe InceptionV3’s per-
formance could be even further improved by investigating different fine-tuning
(freezing/unfreezing) possibilities. The performance measures obtained by the
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Fig. 5. Confusion matrices for different ResNet50 training configurations

InceptionV3 model are shown in Table 4. Figure 7 shows confusion matrices of
different InceptionV3 training configurations. A sensible improvement in classi-
fication can be observed across all tree species but similar other models in this
study, InceptionV3 struggles with segregation of Ash and London Plane species.

A deeper investigation into model’s training behaviours shows that VGG19
suffers from a considerable amount of overfitting. Due to the fact that the VGG19
features huge number of parameters (140 million), training with small datasets
like Trees In Camden leads to issues like overfitting. This can be slightly miti-
gated by introduction of Regularisation and Dropouts into the model. In general,
we have realised reported performance measures across all experiments were ef-
fected by insufficient training samples. One possible solution is to combine im-
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Fig. 6. Confusion matrices for different DenseNet121 training configurations

ages from other repositories such as Pasadena Urban Trees [31]. An in-depth
investigation into other possible fine-tuning configurations could also mitigate
this issue. It is worth mentioning that some images in our dataset may contain
more than one tree if they are situated close together and, depending upon the
accuracy of the location data, the labelled tree may not necessarily be accu-
rate. Although the Camden tree inventory contains a large amount of detailed
data, improvements could be made to ensure that common name species labels
are correct. For example, Maple — Crimson King Norway is a separate cate-
gory to Maple — Norway. Combining these would increase the number of images
in Maple—Norway class by 9%. Similarly, Wier-maple and Maple—Silver are dis-
tinct categories, however the weir-maple is a type of silver-maple and so grouping
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Table 4. Evaluation metrics for different InceptionV3 training configurations
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these together would triple the size of this class. Also, we have realised imbalance
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nature of our dataset adversely impacted the results. The attempt to add class
weights to account for the data imbalance could be a possible mitigation plan.
Further research into handling imbalanced data could be conducted to reduce
bias towards the larger class (London Plane). One such method for this would
be to over or under sample the training images to create balance in this data
set [11].

5 Conclusion

Tree detection and species classification using aerial or satellite imagery was an
inherently expensive and time-consuming task. This research examined the possi-
bility of urban-tree detection and species classification using Google Maps aerial
images and publicly available tree inventories such as Trees In Camden to supply
GPS coordinates and tree species information. This can significantly reduce the
cost of surveying and data collection and overall helps to leverage effective for-
est and urban tree management. The work involved investigating several state of
the art deep convolutional neural network models including VGG19, ResNet50,
DenseNet121 and InceptionV3 at three different training configurations includ-
ing fully pre-trained, fine-tuning and training from scratch. Results shows, a
fine-tuned InceptionV3 model is able to classify up to 6 different species with
over 73% accuracy and 0.646 F1-score. While this is far from an ideal solution,
this study shows the possibility of urban-tree species classification using free and
publicly available Google Map’s images. Future work such as investigating other
known popular models such as AlexNet, InceptionResNetV2 and Xception or
other possible fine-tuning configurations could likely to improve the metrics.
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