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ABSTRACT Dietary manipulation with high-protein or high-carbohydrate content are
frequently employed during elite athletic training, aiming to enhance athletic perform-
ance. Such interventions are likely to impact upon gut microbial content. This study
explored the impact of acute high-protein or high-carbohydrate diets on measured en-
durance performance and associated gut microbial community changes. In a cohort of
well-matched, highly trained endurance runners, we measured performance outcomes, as
well as gut bacterial, viral (FVP), and bacteriophage (IV) communities in a double-blind,
repeated-measures design randomized control trial (RCT) to explore the impact of dietary
intervention with either high-protein or high-carbohydrate content. High-dietary carbohy-
drate improved time-trial performance by 16.5% (P , 0.03) and was associated with
expansion of Ruminococcus and Collinsella bacterial spp. Conversely, high dietary protein
led to a reduction in performance by 223.3% (P = 0.001). This impact was accompanied
by significantly reduced diversity (IV: P = 0.04) and altered composition (IV and FVP:
P = 0.02) of the gut phageome as well as enrichment of both free and inducible Sk1virus
and Leuconostoc bacterial populations. Greatest performance during dietary modification
was observed in participants with less substantial shifts in community composition. Gut
microbial stability during acute dietary periodization was associated with greater athletic
performance in this highly trained, well-matched cohort. Athletes, and those supporting
them, should be mindful of the potential consequences of dietary manipulation on gut
flora and implications for performance, and periodize appropriately.

IMPORTANCE Dietary periodization is employed to improve endurance exercise perform-
ance but may impact on gut microbial communities. Bacteriophage are implicated in bacte-
rial cell homeostasis and have been identified as biomarkers of disequilibrium in the gut
ecosystem possibly brought about through dietary periodization. We find high-carbohydrate
and high-protein diets to have opposing impacts on endurance performance in highly
trained athlete populations. Reduced performance is linked with disturbance of microbial
stasis in the gut. We demonstrate bacteriophage communities are the most sensitive com-
ponent of the gut microbiota to increased gut stress following dietary manipulation.
Athletes undertaking dietary periodization should be aware of potential negative impacts of
drastic changes to dietary composition on gut microbial stasis and, in turn, endurance
performance.
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Elite athletes often follow strict training and diet regimes to maximize performance.
Despite decades of research, the ongoing debate around optimal nutrition persists.

It is well established that carbohydrate utilization and exercise performance are
intrinsically linked (1, 2). For example, carbohydrate is the preferred substrate during
high intensity endurance exercise and athletes who consume a high carbohydrate diet
(HCD) can maximize endurance performance (2, 3). However, in some circumstances
reducing carbohydrate intake during periods of low intensity endurance training can
enhance performance via metabolic and cellular adaptations associated with oxidative
phosphorylation (4, 5). Dietary periodization is a concept that uses different regimes to
optimize the balance between training adaptation and performance. Athletes employ
low carbohydrate diets during physical training with the aim of enhancing adaptations
(6) before switching to HCD prior to competition to maximize energy stores, thereby
improving potential for athletic performance (7).

The implementation of high-protein diets (HPD) during training have become increasingly
popular regimes among athletes (8, 9), in part to offset carbohydrate-depleted states. Body
mass and body composition are additional factors to consider in endurance performance and
HPDs are used during training to help manage these (10, 11) and stimulate muscle growth
(12, 13). Despite the potential advantages of HPD, the impact on gut homeostasis is an area
of contention (14). In particular, the effects of HPDs on metabolism and gene expression of
both gut microbes and host epithelial cells raise questions about longer-term health.

HPDs, especially those rich in red meat, contain large amounts of sulfated amino acids
such as cysteine and methionine (15, 16). Proteolytic fermentation of these amino acids in
the distal colon is associated with microbial metabolites such as ammonia, phenols, and
hydrogen sulfide (17) which can cause damage to the gut microstructure (18) or mucosa
(19). Some phenolic compound products of protein metabolism have also been linked with
increased gut permeability (20–22). Over prolonged periods, these physiological changes
may lead to negative health outcomes. The gut microbiota plays an important role in colo-
nic protein fermentation (23), and high dietary protein consumption has been associated
with enrichment of anaerobic bacteria with proteolytic capabilities (24).

Importantly for well-trained athletes, following strict diets and rigorous training regimes,
the gut microbiota is implicated in host physiological functions. Endurance exercise is linked
to an increased bacterial diversity in the gut due to elevated stress levels (25). Similarly, there
are differences in gut bacterial communities in physically active compared to sedentary
humans (26, 27). However, these studies do not account for different diets between the
populations. This issue has been previously highlighted (26) given that athletes consumed
more total energy, fat, carbohydrate, and protein in comparison to less active controls. To
date, there are no studies that have explored the microbial communities within the gut
across microbial kingdoms in relation to dietary regimens in well-trained athletes. This is of
importance given previous work has illustrated the influence of bacteriophage (the viruses
of bacteria) as biomarkers of disequilibrium in gut communities (28). Phages are intrinsically
linked to the metabolism, stress, and activity of active bacterial communities in the gut.
Furthermore, Cronin et al. (32) identified the most descriptive part of the gut microbiota
composition of sedentary participants taking on the “couch to 5 km” running challenge was
the inducible viral fraction. Despite the potential influence of the viral component, this
remains an understudied facet of gut microbial communities, particularly in relation to diet
manipulation in highly trained athletes and the influence on human performance.

Previous work has numerous confounding factors of age, lifestyle, diet, physical ac-
tivity, and other baseline characteristics. This study focuses on a homogenous group of
well-trained runners who share baseline dietary and physical activity habits. The aim of
this study was to assess the impact of a high-protein versus high-carbohydrate diet on
performance in highly trained endurance runners while measuring associated gut
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bacterial, viral, and fungal communities. Recruiting such a well-controlled cohort ena-
bles us to highlight changes to exercise capacity and associated microbial features
associated specifically with dietary interventions. Critically to the aim of this study, diet
was rigorously controlled which enabled data to be attributable to the manipulation of
HCD and HPD.

RESULTS
High carbohydrate and high-protein diets have opposing effects on time trial

to exhaustion performance. The results of the 95% MaxSE trial are shown in Fig. 1,
expressed as relative change (%) from preintervention baseline. Further detail on the impact of
the dietary intervention on performance has been previously reported (29). Following HPD,
time trial to exhaustion (TTE) was reduced within group by 223.3% midintervention, with all
participants exhibiting decreased ability to perform (P, 0.001). Upon subsequent return to ha-
bitual dietary intake, TTE for HPD postintervention time points was comparable with preinter-
vention performance (pre:128.36 29.3 s, mid: 98.46 31.8 s, post: 125.36 32.39 s). In contrast,
a 6.5% improvement in TTE was observed midintervention in the HCD group (P = 0.05) with
seven of the eight participants improving relative to preintervention performance. TTE perform-
ance for HCD also returned to preintervention levels by trial closure (pre: 182.2 6 44.4 s, mid:
1946 45.5 s, post: 1846 38.9 s).

Poor performance in HPD is associated with changes to microbiota observable
in stool. A total of 48 stool samples from 16 participants (eight HPD, eight HCD interven-
tion), were sequenced to investigate the bacterial, viral, and fungal microbiota. Each partici-
pant provided three samples capturing pre-, mid-, and postintervention gut microbiota (see
supplementary materials for details of sequencing parameters).

Information on sample sizes and comparisons of samples and controls is available in the
supplementary materials (Fig. S1). Significant dissimilarity was observed between controls
and samples (ANOSIM: R2 = 0.99; P = 0.001; Fig. S1).

Before comparing impact of dietary interventions on microbial communities we sought
to define the baseline of bacterial diversity within the participants enrolled in this study. We

FIG 1 Illustrates longitudinal subject performance during the Max SE trial. Each point represents an individual subject through
preintervention (pre), midintervention (mid), and postintervention (post), sampling time points, colored by intervention group
(HCD = blue; HPD = pink). The line represents best fit of the linear regression model based on all subjects at that time point. The
shaded area describes the 95% confidence intervals of the linear model.
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compared beta-diversity between participant stool samples in this cohort to age-matched
males enrolled in the human microbiome project (30). Significantly lower inter-individual
variability was observed between participants enrolled within this study than those enrolled
in the HMP cohort (Adonis PERMANOVA P = 0.001, Fig. S2). These data suggest that the
highly trained athletes enrolled here harbor significantly distinct gastrointestinal bacterial
communities to that of a typical western population.

Dietary intervention had a significant impact on microbial community composition.
Significantly reduced Fisher-alpha diversity of inducible viruses was observed during
HPD intervention (KW: P = 0.04), with levels failing to return to preintervention levels
following cessation (Fig. 2) (Table S1).

FIG 2 Illustrates overall bacterial, FVP and IV communities measured at pre-, mid-, and postintervention time points for participants enrolled on both the
HPD and HPC diets. Longitudinal progression of both Fisher-alpha diversity (navy line), and observed taxonomic richness (red line), are plotted for each
community. Shaded area represents 95% confidence interval based on standard error. Microbial taxa included in the bar charts represent the 16 and 20
most abundant bacteria or viruses observed within the data sets, respectively.
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HPDs diet had the greatest impact on viral community composition while HCD diet
had the greatest impact on bacterial community composition (Fig. 3). Both free viral
particle (FVP) (R2 = 0.15; P = 0.023), and inducible virus (IV) (R2 = 0.16; P = 0.016) com-
munities were significantly altered between during HPD intervention (Fig. 3, Table S2).
Following cessation of HPD both the FVP and IV communities recovered toward prein-
tervention community compositions (Fig. 3, Fig. S3).

Taxonomic features of the microbiota are associated with dietary interventions.
Changes in viral community diversity and composition during HPD intervention is largely
contributed to by an expansion in proportional abundance of Sk1virus. This expansion of
Sk1virus is visible in both FVP and IV communities (Fig. 2).

Sparse partial least-squares regression (sPLS-DA), analysis was utilized to identify
discriminative features between habitual and HCD or HPD interventions. We combined
bacterial, FVP, and IV microbial communities to identify discriminate features between
dietary interventions. sPLS-DA highlighted strong positive correlations between pro-
portional abundances of Sk1virus and Leuconostoc bacteria, indicating both features
are associated with HPD intervention (Fig. 4a). Furthermore, Leuconostoc were nega-
tively correlated with IV Schizot4virus, which was reduced during HPD intervention in
both viral communities. Bifidobacterium spp. proportional abundance was also sub-
stantially reduced during HPD intervention.

Despite nonsignificant shifts in the overall community during HCD intervention, pro-
portional abundances of Leuconostoc were strongly associated with HCD, as in HPD.
Lactococcus and Collinsella were also both strongly associated with HCD intervention
(Fig. 4b). In contrast, Streptococcus exhibited substantially reduced proportional abundance

FIG 3 Illustrates shifts in beta-diversity of microbial communities following both HPD (pink), and HCD
(blue), interventions. Plotted are the loadings values of the primary component of principle
coordinates analysis, time point is depicted by color intensity (post-/late = dark; mid- = light; pre-/
early = lightest). The center of each box represents the median, edges extend to upper and lower
quantiles and whiskers describe the full range of data, excluding outliers, which are plotted as
individual points. Significant shifts in beta-diversity within communities are highlighted by asterisk.
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following HCD intervention. Viral features proportionally upregulated in HCD intervention
included Cc31virus which was negatively correlated with Streptococcus in both FVP and IV
communities, as well as IV Cafeteria virus. Conversely, FVP Chlorovirus and IV L5virus were
both negatively correlated with Leuconostoc and were proportionally reduced during HCD
intervention.

Combination of viral and bacterial communities enabled greater discrimination
between dietary intervention time points than using any community in isolation as evi-
denced by sPLS-DA (Fig. S4).

Gut microbial taxonomic stability is associated with greater performance. Participants
were stratified in to “responders” and “nonresponders” based on percentage change in
TTE performance recorded during mid-intervention tests for both HCD and HPD. Based
on the results of the linear model (Fig. 1), “responders” were classified as those subjects
for which TTE increased more than expected during HCD (n = 4) or reduced more than
expected during HPD (n = 4) intervention. Likewise, four participants were classified as
“nonresponders” in both the HPD and HCD interventions.

Combined microbial communities were employed to identify relationships between
gut microbial communities and athletic performance during both dietary interventions.
Subject variance was used as a measure of microbial stability within individual partici-
pants. Microbial communities of improving performers in the HCD intervention were
far more stable over time exhibiting lower within-subject community dissimilarity than
subjects who did not improve. These observations were coupled with maintenance of
a subject-specific gut microbiota in HCD improvers. Nonimproving subjects on the
HCD were less distinguishable from one another (Fig. 4, Fig. S3). In contrast, subjects in
the HPD with reducing performance exhibited greater microbial turbulence with big-
ger shifts in gut communities across the study and lower subject-specificity (Fig. 5,
Fig. S3). These results suggest that athletic performance may be linked with gut micro-
bial stasis, where athletes harboring stable microbial communities consistently per-
formed best in each dietary intervention compared to those with a more turbulent gut
microbiota.

Assessing gene function in gut microbial communities and inferring impact on
athletic performance. Better performance during dietary periodization was observed
in participants with greater gut microbiota taxonomic stability. We explored whether

FIG 4 Shows potential biomarkers of both HPD (a) and HCD (b) dietary intervention as identified by sPLS-DA. Significant positive (red), and negative
(black), correlations with R2 values . 0.6 between features of each community are highlighted by lines joining nodes of bacterial (blue), FVP (green), and IV
(red) nodes, forming the outside of the circle. Proportional abundance of each feature is illustrated by external lines colored by time point as in Fig. 2.
Effect sizes of each individual feature per community are highlighted in the loadings plot and are colored by the same logic as proportional abundance.
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this was related to functional capacity of the microbiota by interrogating metagenomic
data. A total of 12,581 viral orthologous gene (VOG) functional genes were identified
across all 48 samples (median 287984, IQR 233105 to 372302). VOG functional genes
were grouped into high level classifications as explained in Text S1. Large percentages
(up to 75%) of the viral genes identified during this analysis were either hypothetical,
putative or unclassifiable by alignment to the VOG database (Fig. 6a). Minor expan-
sions in abundance of temperate viral genes associated with host metabolism were
observed during HPD intervention. Genes associated with viral structure were margin-
ally more proportionally abundant during the HCD (Fig. 6a). Percentage change from
baseline of functional gene richness and dominance was not different (P. 0.05) across
either temperate or lytic viral fractions between responders and nonresponders. HCD had a
general, though nonsignificant, reducing effect on IV richness (Fig. 6b). Participants who per-
formed best at TTE on the HCD diet, however, recovered from this loss of functional richness
whereas nonimprovers continued to suffer reductions in IV functional richness even after
intervention cessation (Fig. 6b). Up to a 17% reduction in functional gene dominance was
observed in IV-HPD responders and up to 53% reduction in FVP-HCD responders (Fig. 6c),
though these differences were not significant. Several significantly differentially abundant
pathways (q , 0.25) of bacterial metabolism were observed between responders and

FIG 5 Illustrates within and between subject variance based on Bray-Curtis of combined bacterial, FVP and IV community dissimilarity for participants
enrolled in either the HCD (blue), or HPD (pink), interventions. Within subject variance explains the dissimilarity between samples from one individual
across all three sampling time points. Between subject variance explains the dissimilarity between samples from different individuals enrolled on the same
dietary intervention. Subjects are stratified in to “unaffected” (dark colors), or “improved” and “reduced” groups (light colors), dependent on TTE
performance changes within each dietary group. Each point represents variance calculated for an individual subject. Box edges describe the upper and
lower quartile ranges while the median is depicted by the central line. Whiskers extend to the full range of data points, excluding outliers.
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nonresponders to both dietary interventions by Maaslin2 analysis (Fig. 6d). Many of these,
including inositol degradation, thiazole biosynthesis and NAD salvage/biosynthetic path-
ways are directly related to carbohydrate utilization. Similarly, to the results of taxonomic
analyses, we observed greater change in overall FVP community composition in participants
whose performance at TTE was reduced during HPD intervention (Fig. 6e). Additionally,
HCD improvers had greater functional community stability in the IV compartment than their
nonimproving counterparts (Fig. 6f). Results of functional and taxonomic analyses did not
match for FVP HCD or IV HPD cohorts.

DISCUSSION

This study investigated the influence of two dietary strategies commonly used by
athletes on gut microbiome populations and the subsequent impact on running per-
formance. This study is the first to illustrate the impact of short-term, highly controlled
HCDs and HPDs on the performance of well-trained endurance athletes. This study
showed new data that isocaloric, high-protein diets in highly trained athletes resulted
in reduced running performance that was correlated with alterations in gut viral com-
munities. Importantly, changes in the viral communities represent a more sensitive

FIG 6 illustrates functional gene compositions of samples. Functional composition across each time point is represented as relative abundance of
functional gene classes (a). Changes in functional gene richness (b) and dominance (c) is also presented across sampling time points, stratified by
responder status. Each point represents an individual sample and is colored by diet (pink = HPD; blue = HCD). Significantly differential gene features as
identified by Maaslin2 are represented by individual bubbles, colored by differential coefficient and stratified by diet (d). Significance (q value) is
represented by size of the bubble. Circles represent bacterial gene pathways while diamonds represent viral genes. Associations between microbial
functional composition and performance during dietary intervention in FVP (e), IV (f), and bacterial (g) compartments are represented by box and whisker
plots, as in Fig. 5.
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marker of gut stress during dietary intervention than bacterial community analysis
alone.

Previous studies have explored changes in the gut microbiota of active versus sedentary
individuals finding greater taxonomic (25, 27) and metabolic (26) diversity in active individu-
als. Additionally, other investigations highlighted the impact of differing levels of dietary
protein (24), and carbohydrate (31) on the gut microbiota. These studies focus specifically
on gut bacterial communities. However, as highlighted by, Cronin et al., bacteriophage com-
munities can also be implicated in physical performance (32). Here, we utilized a modified
approach, stratifying both free and chemically induced lysogenic phages to assess the
impact of dietary periodization on each component individually. This current work has iden-
tified alterations in viral communities because of dietary change in well-trained athletes.
Importantly, this study employed a blinded dietary intervention that was very tightly con-
trolled, and in a highly trained cohort. Consequently, we identified association between the
shifts in both bacterial and viral communities in the gut and athletic performance. We were
able to discount any variability arising from confounding factors of diet and exercise that
exist in previous work by having a well-controlled dietary regimen and homogenously
active volunteers. For example, this study cohort harbored distinct gut bacterial commun-
ities to that of average human western populations; this was determined by comparison of
beta-diversity between stool samples from this cohort and those collected from similar
aged males participating in the human microbiome project (Fig. S2) (30). This in turn ampli-
fies the impact of dietary manipulations for even relatively short (7 day) periods.

Of interest to well-trained endurance populations, these data showed that a high-
protein diet for 7 days, alongside endurance training, significantly reduced running
performance. This manifested as a dramatic 223.3% reduction in mean TTE across par-
ticipants in the HPD trial arm. Conversely, improved TTE was observed (16.5%) in ath-
letes on the HCD, which is understandable given the large body of evidence showing
high carbohydrate availability is conducive to endurance performance (2, 3). In support
of this expired gas analysis performed on this cohort during the 10 km TTE showed
there was a greater reliance on fat oxidation following HPD (data previously reported
[33]), likely due to lower carbohydrate substrate availability as opposed to the greater
use of carbohydrate oxidation. Collectively, these data further illustrate the benefit of
HCD for endurance performance in well-trained athletes.

In this study the implementation of a HPD had a greater impact on the viral compart-
ment while HCD had a greater impact on the bacterial microbiota. Increased dietary protein
content was associated with reduced IV taxonomic alpha diversity and functional gene
dominance, reduced FVP richness, and marked shifts in community compositions of both in-
ducible and free viruses which we hypothesize relates to phage induction, through selective
pressure on the bacterial population. Community shifts in both IV and FVP populations
were attributable to an expansion in the relative abundance of Sk1virus observed in stools.
Sk1viruses are members of the Siphoviridae, which were found to be significantly enriched
during HPDs previously (34). Additionally, we found the abundance of Leuconostoc bacteria
to be positively correlated with Sk1virus during HPD intervention. We propose this is a func-
tion of a predator-prey expansion relationship as Sk1virus are members of the 936-type
phage that show broad-range infectivity within the Lactobacillales, of which Leuconostoc are
a member (35, 36). The co-occurrence of these microbes in individuals consuming HPD may
be due to supplementation with proteins derived from whey as these microbes are highly
abundant in and associated with fermentation of dairy products (37).

Elevated carbohydrate intake in this study was not associated with the same changes in
gut viral communities observed in HPD, but instead had an impact on bacterial community
compositions through expansions of Collinsella & Ruminococcus spp. Collinsella have previ-
ously been correlated with high levels of circulating insulin (38) and have broad dietary car-
bohydrate metabolizing potential (39). Ruminococcus are well-known degraders of resistant
starch in the human gut (31, 40). We propose that the enriched bacterial populations
observed during HCD in this study occurred as a direct impact of the increased substrate
availability associated with enhanced carbohydrate volumes in the diet. Large shifts in
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bacterial taxonomy observed in this study correlated with large numbers of differential func-
tional pathways identified in inferred metagenomes. HCD nonresponders failed to recover
from loss of IV functional richness following cessation of dietary intervention which may
point to links between a lack of functional plasticity and poor performance during HCD
intervention. Conversely, the expansion in both inducible and free viral taxonomic commun-
ities identified in the HPD may be a result of greater bacterial cell stress in the gut environ-
ment due to a lack of fermentable substrate (carbohydrate) in the HPD and highlight the
potential negative impacts of HPD.

Analysis of responders and nonresponders to the dietary interventions provide evi-
dence of these proposed differences. For example, responders to the HCD exhibited
greater improvements in TTE performance than nonresponders. This improvement was
associated with markedly greater taxonomic microbial community stability and mar-
ginally greater functional stability of inducible viruses. In contrast, participants whose
performance was affected by the HPD performed significantly worse than their peers.
This is reflected in the greater change in overall taxonomic communities and FVP func-
tional communities because of the intervention. Maintenance of a subject-specific
community and reduced longitudinal variation was observed in athletes who per-
formed better during dietary periodization. Changes in gut communities were associ-
ated with lower TTE performance in both dietary interventions. Athletes undergoing
dietary periodization with the aim of improving performance would likely benefit from
greater gut microbial stability. This is the first time such a phenomenon has been
described, and in practical terms may have significant implications for nutrition strat-
egies for training and performance. Constant shifts in dietary intake result in instability
of the microbial communities. Athletes that alternate between strict dietary regimes
may be more likely to cause microbial instability which may impact performance.

Limitations of this study include the relatively small sample size, lack of mechanistic analy-
sis to link changes in microbial communities more definitively to performance, and the inabil-
ity to guarantee participant compliance to dietary intervention. However, diets were rigorously
controlled and training stimuli were maintained between cohorts, enabling high confidence
of trial protocol compliance. This work provides a rare insight into the potential flux experi-
enced in athletes that might engage in dietary periodization and the implications it might
have on performance. We performed metagenomic sequencing of viral communities which
enabled us to characterize functional genes encoded in the FVP and IV compartments.
Unfortunately, the high number of genes reported with unknown function in virus genomes
means that databases searches have limited utility. Up to 75% of genes identified in this study
aligned to gene targets of unknown or hypothetical function in the VOG database. Future
studies should attempt to explore functional characteristics of the viral microbiota, specifically
that of bacteriophage, which can have a large impact on bacterial communities in the gut.
Furthermore, the functional annotation of bacterial genes performed here was based on
inferred metagenomes, predicted from 16S sequencing data. Links between functional plastic-
ity within the gut microbial community, resilience to dietary change and athletic performance
should be further explored in larger, metagenomic community analyses. Isolation of gut
microbes to characterize carbohydrate and protein substrate utilization of microbial commu-
nity members, particularly lysogens, would further confirm the hypotheses formed during this
study.

Conclusion. This study provides new insights into dietary manipulation in athletic popu-
lations. Gut microbial stability was associated with greater athletic performance when highly
trained individuals underwent dietary periodization. Implementation of an acute high-protein
diet resulted in compromised athletic performance in individuals with less stable gut micro-
biota. We propose this observation is attributable to increased stress within the gut environ-
ment. Viral populations provide high sensitivity to determine gut stress and could be used as
a marker of microbial instability in future studies. Short-term high carbohydrate diet improved
athletic performance and was characterized by subtle alterations to the gut microbiota. Stable
microbial communities were associated with better performance. Subjects consistently per-
formed better during physical tests when microbial communities remained relatively
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unchanged throughout dietary periodization. Athletes, and those supporting them, should be
mindful of the potential consequences of altering diet on performance and gut flora and peri-
odize dietary intake (particularly macronutrient distribution) appropriately.

MATERIALS ANDMETHODS
Study design and cohort characteristics. This study was conducted in accordance with the

Declaration of Helsinki (2013) and was approved by the University of Hertfordshire Life and Medical
Sciences Ethics Committee (protocol number LMS/PGR/UH/02227). To be considered, participants were
required to be “highly trained” endurance athletes and not taking any dietary supplements before or
during the trial period (see supplementary materials for detailed inclusion criteria). A minimum of six
participants were required per trial arm according to power calculation assessment for sample size
(G *power3, Dusseldorf) using a = 0.05; 1 2 b = 0.80 based on previous exercise data. Twenty suitable
participants were recruited, providing written informed consent (Table 1), with four not completing the
study for reasons unrelated to the trial.

In a double-blind, parallel group, repeated-measures design, participants were randomly assigned to either
isocaloric HPD (40% protein, 30% carbohydrate, and 30% fat macronutrient distribution) or energy-matched
HCD (10% protein, 60% carbohydrate, and 30% fat macronutrient distribution). While participants remained
blinded to which trial arm they were assigned, due to the nature of dietary intervention, we could not blind
food items. Further information about diet composition is available in supplementary materials. Participants
attended the laboratory on four separate occasions to undertake performance testing and provide samples for
microbiota analysis. After a rest day from exercise, no morning physical exertion, and following a minimum 4-
h fast, participants arrived at the laboratory via the same mode of transport at the same time each visit. Visits
were preceded by 7 days of either habitual or prescribed intervention diet (Fig. 6, and Fig. 7). Participants were
requested to maintain training regimes throughout the duration of the study as previously reported (29).

Participants collected their first stool of the day which was transferred to 280°C storage within a maxi-
mum of 2 h of passing and remained there until analysis. Participants then completed a 10 km steady state
run at 70% V²O2max, had 5 min rest then completed a maximum effort at 95% V²O2max effort until volitional
exhaustion (also known as time trial to exhaustion [TTE]). Further details of sample collection and TTE are avail-
able in supplementary materials.

Control of dietary intake. A 3-day food diary (2 weekdays and 1 weekend day) was used to assess
habitual dietary intake prior to visits 2 and 4. During the study briefing participants were instructed how
to complete the food dairy and provided with a comprehensive example. The importance of accuracy
and detail were emphasized, as was the importance of maintaining current dietary habits. All food dia-
ries were analyzed by the same researcher using dietary analysis software (Nutritics, Dublin, Ireland).

Individual energy intake for the intervention diet was prescribed to match energy expenditure and
was calculated using basal metabolic rate (BMR) multiplied by a physical activity factor (PAF) (described
in detail in supplementary materials). A total of 34 diet plans (17 HCD, 17 HPD) were formulated by the
investigative team, ranging from 1,800 kcal�d21 to 4200 kcal�d21. Participants were assigned the diet
closest to their calculated interventional energy intake. An additional 500 kcal�day21 macronutrient-

TABLE 1 Baseline physical characteristics of study participants

Group
Age
(yrs)

Height
(cm)

Body mass
(kg)

Absolute V²O2max
(L �min21)

Relative V²O2max
(mL�kg21�min21)

HPD (n = 8) 256 3.6 179.46 6.4 69.56 3.3 4.386 0.35 63.16 4.8
HCD (n = 8) 276 5.0 181.66 3.5 67.66 6.1 4.396 0.28 65.36 6.4

HPD, high-protein diet; HCD, high-carbohydrate diet. No differences were observed in baseline participant
characteristics according to allocated starting group (mean6 SD) (p. 0.05).

FIG 7 Illustrates the method design employed in this study.
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matched meal was provided to ensure participants remained in a positive energy balance during the
intervention week. Water was available ad libitum, but participants were requested to abstain from
drinks containing caffeine or additional energy. The mean dietary intake for both prescribed diets is
shown in Table 2.

Assessment of training volume. To ensure any observed changes were due to the intervention diet
and not a due to change in training volume, the same weekly training program was followed by each
participant throughout the experimental period. Training sessions were logged and submitted online
with GPS smartwatches provided to each participant (Garmin Connect, Garmin Ltd., Schaffhausen,
Switzerland).

Isolation of gut microbial DNA. Stool samples collected during each lab visit were defrosted and
homogenized in 3 mL of ice cold, sterile 1x Phosphate buffered saline (PBS) then allowed to settle for 5
min. Also, 1 mL supernatant was sub-sampled for viral community analysis. The viral sub-sample was
processed as per modified protocols previously described (41). Briefly, the sub-sample was centrifuged
at 4,000 rpm and 4°C for 10 min. The supernatant was used for free viral particle (FVP) analysis and
the pellet used for inducible virus (IV) community analysis. The IV pellet was resuspended in 1 mL sterile
1x PBS and incubated with norfloxacin at 1 mg/mL for 1 h at 37°C. The incubated pellet was then centri-
fuged at 4,000 rpm and 4°C for a further 10 min and the supernatant taken for DNA isolation.

Prior to isolation of FVP, IV, and bacterial and fungal DNA, all samples were treated with of 1 mL
TURBO DNase and 1 mL RNase Cocktail (Life Technologies, CA, USA) to deplete any free DNA in solution.
Treatment consisted of 30 min at 37°C before inactivation at 65°C for 1 min in 15 mM EDTA. Viral DNA
was extracted as per manufacturer’s instructions using NORGEN Phage DNA Isolation Kits (Geneflow
Limited, Lichfield, UK). Bacterial and fungal DNA was isolated from the remaining homogenized stool fol-
lowing removal and processing of the 1 mL viral supernatant using DNEasy PowerLyzer PowerSoil DNA
Isolation kits (Qiagen, DE), as per manufacturer’s instructions.

Sequencing and processing of gut microbial DNA. All sequencing was performed by NUOmics
(Newcastle, UK). Viral DNA metagenome sequencing libraries were processed via the Illumina Nextera XT
prep (Illumina, Saffron Waldon, UK). Libraries were sequenced on the Illumina MiSeq using V3 2 � 300 bp
chemistry. Viral sequence reads were trimmed and quality filtered using Trimmomatic (42) and Sickle (43).
Sequences homologous to the human genome were culled using KneadData in the bioBakery environ-
ment (44). Taxonomic assignment was achieved by aligning sequences against the NCBI nr database using
a kmer size of 20% and 70% identity threshold with blastn (45). Lowest common ancestor and relative
abundances were calculated in MEGAN6 (46). Functional annotation of viral sequences was performed by
aligning sequences to those in the VOG database (https://vogdb.org, accessed 6/12/21) using default
VIBRANT (47) parameters. Normalized abundance of identified VOGs per sample was calculated using bwa
mem (48), samtools (49), bamtools (50), and bedtools (51). To discriminate between multiple target align-
ments of a single sequence against the VOG database, a hierarchical preference criterion was applied.
Firstly, actual classifications were preferred over putative ones. If multiple actual classifications were pres-
ent for a single sequence, greater VIBRANT outputted V.score was preferred, followed by lower E.score.
Custom R scripts merged feature counts per sample to create feature tables for statistical analysis.

Bacterial and fungal DNA amplicon sequencing libraries were prepared as per the Schloss protocol
(52). Bacterial amplicons targeted the V4 region of the 16S rRNA gene while fungal amplicons targeted
the ITS1 and ITS2 regions of rRNA spacer genes. Both bacterial and fungal libraries were sequenced on
the Illumina MiSeq using V2 2 � 250 bp chemistry. Taxonomic assignment of bacterial and fungal
sequence reads was performed in Mothur (53). Briefly, paired end reads were trimmed, merged, quality
filtered, and clustered into de novo operational taxonomic units (OTUs) using the OptiClust method (54).
OTUs were aligned to SILVA (bacterial [55]), and UNITE (fungal [56]), databases to determine taxonomy.
PiCrust2 (57) was used to infer functional metagenomes from, chimera filtered, 97% homology bacterial
OTU reference sequences classified using “ready-to-wear” classifiers specific for human stool commun-
ities (58, 59) by aligning to the Greengenes (13_8) database (60) in QIIME2 (61).

All raw sequencing data is freely available at European Nucleotide Archive (ENA) under study acces-
sion PRJEB45703.

Statistical analysis. Statistical analyses were performed using R (62). Normality of data was verified
by the Shapiro–Wilk test. Kruskal-Wallis rank-sum test (KW) was used to compare means of continuous
data. Where appropriate, a Bonferroni post hoc test was used.

Alpha diversity of microbial communities was assessed by richness, diversity (Fisher-alpha), and
dominance (Simpson) metrics while beta diversity was assessed by Bray-Curtis dissimilarity for taxo-
nomic analyses and Canberra distance for functional gene composition analyses in the vegan package
(63). All taxonomic diversity metrics were calculated at the genus level. Adonis PERMANOVA was used

TABLE 2 Calculated, prescribed dietary intake (mean6 S.E.) and macro-nutrient breakdown for each group during the 7-day intervention
based on estimated energy requirements

Group

Energy intake Carbohydrate Protein Fat

Kcal�d21 Kcal�kg21�d21 g�d21 g�kg21�d21 g�d21 g�kg21�d21 g�d21 g�kg21�d21

HPD 31856 84 486 1.2 2396 6.3 3.46 0.9 3196 8.4a 4.66 0.1a 1066 2.8 1.56 0.04
HCD 32816 69 496 1.0 4926 10.4a 7.36 0.1a 826 1.7 1.26 0.03 1096 2.3 1.56 0.03

HPD, high-protein/reduced carbohydrate diet (40/30/30 – protein, carbohydrate, fat ratio); HCD, high carbohydrate/typical protein diet (60/10/30 – carbohydrate, protein,
fat ratio).
aDenotes significantly more intake (p, 0.05).
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to identify metadata variables significantly impacting community compositions utilizing the “strata”
function to account for repeated measures. Microbial stability/change was assessed using calculated
subject variance, being the average range of loadings values from the primary principal component of
dissimilarity between microbial communities from a single trial participant over time. Discriminatory fea-
tures of combined bacterial and viral microbiota between intervention time points were identified by
sparse partial least-squares regression based on combined bacterial, FVP and IV communities. The model
was tuned to prune noninformative variables using the DIABLO method (64). Significantly differential
features within functional gene analyses were identified using Maaslin2 (65). Phyloseq (66), mixOmics
(67) and ggplot2 (33) packages were used to visualize data. STORM checklist: https://zenodo.org/record/
6530945#.YnjV0FzMLAg.
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