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Abstract: One common issue of object detection in aerial imagery is the small size of objects in pro-
portion to the overall image size. This is mainly caused by high camera altitude and wide-angle
lenses that are commonly used in drones aimed to maximize the coverage. State-of-the-art general
purpose object detector tend to under-perform and struggle with small object detection due to loss
of spatial features and weak feature representation of the small objects and sheer imbalance between
objects and the background. This paper aims to address small object detection in aerial imagery by
offering a Convolutional Neural Network (CNN) model that utilizes the Single Shot multi-box Detec-
tor (SSD) as the baseline network and extends its small object detection performance with feature
enhancement modules including super-resolution, deconvolution and feature fusion. These modules
are collectively aimed at improving the feature representation of small objects at the prediction layer.
The performance of the proposed model is evaluated using three datasets including two aerial images
datasets that mainly consist of small objects. The proposed model is compared with the state-of-
the-art small object detectors. Experiment results demonstrate improvements in the mean Absolute
Precision (mAP) and Recall values in comparison to the state-of-the-art small object detectors that
investigated in this study.

Keywords: deconvolution; feature fusion; small object detection; SSD; super-resolution

1. Introduction

Object detection is one of the core research areas in computer vision. Recent break-
throughs in Convolutional Neural Network (CNN) and object detection unlocked new
horizons and possibilities in various domains ranging from security and surveillance appli-
cations, such as face detection, crowd analysis and activity recognition to medical image
analysis and self-driving vehicles research [1-4].

Despite the contextual similarities of these domains, they utilize different image
acquisition techniques that often require significant adaptation and alteration of the state-of-
the-art general purpose object detectors to achieve desirable results. A prominent example
of such a domain is Unmanned Aerial Vehicles (UAV) imagery. The UAV imagery is getting
more popular than ever before with a variety of applications including smart farming [5],
search and rescue [6], disaster management [7], archaeological structure modeling [8],
security and surveillance [9] and many others. In UAV imagery, due to the flight altitude,
the top-down camera perspective and wide-angle lenses, object shapes and appearances
are relatively unconventional and they usually take up a small fraction of the image area,
as illustrated in Figure 1. General purpose object detectors are trained and tuned on datasets,
such as ImageNet and COCO, which mainly offer ground-level medium-sized images.
These detectors fail to provide good detection accuracy when it comes to out-of-ordinary
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small objects captured by UAVs. A reliable small object detection demands mechanisms
that preserve and enhance small object feature representation in the detection layer [10].

Figure 1. Objects in UAV images are usually small in size (proportional to total image size) and
general purpose object detectors are not designed to cope with it [11].

Pre-deep learning object detection techniques, such as boosted cascade [12], His-
tograms of Oriented Gradients (HOG) [13] and Deformable Part Models (DPM) [14]
were relatively inaccurate and unreliable for real-world applications; however, availability
of GPU computing and abundant of labeled training data (ImageNet) fast-tracked the rise
of CNN-based object detection. The CNN-based object detectors have become the preferred
choice for many researchers due to their unprecedented accuracy and availability of ample
training data and processing power. These approaches can be categorized into one-stage
and two-stage object detectors.

The one-stage object detectors require only a single pass through the neural network
to detect and localize the objects. These methods treat object detection as a simple regression
problem by taking an input image and learning the class probabilities and bounding box
coordinates. For instance, You Only Look Once (YOLO), which is one of the notable one-stage
object detectors, splits the input image into a grid of S x S cells [15]. If a bounding box
center falls into a cell, that cell is “responsible” for detecting the existence of that object.
More precisely, each cell is in charge of predicting the exact coordinates of bounding boxes,
a confidence score indicates the likelihood that the cell contains an object, and a probability
of object class conditioned on the existence of an object in the bounding box. The YOLO
utilize a fairly standard CNN (similar to GoogLeNet) that receives the input image, extracts
spatial features, and at the end outputs an encoded vector designed to predict bounding
boxes, confidence for those boxes, and class probabilities.

When it comes to the small objects, the efficiency and reliability of this and similar
approaches degrade. To successfully detect small objects, a considerably finer S x S
grid is required to reliably predict the coordinates of the bounding boxes and maintain
the significance of the confidence scores. This exponentially increases the computational
complexity of the detector for an insignificant accuracy boost in return. Overall, the one-
stage object detectors are simpler and faster, although they can sometimes struggle with
localization and detection accuracy. The most prominent examples of one-stage object
detectors are YOLO and Single Shot multi-box Detector (SSD) [16].
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On the other hand, two-stage object detectors first attempt to extract candidate regions
of objects (region proposal), which significantly reduces the number of locations that are
likely to contain the objects and then they employ a combination of ConvNets and other
techniques to classify and refine the extracted region proposals. For instance, the Region-
based Convolutional Neural Network (R-CNN) [17], which is one of the earliest two-stage object
detectors, uses selective search to extract 2000 region proposals. This method employs
a graph-based segmentation algorithm [18] to generate an over-segmented segmentation
map and then iteratively and hierarchically merges these segments into larger region
proposals based on their color, texture, size, and shape similarity.

In the second stage, pre-trained AlexNet is used to extract the feature vector of the cropped/
reshaped region proposals. Then, Support Vector Machines (SVMs) are used to generate a confi-
dence score classify these regions into different classes. A greedy non-maximum suppression
algorithm only retains overlapping regions with a higher confidence scores. Finally, a linear re-
gression model is used to further refine the bounding boxes for each identified object. Two-stage
detectors have higher localization and object recognition accuracy; however, these techniques
tend to be significantly slower than their one-stage counterparts. These methods are fairly slow
to begin with and it can be argued that they require a significantly higher number of region
proposals to deal with small objects. Moreover, we have realized that the segment merging
process is less effective when it comes to small-sized objects. Popular two-stage detectors are
the R-CNN detectors and the various extensions of it [17,19,20].

In recent years, novel techniques, including Detection Transformer (DETR) [21],
Saliency detection [22], Swin Transformer [23], and Hybrid Task Cascade (HTC) [24],
have been conceived to improve object detection and segmentation accuracy; while these
techniques managed to successfully improve object detection accuracy, their primary focus
is on general and reasonably sized objects on datasets such as COCO and not small objects
in aerial images.

Most object detection algorithms perform well when the objects are represented with
reasonable size, proportion, and resolution; however, when it comes to small-sized ob-
jects, they under-perform severely. This is mainly caused by weak feature representation
of the small-sized objects in deeper layers of CNN and a significant imbalance between
the background and target objects proportion. Though there is no standard definition
of the scale of an object to be qualified as a small object, the (D)etection, (O)bservation,
(R)ecognition and (I)dentification (DORI) criteria conceived by [25] states that 10% of the im-
age height is required for the object observation and detection. In Figure 1 in [11], it can
be observed that the objects are considerably small/insignificant proportional to the total
image size and can be categorized as small objects. Figure 2 illustrates how a typical CNN
fails to properly resolve and represent small objects features. At each layer of the network,
features of the small object down-sampled through pooling or stride >1 (typically, with
half the resolution size of the previous layer) results in a progressive reduction and some-
times disappearance of small object feature representation at the prediction layer, which
deteriorates the learning and detection process.

The majority of the image and video acquisition applications, such as surveillance,
autonomous driving, and satellite and aerial imagery, can only capture distant objects
in small sizes, mainly due to technological and physical constraints and limitations. Cur-
rent general purpose object detectors, including SSD, YOLO, R-CNN, CenterNet++, and
their variants, under-perform when it comes to the detection of small objects [26]. For
instance, although the SSD utilizes a multi-scale feature representation that supposedly
provides a relatively better detection accuracy for small objects, it uses a fairly deep CNN
(VGG16) in its back-end, which degrades the spatial resolution of the small objects and
makes detection of these objects difficult [27-29]. CenterNet++ [30], a state-of-the-art object
detector that benefits local perception swin transformer in its backbone is capable of gener-
ating accurately positioned bonding boxes and achieve outstanding mAP, but it relatively
under-performs when it comes to datasets that mainly exhibit small objects.
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Figure 2. Poor feature representation of small objects at deeper layers of typical Convolutional Neural
Networks, which are usually caused by multiple pooling and stride >1 processes.

Therefore, innovative measures are required to develop object detectors, capable
to demonstrate high accuracy in detecting small objects. Small object detection is a relevant
research problem and is gaining research attention. One approach that is particularly
explored for small object detection is the multi-scale feature representations structure
in the network architectures. Object detectors such as SSD and Deconvolutional Single
Shot Detector (DSSD) [31] use multi-scale representations in their network for predictions.
Features from different layers in the network are explored and combined for better repre-
sentation of object features and to improve the detection of smaller objects. Table 1 provides
an overview of some of the recent works related to CNN-based small object detection and
summarizes their approaches.

Table 1. A summary of selected works on CNN-object detection for small objects in images.

Strategy Authors Model Features Data Results
mAP of up to 85%.
[32] Feature extraction CNN combined Mobile Mapping Comparatively, 12%
with the R-CNN framework Systems (MMS) images  higher accuracy than
ResNet-152
R-CNN network combined with . .
. . Higher detection
Tiny-Net, global attention block .
[33] . e Remote sensing images  accuracy than R-CNN
0 followed by a final classification .
b block variants
£ .
% A R-CNN network combined with . Higher accuracy than
el [34] . Remote sensing images  Faster R-CNN is
@ a deconvolution layer
& reported
L A region pro‘posal petwork Improved detection
g combined with fusion network that .
2 [35] . . Remote sensing accuracy compared
= concatenates spatial and semantic
. . to state-of-the-art
information
Improved detection
Multi-block SSD consists of three rate of small objects by
[27] stages, including patching, Railway scene dataset 23.2% in comparison

detection, and stitching

with the baseline object
detectors
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Table 1. Cont.

Strategy Authors Model Features Data Results
Better detection
Various configurations of SSD accuracy for small
architecture, including stride objects in the COCO
[0 elimination at different parts MS COCO dataset dataset when
of the network compared to baseline
SSD
Improved the detection
Tiling-based approach for training Micro aerial vehicle pe.rformance on small
[25] : . objects when compared
and inference on an SSD network imagery .
with full frame
approaches
Modification of YOLOv3 model Im'provemen't in small
. . object detection when
" [37] for multi-scale feature UAV imagery
5 representation compared to base
2 P YOLOV3 model
% Able to detect car
'S [38] YOLO model with multi-scale Traffic imagery for car ~ accidents in 0.04
_%D feature fusion accident detection seconds with 90%
o accuracy
Eo Improved accuracy
A [39] Feature fusion and feature dilation Vehidle i in the range of 80% and
combined with YOLO model chicie imagery 88% on different
datasets
Improved IoU to over
YOLOvV3 Residual blocks optimized 70% to 80% across
[40] by concatenating two ResNet units UAV imagery different datasets
that have the same width and height compared with
the baseline models
Region Context Network attention
mechanism shortlists most Improvement
[41] promising regions, while discarding USC-GRAD-STD and in average precision
the rest of the input image to keep MS COCO dataset from 50.8% in baseline
high resolution feature maps models to 57.4%
in deeper layers.
Feature fusion and spatial 79.3% mean average
[42] attention-based Multi-block SSD LAKE-BOAT dataset precision
Patch-based and pixel-based CNN
[43] architectures for image Remote sensing images Classification accuracy
segmentation to identify small & 1mag of 87% reported
objects
A super-resolution-based generator Ir:ﬁ:;?:::ﬂj:fﬁtﬂlau
=] [26] network for up-sampling small COCO dataset pel
g obiects objects when compared
% ) with R-CNN models
2 Better detection
- .
0 Super—resolutlon. method for feature Several RGB image accuracy compared to
Q, [44] enhancement to improve small other
=1 . . datasets .
9] object detection accuracy super-resolution-based
methods
A super-resolution-based Several RGB im. ?Cth li‘ile: hlgh:r
[45] Generative Adversarial Network cvera age cetection accutacy
datasets In comparison

(GAN) for small object detection

to R-CNN variants
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Table 1. Cont.

Strategy Authors Model Features Data Results
Extended feature pyramid network Better accUracy across
which employs large-scale Small traffic-sign both datasets c};m ared
[46] super-resolution features withrich ~ Tsinghua-Tencent and to the sta te—of—theg ot
regional details to decouple small MS COCO dataset methods
and medium object detection
A two-stage detector (similar
to the Faster-RCNN) which first Sienificant accurac
adopts the feature pyramid Small traffic-sign imgnrovemen t y
[47] architecture with lateral connections, Tsinghua-Tencent corIr)1 ared with
then utilizes specialized anchors dataset sta teI—) of-art methods
to detect the small objects from large
resolution image
0 A parallel feature pyramid network
% constructed by. wid.ening 7.8% better average
© the network width instead .
5 [48] . . MS-COCO dataset precision over latest
& of increasing the network depth. variant of SSD
& Spatial pyramid pooling adopted
-g to generate a pool of feature
7 Multi-branch parallel feature
pyramid network (MPFPN) used
to boost feature extraction Competitive
of the small objects. The parallel ‘ P d
branch is designed to recover . perlormance compare
[49] . VisDrone-DET dataset ~ with other
the features that missed state-of-the-art
in the deeper layers and memthods
a supervised spatial attention
module used to suppress
background interference
Achieved 65.84%
Feture fusion and scaling-based SSD %ESE;TCC})Ib(j);féISa CS;:I;

[50]

network with spatial context
analysis

UAV imagery dataset. High accuracy

on small objects in UAV
images

This study attempts to address the small object detection problem using a multi-scale
feature representation CNN model. The proposed model design includes the SSD network
as the baseline network and extends it with an additional deconvolution module, super-
resolution module and a shallow layer feature-fusion module. These three additions result
in better preservation of small object features at deeper CNN layers that subsequently
improved small objects detection accuracy compared to the base SSD model.

The main contributions of this study are as follows:

* A novel deep model capable of improving feature representation of small objects
at the prediction layer that leads to overall better small objects detection accuracy;

* A deconvolution module that up-scales small objects’ feature resolution and provides
more details to the prediction layer;

* A super-resolution module that applies residual and up-sampling blocks to shallow
layers and improves scale invariancy and enhances resolution of the small objects
at the prediction layer;

e A shallow layer feature fusion module that combines features from multiple stages
of the network and improves scale invariancy and feature representation.

These contributions are collectively aiming to improve feature representation of small
objects at the prediction layer that eventually leads to overall better small object detection
accuracy. The rest of the paper is organized as follows: the proposed network is described
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in detail in Section 2, followed by Section 3, which discusses its implementation, evaluation,
and results. A discussion on the proposed model is provided in Section 4 followed by
the conclusion.

2. System Overview

The proposed small object detection model consists of SSD as the baseline paired with
three other modules: a Shallow Layer Feature Fusion module, a Deconvolutional Module, and
a Super-resolution module. This model is partially inspired by the Deconvolutional Single
Shot Detector (DSSD) [31], Deep CNN with Skip Connection and Network in Network
(DCSCN) [51], and Super-Resolution Generative Adversarial Network (SRGAN) [52], and
incorporates some variant of these techniques to improve small object detection accuracy.
Figure 3 shows the architecture of the proposed small object detector model. In this figure,
the super-resolution module along with the feature fusion module are illustrated in green
and with a "+’ symbol, respectively. The SSD layers are illustrated in blue followed by
a series of a deconvolution layers (red) that end with a prediction layer.

Figure 4 shows a schematic comparison of the proposed approaches against various
other object detectors. Figure 4a represents the approach used by single stage detectors
(e.g., YOLO) that solely relies on the final feature representation for detection.
These approaches work with relatively limited features that negatively impact small
object detection; however, they demonstrate high detection speeds. Figure 4b shows
the multi-level presentation of the features at the detection layer that are used by models
such as the SSD. They usually perform better for small objects but have relatively lower
detection speeds. The shallow layer feature fusion approach shown in Figure 4c and
used in models such as the FSSD and the FFSSD improves on the SSD by concatenat-
ing additional features from lower layers to enhance small object detection performance.
The DSSD approach extends the SSD model by combining the SSD layers with additional
deconvolutional layers for better representation of features at the prediction layer, as shown
in Figure 4d. Figure 4e shows the structure of our proposed network. The presented ap-
proach combines deconvolution and feature fusion methods to provide richer, multi-scale
feature maps at the prediction layer. The overall goal of this architecture is to provide
a mechanism to collate features from multiple layers across the network and present them
at the prediction layer. The multi-scale features at the prediction layer provide enhanced
feature representations for small objects and improve their detection accuracy.

a

£ g
I‘ I‘ 5
S 5
c
2
2
[g 2
(-9
Conv5_3 FC
Conv4_3
L Conv3_3
LV conv2_3 B sso Layers
Convl_3 Deconvolution Layers

- Super-resolution Layers

@ Feature Fusion Layers

Figure 3. Network architecture of the proposed object detection model. The SSD model is used
as the baseline network and extended to include deconvolution module (orange), super-resolution
module (green), and shallow layer feature fusion module (+).
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Figure 4. Schematic comparison of approaches used by different types of object detectors.
(a) Single stage detectors (e.g., YOLO). (b) Multi-level features used at prediction layer (e.g., SSD).
(c) Approach of supplying shallow layer features for prediction (e.g., FSSD). (d) Deconvolutional lay-
ers for improved feature representation (e.g., DSSD). (e) Network schema of our proposed approach.

2.1. Single Shot Multibox Detector (SSD)

The SSD is used as the baseline network in our model due to its high speed and
accuracy in object detection. The SSD detector itself is composed of a base network (VGG16)
followed by six extra convolutional layers and a Non-Maximum Suppression (NMS) layer
for final detection [53]. The base VGG16 network (without its final classification layers) is
purely used for feature extraction. The additional six convolutional layers that are attached
to the end of the VGG network (apart from the first one) will be used for prediction
of the bounding boxes and confidence score for different objects. These layers progressively
decrease in their size to accommodate detection of objects at multiple scales; however, due
to structural limitation of SSD, small object detection accuracy remains undesirable [27,29].

The SSD’s performance relies heavily on default boxes, specifically their scale and
aspect ratios. Each feature map corresponds to a specific scale of default box along with
a list of five aspect ratios for each scale. The minimum and maximum scales are set to 0.2
and 0.9, respectively, while aspect ratios are 1, 2, 3, 1/2, and 1/3. The prediction layers
receive several feature maps from “Extra feature layers”, representing multiple scales/aspect
ratios and determining classification scores and bounding box coordinates [16]. The pyra-
midal feature hierarchy in “Extra feature layers” enables SSD detect objects of various sizes
in the images; however, its performance for small objects is sub-optimal [27-29].

In our proposed model, we extend the multi-scale feature representation concept
for enhanced feature representation at the prediction layer by applying the feature fusion,
deconvolutional. and super-resolution modules.

2.2. Deconvolution Module

In the SSD model after the VGG16 network, the feature maps are scaled down consid-
erably and lack fine details of the objects. The large objects might be sufficiently represented
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and detected; however, the feature resolution might be insufficient for small objects, leading
to poor detection. A deconvolution operation up-scaling the feature resolution [54] and
provides more details to the prediction layer. In our proposed network, after the SSD
layers, a series of deconvolution layers are added. This structure inspired by [31] partially
addresses the inefficiency of feature resolution for small object detection.

The deconvolution module includes a series of five consecutive deconvolution layer
that successively increases the feature maps supplied to the prediction layer. This module
includes a 2 x 2 deconvolutional layer with a stride of 2, followed by a convolutional
layer activated by the ReLU activation layer and a batch normalization. Figure 5 shows
the deconvolution module used in our network. Furthermore, every deconvolution layer
is fused with a corresponding SSD of the same resolution size. The fusion is done using
an element-wise sum operation followed by a ReLU activation.

A deconvolutional layer is added for each SSD convolutional layer, effectively up-
scaling all the feature layers to be used by the prediction layer. The feature maps of the SSD
convolutional layer and deconvolutional layer are combined through an element-wise
sum operation. Each SSD layer undergoes two sets of two convolutional operations
followed by batch normalization and a ReLU activation layer before combining with
the deconvolution feature maps. The element-wise sum operation allows point to point
combination of the feature maps at different levels into equivalent weights, as shown
in Figure 6.
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Figure 5. A deconvolutional module unit used after the SSD layers.
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Figure 6. A deconvolutional module unit merged with an SSD layer using element-wise sum
operation.
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2.3. Super-Resolution Module

The super-resolution (SR) method enables deriving high resolution (HR) features
from low resolution (LR) feature maps [55]. SR is a well-explored topic and is applied
in various areas, including remote sensing [56] and video SR [57]. In our proposed
model, the two shallow layers Conv4_3 and Conv5_3 are considered as LR feature maps.
The SR method is applied to derive a HR version of the two shallow layers. Inspired by
the techniques proposed by [58,59], we apply an SR technique on the Conv4_3 and Conv5_3
layers to obtain HR feature maps.

The SR module in our network is based on residual and up-sampling blocks, as il-
lustrated in Figure 7. Two residual blocks are applied to both of the shallow layers.
Furthermore, each residual block consists of two sub-block units of a 3 x 3 convolutional
layer, a batch normalization layer and a ReLU activation layer. As with residual blocks, skip
connections are achieved using an elementwise sum operation. The two residual blocks
are followed by an elementwise sum operation, concatenating the shallow layer output
with the residual layer outputs. The residual blocks enable to obtain multi-scaled features
of both shallow layers. The concatenation operation is followed by two up-sampling blocks.
The up-sampling blocks help in achieving SR in our model. For the up-sampling purpose,
the Pixelshuffle [58] layer, which is used in several SR approaches including [52,59], was
employed in this study:.

PixelShuffle is an operation used in SR models to increase the spatial resolution
of the feature maps. This technique utilizes sub-pixel convolutions with a fractional stride
of 1/r (up-sampling ratio) in the LR space. PixelShuffle specifically rearranges elements
in a tensor of shape (*,C X 72, H, W) to a tensor of shape (x,C,H x r, W x r), where r is
the up-sampling ratio and C is the color channels; essentially, it trades layer depth with
higher spatial resolution [58]. The up-sampling block in our proposed architecture consists
of a 3 x 3 convolutional layer, a pixelshuffle layer, and a ReLU activation layer.

o c ||lc
g 2 ||E
8 g |lg
> g > 2 |2
a = =v
' “ N \
! \\ ! ‘\
Conv ; \ \
’ \\ ’ ‘\
'l ‘\ l, \\
/ \ i \
@) Q |Ie
S s 1%
< ) < .
w | @ () w 197) [
" Z [ “ = [
& c Z I& ] ©
O | =
— — o
o o
Residual Upsampling
block using
layers PixelShuffle

Figure 7. The super-resolution module.

2.4. Shallow Layer Feature Fusion Module

Multi-scale feature representation works by combining features from multiple stages
of the network to provide an enhanced feature map at the prediction layer and improve
small object detection accuracy. Such approach has been used in Feature fusion Single
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Shot multi-box Detector (FSSD) [60], Deconvolutional SSD (DSSD) [31], Feature-Fused SSD
(FE-SSD) [61], and Feature fusion and Scaling-based SSD (FS-SSD) [50].

The feature fusion approach used in our implementation mitigates loss of small
object features. The feature maps from the Conv4_3 and Conv5_3 are fused and supplied
to the prediction layer. There are two different ways to fuse features from shallow layers:
concatenation and element-wise summation. The concatenation approach requires inputs with
matching shapes except for the concatenation axis. However, element-wise summation
works with tensors with similar batch sizes and follows arrays broadcasting rules [62].
In the shallow layer feature fusion module, a 1 X 1 convolution layer is applied after
the concatenation, which leads to better learning and enhancement of small objects’ features
over the background. The concatenation operation is illustrated in Figure 8.
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Figure 8. Concatenation of the Conv4_3 and Conv5_3 feature layers.

The Conv5_3 layer feature resolution differs from the resolution of the Conv4_3 feature
layer. For fusion of both the layers, the Conv5_3 layer is up-sampled to the same size
of the Conv4_3 layer. The up-sampling is achieved through a deconvolution operation
at the Conv5_3 layer. Next, both the feature layers undergo a 3 x 3 convolution operation,
batch normalization, and ReLu activation function. The output feature map of the feature
fusion module is supplied to the prediction layer. In comparison to the standard SSD
network, the prediction layer of our model receives more feature maps with potentially
better representation of the small objects.

3. Experiments

The proposed model is evaluated for its object detection accuracy with an emphasis
on small object detection. The details of multiple experiments conducted with the proposed
model are presented in the following sections.

3.1. Datasets

The model was evaluated on three datasets: a custom UAV image dataset of livestock
captured as part of the 5G rural integrated test-bed (5GRIT) project [63], the Stanford Drone
Dataset (SDD) [11], and a crowd monitoring dataset acquired as part of the European
Union (EU) project, MONICA [64]. The custom livestock dataset consists of aerial images
of livestock captured over farms across the UK. The dataset includes only one labeled
class of livestock (sheep). The images were captured from a UAV flown at 50 m altitude.
In total, 425 RGB images with a very high resolution of 5400 x 3600 pixels were acquired.
Figure 9 shows some example images of the dataset.
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Figure 9. Example images of the livestock dataset. In the images, sheep are small targets for the object
detectors.

As can be seen in Figure 9, the livestock dataset exhibits aerial images of livestock
(sheep) with considerably small spatial size proportional to the total image size.
This poses a challenge to the existing state-of-the-art object detectors, which make this
dataset a suitable test-bed and use case to evaluate our small object detector performance.
Since images in the livestock dataset have very high resolution, it is not possible to use
them directly for the training of a neural network model. Hence, each image was split
(cropped) into multiple images of 300 x 300 resolution. As a result of this operation, a total
of 3900 images were available for training based on the livestock dataset.

The SDD dataset consists of 400 aerial images of people captured using a UAV
at an original resolution of 6000 x 4000 pixels. The Pedestrian category images were used
for training and evaluation in our study. Since images in the SDD dataset are of very
high resolution, each image was split into multiple images of 600 x 400 for training.
We used different cropping factors in livestock (300 x 300) and the SDD dataset (600 x 400)
mainly to equalize the average scale of small objects across both datasets. Livestock
dataset objects (sheep) are considerably smaller than benchmark SDD objects (Pedestrian).
This helped to improve the consistency of our experiments and results across both datasets.
Figure 1 shows some example images of this dataset. After training and evaluation using
the SDD dataset on Pedestrian category, the MONICA dataset, which consists of images
of the crowd, is used for further evaluation of our proposed model.

3.2. Implementation

The proposed model is based on the SSD object detector. For our experiments,
the Keras implementation of SSD with VGG16 used in [65] is employed as our baseline
architecture network. For training purposes, parameters from the original SSD implementa-
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tion is used in our studies. The anchor box ratios, scaling factors, and other parameters were
kept unchanged from the original recommendation. To improve the volume of the training
dataset, the data augmentation process recommended in the original SSD implementation
is adopted to increase the training dataset image count. The data augmentation process
includes randomly sampling an entire original input image such that it has a minimum
Jaccard index with objects of around 0.1, 0.3, 0.5, 0.7, or 0.9, and then randomly sampling
a patch. The batch size was set to 32 for training and the learning rate ranged from 0.001
for the first 60 k steps, 0.0001 for up to 80 k and 0.00001 for 100 k steps. The maximum
iteration was set to 100 k steps.

3.3. Comparison on the Livestock Dataset

The performance of our model is compared with several popular CNN-based object
detectors including Faster R-CNN [20], variants of SSD including SSD300 and SSD512 [16],
YOLOW3 [66], and CenterNet++ [30]. Moreover, the proposed model has been compared
with several state-of-the-art small object detectors including Deconvolutional SSD (DSSD) [31],
FS-SSD [50], FE-SSD [61], MPEPN [49], and EFPN [46].

The mean Average Precision (mAP) of all the detectors are shown in Table 2.
The mAP is adopted as the primary criterion (Figure of merit) for detection accuracy,
which is an indicator related to the Intersection over Union (IoU) threshold. We take
the most used threshold IoU = 0.5 in our experiments.

All the target objects in the Livestock dataset have been checked for fulfillment
of DORI'’s small object criterion [25]. Bear in mind that, objects in the Livestock dataset
are considerably small (significantly smaller than what DORI outlines as small object)
and general purpose object detectors in this comparison such as YOLOv3, SSD, Center-
Net++, and Faster R-CNN are not purely made to deal with such small scale of objects.
The enclosure of general purpose object detectors in this comparison is mainly to demon-
strate how purposely made small object detectors can positively contribute to the small
object detection performance in aerial imagery.

For the livestock dataset, our proposed model achieves the highest accuracy with
a mAP of 79.12%. The YOLOV3 and Faster R-CNN show the lowest mAP and Recall
compared to other detectors considered in the experiment. Among general purpose object
detectors, CenterNet++ with a respective mAP and Recall of 76.18 and 92.44 ourperformed
other general purpose object detector; however, it came short when compared to small
object detectors. In terms of Recall, once again the proposed model, with 94.10%, outper-
formed all other detectors in this comparison. The FS-SSD, with a mAP and Recall of 77.14%
and 93.91%, respectively, was the second-best detector in this comparison; however, with
17.35 Frames per Second (FPS), FS-SSD outperformed our model in this respect.

Small object detection is important in UAV and satellite imagery as the object sizes are
usually small relative to the total image size. The livestock dataset consists of considerably
small top-down images of livestock (sheep) and our proposed model performs well in de-
tecting these objects compared to other methods in this comparison. Figure 10 shows a qual-
itative comparison of the original SSD300 object detector, FS-SSD, and our proposed model.
Images in Figure 10 have been chosen randomly to retain the fairness of our qualitative compar-
ison. It can be observed that the SSD misses several instances of livestock across the images;
however, FS-SSD’s performance and accuracy is very comparable to our proposed model. It
is worth mentioning that due to extremely small object sizes, all models in this comparison
fail to detect sheep in a few instances. Keep in mind that the majority of the models in this
comparison are very close in terms of mAP and Recall values (around 2% mAP difference
between our model and the second best model in this study based on livestock dataset results)
and qualitative comparison of these models using a few random sample images might not be
a good indication of their overall performance.
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SSD Network FS-SSD

Proposed Network

Figure 10. Comparison of small object detection between the proposed network (bottom row),
the SSD network (middle row) and the FS-SSD network (top row) on the custom livestock dataset.

Furthermore, a qualitative evaluation of the proposed model detection performance is
shown in Figure 11. The ground truth and the predicted bounding boxes are shown in blue
and red, respectively. It can be observed that the prediction bounding boxes are reasonably
aligned with the ground truth and the object in the image.

Sheep

Sheep: 0.93 Sheep: 0.61
Sheep

Figure 11. Qualitative evaluation of bounding box predictions by the proposed network on custom
livestock dataset. Blue boxes correspond to the ground truth label and red boxes are the predicted
bounding boxes.
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Table 2. The mAP, Recall, and FPS comparison of the proposed model with the state-of-the-art small
object detectors on our custom livestock dataset. Some of the general purpose object detectors have
been included in this comparison.

Model FPS Recall (%) mAP (%)
SSD300 36.50 88.20 74.80
SSD512 19.25 91.32 75.20
CenterNet++ 4.70 92.44 76.18
YOLOv3 48.95 78.23 69.40
Faster R-CNN 7.40 83.60 71.20
DSSD 10.30 93.15 76.40
FS-SSD 17.35 93.91 77.14
FF-SSD 41.36 91.01 75.93
MPFPN 2.04 86.18 72.94
EFPN 4.14 90.23 74.81
Proposed 8.75 94.10 79.12

3.4. Comparison with the Stanford Drone Dataset (SDD)

One major use case for small object detection is person detection and localization
from aerial images. Hence, we attempted to evaluate and compare our model performance
in this area. For this experiment, the Pedestrian category images from the Stanford Drone
Dataset (SDD) is considered [11]. This dataset has been used by many other researchers
for small object detection in aerial imagery. Contenders of this comparison are the same
as our previous comparison on the Livestock dataset.

The quantitative results of this comparison are shown in Table 3. In terms of Pedestrian
detection, our proposed model achieves the highest mAP of 68.71%, followed closely by
DSSD and FS-SSD with a mAP of 66.20% and 66.02% respectively. Again, general purpose
object detectors including YOLOv3 and Faster R-CNN show the lowest mAP when com-
pared to other detectors in the experiment. Among general purpose object detectors only,
once again, CenterNet++, with respective a mAP and Recall of 66.01 and 83.91, performed
the best; however, it came short when compared to small object detectors such as the pro-
posed, DSSD, and FS-SSD. In terms of Recall, DSSD with 87.26% outperformed any other
models in this comparison including our proposed model, with a Recall rate of 85.95%. In
terms of inference speed, our proposed model with an average FPS of 8.75 meets the re-
quirements of real-time detection. However, for applications such as oncoming traffic
analysis, where detection speed is critical, FF-SSD with 42.51 FPS might be the preferred
option.

Figure 12 shows a qualitative comparison of the proposed model against SSD300 using
sample images from the SDD dataset. It can be observed that the SSD300 misses several in-
stances of Pedestrian across the sample images. However, as the models in this comparison
are competing closely in terms of mAP and Recall values, qualitative comparison using
a few random sample images might not be a good indication of their overall performance.

To identify how our model performs in other similar datasets, the trained model on the SDD
dataset has been tested qualitatively for person detection on images obtained from the MONICA
project dataset [64]. Images in the MONICA dataset were captured from surveillance cameras
at various public outdoor events. Due to an insufficient number of labeled samples in this
dataset, we have only reported the qualitative comparison results mainly to demonstrate how
these models perform under different conditions and they can be adopted to different scenarios
and circumstances. The qualitative results for person detection using the MONICA dataset
are shown in Figure 13, while both models exhibit inferior results in terms of Recall compared
to what we saw in the previous experiments, the proposed model seems to have a slight
edge over the SSD in this comparison. A drop in both models’ performance was predictable,
as these models were trained on a different dataset (SDD) with a relatively different nature,
camera perspective, object scale, and lighting condition. Although this might be less than
ideal, it shows the adaptability of the proposed model to similar real-world scenarios such
as surveillance. Due to a limited number of labeled images in the MONICA dataset, we are
unable to provide statistically reliable quantitative comparison results. Furthermore, on some
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occasions, the proposed model mistakenly combines the bounding boxes of the nearby objects.
We believe this is mainly caused by the difference in the objects” scale in training (SDD) and
testing (MONICA) datasets and can be mitigated by readjusting the raw input image slicing-
factor (cropping) to equalize the average size of objects in the training dataset (SDD) and testing
datasets (MONICA).

SSD Network

Proposed Network

Figure 12. Comparison of small object detection of our proposed network (bottom row) with the SSD
network (top row) onthe Pedestrian category from the Stanford drone dataset.

Table 3. The mAP, Recall, and FPS comparison of the proposed model with state-of-the-art small
object detectors on a subset of SDD dataset containing aerial images. Some of the general purpose
object detectors have been included in this comparison.

Model FPS Recall (%) mAP (%)
SSD300 36.40 81.45 64.31
SSD512 19.35 83.58 65.24
CenterNet++ 4.72 83.91 66.01
YOLOv3 49.20 78.64 57.42
Faster R-CNN 7.40 80.75 59.60
DSSD 10.30 87.26 66.20
FS-SSD 18.05 85.88 66.02
FF-SSD 42.51 83.66 65.36
MPFPN 2.35 79.32 61.79
EFPN 4.33 82.11 63.94
Proposed 8.75 85.95 68.71

SSD Network

Proposed Network

Figure 13. Comparison of small object detection of our proposed network (bottom row) with SSD
network (top row) on a custom dataset acquired under MONICA project data.
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3.5. Ablation Studies of the Proposed Network

Ablation studies allow us to identify the impact of different modules on our model
performance and speed. These experiments were conducted incrementally in isolation
to identify how feature fusion, super-resolution, and deconvolution modules individually
and collectively improve baseline SDD300 model performance and how they impact its
inference speed in term of FPS in small object detection. The ablation study is conducted
on the livestock dataset. The results of the ablation study are shown in Table 4. In the abla-
tion study, SSD300 in the void of other modules is considered as the baseline network of our
proposed model and achieved mAP 74.80%. The first study is to evaluate the shallow layer
feature fusion model, wherein both the element-wise sum and the concatenation operations
are evaluated. The element-wise sum method improved the accuracy of SSD300 from 74.80%
to 75.70%. However, the concatenation method of feature fusion showed a slightly better
performance of 76.10%. Hence, for the remaining ablation studies of the deconvolutional and
the super-resolution modules, the concatenation feature fusion approach used as the preferred
option. In terms of FPS, there is no significant difference between the element-wise sum
and the concatenation operations and both of these techniques drop the FPS from 36.50
in the baseline SSD300 to around 22 FPS. Next, we attempted to identify how the shallow
layer feature fusion (concatenation) performs along with the super-resolution module.
The result shows improved performance of 77.20% was achieved as a result of this combi-
nation. In terms of FPS, inclusion of super-resolution module dropped the FPS from 22.42
to 17.64. The ablation study on the combination of deconvolutional and the shallow
layer feature fusion (concatenation) further improved the mAP to 77.90%, but it dropped
the inference FPS down to 14.52 only. Finally, the complete proposed model, including
the super-resolution, the shallow layer feature fusion (concatenation), and the deconvolu-
tional module, attained the best mAP performance of 79.12%; however, it slowed down
the baseline SSD300 from 36.50 to 8.75 FPS.

Table 4. Ablation study of the proposed network on the livestock dataset. Different combinations
of the feature fusion methods, super-resolution, and deconvolution were evaluated based on mAP and
FPS.

Feature Fusion Deconvolution SuperResolution mAP FPS
NA NA NA 74.80 36.50
Element-wise sum NA NA 75.70 22.86
Concatenation NA NA 76.10 2242
Concatenation NA YES 77.20 17.64
Concatenation YES NA 77.90 14.52
Concatenation YES YES 79.12 8.75

4. Discussion

UAV imagery is getting more popular than ever before with a variety of applications,
including urban planning, smart farming, search and rescue, and security and surveil-
lance. Due to many intrinsic characteristics of UAV imagery, such as high flight altitude,
top-down camera perspective, and wide-angle lenses, objects in aerial imagery appear
to have a distinctive shape and spatial properties and they usually take up a small fraction
of the entire frame, which may pose a challenge to conventional object detectors.

Many researchers have attempted to address small object detection by introducing
additional feature enhancement modules to conventional object detectors. Likewise, the pro-
posed model in this research utilizes the SSD as the baseline network and improves its
small object detection performance by incorporating deconvolution, super-resolution, and
feature fusion modules. These modifications allow better feature representation of small
objects at the prediction layer, which improves the baseline model’s mAP (IoU = 0.5)
in small object detection while retaining the requirements for the majority of real-time
applications. Figure 14 shows the speed and accuracy comparison of the proposed model
against the state-of-the-art models on the livestock dataset.
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Figure 14. Speed and accuracy comparison of the proposed method with the state-of-the-art methods
on the livestock dataset. It can be observed that the proposed model supersedes other approaches
in terms of mAP, which makes it suitable for applications where accuracy is critically important.

As can be observed in Figure 14, the proposed model trumped other models in this com-
parison in terms of mAP. Other models, such as FS-SSD and FF-SSD, also managed to deliver
reasonably good accuracy; however, their superior performance in terms of FPS makes them
a more desirable option for applications such as oncoming traffic analysis where detection speed
is critical. The proposed model can be used in applications such as precision farming, search and
rescue, and disaster management, where accuracy is critically important. The majority of the im-
ages in the livestock dataset exhibit a low-contrast scenery of greenery with distinct foreground
objects (livestock), which might skew the detection results. Hence, besides the livestock dataset,
we have tested our model performance on the Stanford Drone Dataset (SDD). The SDD is
a popular benchmark dataset used by many researchers [11,50,67,68] for (small) object detection
in aerial imagery. Again, our comparative results showed the superiority of the proposed
model over methods in the comparison. Although the focus of our comparison was mainly on
the Pedestrian category of the SDD dataset, further investigations showed that our model per-
forms equally well in some other object categories, including Bicyclist and Car on the SDD dataset.
Figure 15 illustrates this comparison.

Beside the mean average precision (mAP) with an IoU of 0.5, we have attempted
to investigate how the proposed model performs and compares with other detectors
using a challenging IoU of 0.75. As expected, we observed a significant drop in mAP
across all models involved in the comparison. Although our model is not the best per-
former in this experiment, it performs comparably with other detectors in this study and
is better than the baseline model. Figure 16 illustrates comparison of mAP with IoU
of 0.5 and 0.75 on Pedestrian category of SDD dataset across selected models in this study.
Such an abrupt drop in accuracy indicates models in this comparison are having a hard
time aligning the bounding boxes with the ground-truth labels in the regression process.
Due to the smaller size of the objects, a slight misalignment significantly degrades the area
of overlap and increases the area of union, which negatively impacts mAP.

The results of our experiments and ablation studies imply deconvolution, super-
resolution, and feature fusion modules enhanced feature representation of small objects
at the prediction layer, which results in better accuracy in small object detection. Our
proposed model not only improved the overall accuracy of the baseline SSD300 model but
also competes with some of the state-of-the-art small object detectors.
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Figure 15. Comparison between the proposed model mAP with some other object detectors
on the SDD dataset. Car, Bicyclist, and Pedestrian categories were considered in this comparison.
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Figure 16. Comparison of mAP with IoU of 0.5 and 0.75 on the Pedestrian category of the SDD dataset.

5. Conclusions

In this paper, an object detection model with the goal of improving small object detection
in aerial images is presented. The proposed model extends the SSD using the methods of decon-
volution, super-resolution, and shallow layer feature fusion. The proposed extension enhances
the feature representation of the objects at the prediction layer and leads to improved object
detection accuracy. This approach is particularly beneficial for small object detection because
with many state-of-the-art object detectors, the features of small objects are not represented
sufficiently at the prediction layer for a reliable detection. The proposed model was trained and
evaluated on two datasets: a custom UAV dataset of livestock, and the Stanford drone dataset.
The results of the experiments showed that the proposed model performs mostly better than
other object detectors considered in the comparative study. The proposed model can be used
in applications such as precision farming, search and rescue, and disaster management, where
accuracy is critically important.
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