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Abstract The generation of active power in renewable

energy is dependent on several factors. These variables are

related to the areas of weather, physical structure, control,

and load behavior. Estimating the future value of the active

power to be generated is difficult due to their unpre-

dictable character. However, because of the higher preci-

sion required of the estimation, this problem becomes more

complex if we examine a short-term temporal prediction.

This study presents a method for converting stochastic

behavior into a stable pattern, which can subsequently be

used in a short-term estimator. For this conversion,

K-means clustering is employed, followed by Long-Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU)

algorithms to perform the Short-term estimate. The envi-

ronment, the operation, and the generated (normal or

faulty) signal are all simulated using mathematical models.

Weather parameters and load samples have been collected

as part of a dataset. Monte-Carlo simulation using

MATLAB programming has been realized to conduct an

experiment. In addition, the LSTM and the GRU are

compared to see how well they perform in this system. The

proposed method’s end findings outperform the current

state-of-the-art.

Keywords Renewable energy � Smart home � Short-term
prediction � Stochastic behavior � Deep learning

1 Introduction

A smart grid is an electricity network enabling a two-way

flow of electricity and data with digital communications

technology. This gives the ability of monitoring, managing,

and automatic decision-making. Besides, smart grid uses a

wide range of resources based on information technology

techniques to enable new and existing guidelines in mini-

mizing energy costs and reducing electricity wastes.

According to Ali et al. (2013), the smart grid is one of the

most complicated and largest systems considering the

design and building processes, although it is one of the

easiest to use. It uses all kinds of power plants (including

hydro, solar, coal, nuclear, wind turbine, and natural gas,

among others), substations, transformers, and high-voltage

transmission lines (Hasan et al. 2019), therefore, there is

the need for a demand-responsive electrical grid with high

efficiency of energy use. The traditional grid uses a one-

way limited interaction, in which power flows to the con-

sumers from the power plant. In contrast, the smart grid

introduces a two-way interchange in which involve the

exchange both information and electricity, in both direc-

tions (between consumer and power utilities). The growing

network of computers, automation, control, and commu-

nications are instrumental in making the grid ‘‘greener’’,

more reliable, more secure and more efficient (Hasan et al.

2019).

These grids could provide a rich dataset that could be

used for analyzing and monitoring their activities, but these

could also be used to provide an opportunity to use this

data in different applications as well, such as using them

for sensor data (Jakkula and Cook 2007).

This data could be useful when being set to work with

different aspects or dimensions of SmartGrid such as

integration with renewable energy sources, management of
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intermittent power supplies, real-time data responses as

well as the energy pricing strategies among others (Jakkula

and Cook 2007). As such, it becomes a necessity that we

would develop the right tools and methods which could

help in conserving the energy by gathering the data from

the smart grid using sensors which could then be used to

recognize patterns from previous data and forecast or

predict in order to conserve energy in the smart grids.

Some of the algorithm that could be used for prediction

which are related to deep learning algorithms like Long-

short term memory (LSTM), Recurrent Neural Network

(RNN), Gated Recurrent Unit (GRU). In this work, the

used predictor is the most efficient one of them, in terms of

accuracy and delay.

LSTM is an RNN variant that is meant specifically for

time series data. The LSTM is used in addressing this

problem in addition to empowering RNNs algorithms using

internal memory cells (Li et al. 2020).

RNNs are a form of neural networks that adopt the

feedback connections in various nodes in remembering the

previous time steps values. As such, they can capture the

time series data’s temporal behaviour. (Tealab 2018).

GRU is a kind of gated RNN which is largely used in

mitigating the gradient vanishing problem of RNNs using

gating mechanism in addition to making the structure

simpler without interfering with the effect of LSTM neural

network (Luo et al. 2021).

GRU addresses the vanishing gradient problem, which

are the values used in updating network weights. Accord-

ing to (Agarap 2018), GRU can solve this problem using

two gates, the rest gate and the update gate. The gates are

instrumental in deciding the information that is allowed to

pass to the output in addition to having the ability to be

trained for retaining information from farther back, thus

allowing it to pass relevant information through a variety of

events for making better predictions.

However, since these prediction methods are based on

regression techniques, which tries to find a common pattern

for the historical samples to use it to predict the future

values. Considering our application, the historical samples

from the energy generators and also the load of the smart

city, may not have a constant pattern. This is due to the

stochasticity behavior of the environment. Therefore, in

order to convert this dynamicity to a static pattern, in this

work, K-Means clustering algorithm is used.

K-means clustering algorithm refers to a simple unsu-

pervised learning algorithm used in solving clustering

problems which is useful in clustering analysis. According

to (Xu et al. 2020), the algorithm is applied using certain

procedures that classify a certain set of data into clusters

defined by the letter ‘‘K.’’

Although several works have tackled the problem of the

prediction in the SmartGrid context, most of these works

focus only on the long-term prediction. The advantage of

the long-term prediction is in bringing long-term strategy

and planning, However, the methods that are currently used

for this task provides in accurate predictions. On the other

hands, short and very shorts terms predictions are impor-

tant for the real-time control of the SmartGrid which

requires real-time information from the real load and the

natural resources in addition to the physical structure of the

solar panels. Moreover, providing an accurate short-term

prediction for the generated energy is also a challenging

problem. This is due to the fact, that the amount of gen-

erated energy depends on several parameters, from the

physical components of the unit to the weather conditions.

All these parameters are totally stochastic and do not fol-

low any accurate pattern.

Our methodology in this work is to convert the

stochastic behavior of the attributes into an accurate pattern

using a clustering algorithm (i.e., K-Means). This allows us

to be able to identify their fitting curve and use a suit-

able regression-based algorithm (i.e., LSTM and GRU) for

an accurate short-term prediction.

The main objective of this work is to propose a method

that allows enhancing the accuracy of the short-term gen-

erated power prediction for the SmartGrid environment.

The main contributions to the existing body of

knowledge that this study will make include:

1. Identify the most useful factors that affects the

accuracy of the Smart Grid short term prediction

process.

2. Implement a model (or a combination of already

existing models) for recognizing patterns of failure in

the Smart Grid.

3. Identification of the best deep learning algorithm to

mine data from a synthetic testbed.

4. Proposing a solution to provide a comparatively

enhanced prediction results using unpattern-able

(highly dynamic and stochastic) data.

5. Providing a solution that enhances the protection level

for smart grid dynamic environment against failures.

6. Providing an accurate future value for the short-term

prediction in a relatively faster processing time.

2 Literature review

Efficient delivery of energy resources to the smart grid

requires a balanced energy demand and supply by devel-

oping energy resource management strategies. However,

the significant fluctuations in energy demand and supply

enhance the challenges in the development of these energy

resource management schemes. This problem has been

tackled using different approaches.
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For instance, this work (Yu et al. 2015) developed

several approaches to predict energy supply and demand

effectively. The study then develops machine learning-

based methods for accurate energy consumption and gen-

eration forecasts. Lastly, the study used the prediction

results to establish energy consumption upper and lower

bounds realizing optimal demand and anomaly detections.

The problem is the smart meters acquire large amounts

of data through sophisticated signal processing algorithms.

The methodology will be applied in the study for it will the

first develops a new classification scheme that categorizes

users based on their consumption patterns. The study will

then test the proposed and benchmarked models. Addi-

tionally, this research uses semi-Markov models to gener-

ate more extensive and more realistic test data due to

insufficient power consumption data. (Tornai et al. 2016).

The problem is electrical load prediction is a funda-

mental factor in the planning, operations, and resource

management within the grid system. The numerous

restructurings of the grid and the integration of new devices

to the grid heighten the need for forecasting to better plan

for energy supply and demand. The methodology will be

applied in the study for it will the first proposes a prediction

model capable of predicting load data. Additionally, the

study assesses the prediction model’s performance and

effectiveness against several metrics. (Chemetova et al.

2017).

The problem is difficulty in harvesting various renew-

able energy forms led to the use of the smart grids inte-

grated with photovoltaic (PV) power. However, various

atmospheric conditions, for instance, rain, affect solar

irradiance occurrence. This solution proposes the adoption

of wavelet transform and Elman Neural Network (WT-

ENN) for short-term solar energy production and irradiance

forecasting. The methodology, the first decomposed the

original solar irradiance data into consecutive

stable wavelet sub-series. Additionally, the study used

ENN to optimize the new wavelet coefficients. Lastly, the

study reconstructed solar irradiance using the prediction

model and the new coefficients. The prediction model’s

performance was then assessed using two real-world data

solar irradiance datasets. (Huang et al. 2019).

The problem is Smart grid systems allow consumers to

use more energy from the grid or vend it back to the grid

for other consumers. Smart homes with photovoltaic sys-

tems can establish the daily energy yield. This solution

recommends the use of multi-layer perceptron based on

photovoltaic forecasting on rooftop PV systems. The

methodology will be applied, the first suggests the use of

multi-layer perceptron-based PV forecasting. The study

then trains its historical data, conducts cross-validation,

and tests the model using real-world PV data. (Parvez et al.

2020).

The problem is emergence of smart grids offers better

integration of power systems between energy producers

and consumers. The bidirectional nature of these smart

grids calls energy consumption optimization measures to

maintain the grid’s reliability and supply–demand balance.

The solution evaluates the available short-term energy

consumption prediction models to determine next-day

energy consumption forecasts at one-hour intervals realiz-

ing a 24-point forecast. This methodology conducted a

thorough assessment of various high-level machine algo-

rithms adopted to forecast and evaluate the various model

instances to determine the most appropriate algorithm for

energy consumption forecasting. (Petrican et al. 2018).

The problem is Efficient energy delivery in the smart

grid requires adopting energy resource management

strategies that balance energy supply and demand. This

solution proposes several techniques that accurately model

and predict energy production and demand over time.

Similarly, the study recommends modeling analyses that

statistical output models of energy consumption and

machine learning approaches improve prediction accuracy.

The methodology, the first the statistical distribution of

real-world meter reading data of several houses for over

200 days acquired from Stanford University. (Yu et al.

2014).

The problem is several countries continue to record an

increase in their solar power capacity connections to the

distribution grids. Adopting the smart grid concept has

since contributed to this increase. The solution study sug-

gests a new forecasting model that uses autoregressive

models and gradient boosting algorithms. Such promote the

alleviation of these constraints and result in point and

probabilistic solar power forecasts for medium voltage and

low voltage distribution stations. The methodology, the

first proposes a model that overcomes the information and

communication technology (ICT) limitations to promote

solar energy forecasts at secondary substation levels. It

then combined the values obtained from various distributed

sensors. (Bessa 2014).

The problem is various new technology appliances that

consumers currently use in their households overwhelm the

existing smart grid infrastructure as they were initially not

developed to support these devices. This solution proposes

the implementation of various methods energy providers

can improve their energy consumption forecasts for

households despite their variability in electrical appliance

usage. The methodology, the first assesses the existing

prediction models ad their significance. It then describes

various modeling techniques that assess the existing sta-

tistical approaches and machine learning algorithms.

(Lauer et al. 2019).
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3 Analytical analysis

To realizes our proposed solution, we need first to identify

the environment model, which in this case includes a

photovoltaic grid. Then the process of generating the

energy depending on the physical structure and the weather

conditions in addition to the generated signal need to be

modelled and then simulated. After this, the generated data

are clustered using the K-means clustering algorithm.

Finally, LSTM and GRU are used to provide the short-term

predictions.

3.1 Environment and PV model

The earth rotates around the sun approximately 8766 h

about 365.242 days. Earth is closest to the Sun (147 mil-

lion km) on January 2, and this point is called perihelion.

Specific point on earth aligned with sun position. It’s

determined by two angels; they are altitude angle (a) and
azimuth angle hs

The altitude angle is the angular height of the Sun is

measured from the horizontal. The altitude angle can be

given by:

sina ¼ sinLsindþ cosLcosdcosx ð1Þ

where,

L: attitude of the location

d: Angle of declination

x: Hour angle.
The declination angle is between Earth Sun vector and

equatorial plane its calculated degree, arguments to trig

function noted in radian mode.

ð2Þ

Noted hour angel x is the angular displacement of the

sun local point is given by:

x ¼ 150 AST� 12hð Þ ð3Þ

AST the true daily motion of solar time is given by a

daily apparent solar motion of true observed sun. AST is

constructed on the actual solar day. The two interval falls

between two consecutive returns of local meridian and the

sun. Solar time is illustrious as,

AST ¼ LMT þ E0T � 40= LSMT � LODð Þ ð4Þ

LMT : Local meridian time

LOD: Longitude

LSMT : Local standard meridian time

E0T : Equation of time.

AST : Apparent solar time

The LSTM is a reference meridian used for a particular

time zone, used for Greenwich Mean Time.

LSTM is given by:

LSMT ¼ 150TGMT ð5Þ

The E0T is the difference between apparent and mean

solar times, both taken at a given longitude at the same real

instant of time.

E0T is given by:

EoT ¼ 9:87sin 2Bð Þ � 7:53cosB� 1:5sinB ð6Þ

where,

B can be given by;

B ¼ 2p
365

N � 81ð Þ ð7Þ

where,

N: Day number defined as the number of days elapsed in

a given year up to a particular date.

Angular displacement of the Sun reference line from the

source axis. The azimuth angle can be given by:

sinh ¼ cosdsinx
cosa

ð8Þ

The solar source model is to estimate the emitted radi-

ation from the Sun. The function of the temperature is

described as radiant energy of emitting objects.

We associate radiating energy to the blackbody. A

blackbody is defined as a perfect absorber and emitter.

A perfect absorber can absorb all of the received energy

with any reflections.

Planck’s law describes the wavelengths emitted by a

blackbody at a specific temperature as follows:

Ek ¼
3:74� 108

k5 exp 14;40
kT

� �
� 1

ð9Þ

Ek: Total emissive per unit area of blackbody emission

rate (W/m2 lm)

T : Absolute temperature of the blackbody (K)

k: Wavelength (lm).

Solar radiation value outside the atmosphere varies as

the Earth orbits the Sun. Therefore, the distance between

the Sun and the Earth must be considered in modeling the

extraterrestrial solar radiation. Thus, the (Gex) is given by:

Gex ¼ G0

Rav

R

� �2
ð10Þ

where.

Gex: Extraterrestrial solar radiation.

G0: Solar constant

Rav: Mean distance between the Sun and the Earth

R: Instantaneous distance between the Sun and the Earth

depends on the day of the year or day number.
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There are different approximations for the factor

(Rav=RÞ in the literature. A recommended approximation

can be given by:

Rav

R

� �
¼ 1þ 0:0333cos

2pN
365

� �
ð11Þ

By substituting Eqs. (11, 10)

The extraterrestrial solar radiation unit of time falling at

a right on square meter of a surface can be given by:

Gex ¼ G0 1þ 0:0333cos
2pN
365

� �� �
ð12Þ

Once the surface faces the Sun (normal to a central ray),

the solar irradiance falling on, is Gex, utilizes maximum

solar radiation at that distance. If the surface is not normal

to the Sun, the solar radiation drops on it will be decrease

by cosine of the angle between the surface normal and a

central ray from the Sun.

Thus, the extraterrestrial solar radiation on a horizontal

surface located in a specific location (GexH) can be calcu-

lated by:

GexH ¼ Gexcosu ð13Þ

where.

u: Solar zenith angle.

The solar zenith angle value is equal to the altitude

value, and thus Eq. (13) can be rewritten as follows:

GexH ¼ G0 1þ 0:0333cos
360N

365

� �� �
sinLsind

þ cosLcosdcosx ð14Þ

Finally, the total extraterrestrial solar energy Eex (Wh/

m2) is calculated as follows:

Eex ¼
ZTss

Tsr

GexHdt ð15Þ

There are several components of a solar radiation on a

tilted surface are in addition to the direct (GB:bÞ and diffuse

(GD:b) solar radiation, reflected solar radiation (GRÞ is

added to form the global solar radiation incident on a tilted

surface.

GT ;b ¼ GB;b þ GD;b þ GR ð16Þ

The solar energy components on a horizontal surface as

follows:

GT ;b ¼ GBRB þ GDRD þ GTqRR ð17Þ

where,

RB, RD, and RR:are coefficients.

q: Ground Aledo.

RB: Ratio between global solar energy on a horizontal

surface and global solar energy on a tilted surface.

RD: Ratio between diffuse solar energy on a horizontal

surface and diffuse solar energy on a tilted surface,

RR: Factor of reflected solar energy on a tilted surface.

The finding of solar energy components on a tilted

surface is to estimate the coefficients RB,RD, and RR. Used

model for calculating RB is the Liu and Jordan model [Liu,

B.Y. and Jordan, R.C., 1963]

RB ¼ cos L� bð Þcosdsinxss þ xsssin L� bð Þsind
cosLcosdsinxss þ xsssinLsind

ð18Þ

The surfaces in the southern hemisphere, the slope

toward the equator RB is given as:

RB ¼ cos Lþ bð Þcosdsinxss þ xsssin Lþ bð Þsind
cosLcosdsinxss þ xsssinLsind

ð19Þ

The most recommended formula RR is:

RR ¼ 1� cosb
2

ð20Þ

RD Have been classified into isotropic and anisotropic

models.

Isotropic radiation has the same intensity regardless of

the direction of measurement. Isotropic radiator is a uni-

form radiation from given point.

Model used of the Liu and Jordan an isotropic diffuse

with RD been expressed:

RR ¼ 1� cosb
2

ð21Þ

RD ¼ 1

3 2þ cosb½ � ð22Þ

RD ¼ 3þ cosð2bÞ
4

ð23Þ

RD ¼ 1� b
180

ð24Þ

The behavior of isotropy and anisotropy radiation. Iso-

tropy indicates identical properties in all direction more-

over measure aligned different axes of materials physical

property (absorbance, refractive index, density). On the

other hands Anisotropy model is based on anisotropic

radiation measurements varies in direction because of

radiates nonuniformly in all direction. Anisotropic moles

are noted RD:

RD ¼ GB

GT
RD þ 1� GB

GT

� �
1þ cosb

2

� �
ð25Þ

RD ¼ 0:51RB þ
1þ cosTLT

2

� 1:74

1:26p
sinb ¼ b

p
180

� 	
cosb� psin2

b
2

� �� �
ð26Þ
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RD ¼ GB

GT
RB

þ 1� GB

GT

� �
1þ cosb

2

� �
1þ

ffiffiffiffiffiffi
GB

GT

r

sin3
b
2

� �� �

ð27Þ

The circuit of a solar cell is a current source connected

in parallel with a diode as shown in Figure. The output of

the current source is directly related to the light emitted on

the cell. Nor current or voltages are produced during

darkness of solar cell. During light falls over solar cell it

generates diode current Fig. 1.

The diode, D, determines the I–V characteristics of the

cell. A series resistance, Rs, while the shunt resistance, RSH

Assumed that Rs = 0 and RSH = infinity. The net current

of the cell is the difference between the photocurrent, IL,

and the normal diode current is:

I ¼ IL � I0 e
q VþIRsð Þ

nkT � 1
� 	

� V þ IRs

Rp
ð28Þ

The photocurrent, IL, depends on reference first and

second temperatures, T1 and T2, respectively, illustrated

by:

IL ¼ IL T1ð Þ þ K0 T � T1ð Þ ð29Þ

where,

IL T1ð Þ ¼ IscT1;nom
G

Gnom

� �
ð30Þ

K0 ¼
IscT2

� IscT1

T2 � T1

ð31Þ

where,

G: Present solar radiation

Gnom: Solar radiation at the reference test.

The saturation current of the diode, I0, is given by:

I0 ¼ I0T1

T

T1

� �3
n

e

qVqT1

nk 1
T
� 1
T1

� 	

ð32Þ

where,

I0T1
¼ IscT1

ðe
qVocT1
nkT1 � 1Þ

ð33Þ

The series resistance of a solar cell is given by:

Rs ¼ � dV

dIVoc

� 1

XV
ð34Þ

where,

XV ¼ IoT1

q

nkT1

e
qVocT1
nkT1 ð35Þ

3.2 Operations modelling

A typical V–I characteristic of a solar cell at a certain

ambient irradiation, G, and fixed cell temperature.

For a resistive load, the load characteristic is a straight

line with slope I/V = 1/R.

If the load is small, the cell operates in the regions M–N

of the curve; cell behaves as a constant current source that

is almost equal to the short circuit current. When we have

high load, the cell function in the P–S zone of the curve and

the cell behaves as a constant voltage source that is almost

equal to the open circuit voltage.

The short circuit current, Isc, is the greatest value of

current generated by a solar cell. When V = 0 the short

circuit condition produced. When the photocurrent is zero,

the open circuit voltage corresponds to the voltage drop

across the diode. It reflects the voltage of the cell at no light

conditions, and it can be expressed as:

Voc ¼
nkT

q
ln

IL
I0

� �
¼ Vtln

IL
I0

� �
ð36Þ

where (Vt ¼ mkTc=q): is known as the thermal voltage.

T: absolute cell temperature.

Cells are connected together in series to increase the

voltage. Several of these series strings of cells may be

connected together in parallel to increase the current as

well. This package is called as a PV module or PV panel.

The relations between a PV module panel, the cell’s

voltage (Vc) and current (Ic) and the module’s voltage (Vm)

and current (Im) are given by the following equations:

IM ¼ NpMIc ð37Þ

VM ¼ NsMVc ð38Þ

RsMRsM ¼ NsM

NpM

Rsc ð39Þ

where,

NsM: Number of series cells.

NpM: Number of parallel cells.

RsM: Equivalent series resistance of the PV module.
Fig. 1 a Solar cell is a current source connected in parallel with a

diode
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Most PV manufacturers provide temperature elements

for their crystalline PV modules based on the NOCT as the

cell temperature (Tc), which has a standard equation of

Tc ¼ Ta þ
G

800
NOCT � 20�Cð Þ ð40Þ

where,

Tc: Cell temperature.

Ta: Ambient temperature.

G: Instant solar radiation.

NOCT : nominal operating cell temperature is defined as

the temperature reached by the open circuit cells in a

photovoltaic module under conditions of 800 W/m2 irra-

diance on the cell surface, 20 �C air temperature, and 1 m/s

wind velocity.

As mentioned in Eq. (28), the characteristic of a PV cell

is expressed by its relationship between current and voltage

(I–V) and power and voltage (P–V) at specific solar radi-

ation and temperature levels. Assuming the Rp in Eq. (27)

is too large, and then the I–V a solar cell expressed as:

I ¼ IL � I0 exp
qðVþ IRs

nkTc

� �
� 1

� �
ð41Þ

In addition to that, in order to simplify the characteri-

zation of a solar cell, assume that

q

nk
¼ k1 ð42Þ

Tc

k1
¼ a ð43Þ

Based on this, Eq. (27) can be rewritten as follows:

I ¼ IL � I0 exp
qðV þ IRs

a

� �
� 1

� �
ð44Þ

Solving Equation for V results:

V ¼ a:ln
IL � I

I0
þ 1

� �
� IRs ð45Þ

The light-generated current, Iph, is linearly proportional

to the global solar radiation and is also logarithmically

dependent on the operating temperature of cell, Tc.

Therefore, Iph can be expressed:

IL ¼ k2 þ k3Tcð ÞGT ð46Þ

Finally, the diode saturation current depends on the

operating temperature of cell Tc: as follows:

I0 ¼ k4T
3
cexp � k5

Tc

� �
ð47Þ

Four statistic errors are used, which are.

(1) (MAPE): Mean absolute percentage error.

(2) (MBE): Mean bias error.

(3) (MAE): Mean absolute error.

(4) (RMSE): Root mean square error.

The general accuracy of a neural network can be high-

lighted by MAPE. MAPE can be defined as follows:

MAPE ¼ 1

n

Xn

t¼1

M � P

M

����

���� ð48Þ

where,

M: Measured data.

P: Predicted data.

The information of long-term performance of the neural

network model can also be evaluated by MBE. MBE can be

calculated as follows:

MBE ¼ 1

n

Xn

i¼1

ðPi �MiÞ ð49Þ

The mean absolute error ðMAEÞ: is a measure of errors

between paired observations expressing the same phe-

nomenon. Examples of Y versus X include comparisons of

predicted versus observed, subsequent time versus initial

time, and one technique of measurement versus an alter-

native technique of measurement. MAE is calculated as:

MAE ¼
Xn

i¼1

ð yi � xij j
n

Þ ð50Þ

where,

yi: Prediction

xi: True value

n: Total number of data points

The final statistic error is RMSE; it represents the

measurement of the variation of the predicted data around

the measured data.

The short-term performance information of the model

can be evaluated by RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðPi �MiÞ2
s

ð51Þ

3.3 Fault modelling

Photovoltaics (PV) component/module, which involves

solar cells connected in series. The equation below illus-

trates the PV voltage as well as current features.

I ¼ IPH � I0 exp
V þ RsI

aVt

� �
� 1

� �
� V þ RsI

Rsh
ð52Þ

whereby voltage of the PV is denotated by V while the

photovoltaics current (output) is denotated by I. Therefore,

V ¼ NcellVcell;Ncell as well asI ¼ Icell; this refers to the

solar cell’s quantity connected in series. The produced PV-

photocurrent is represented byIPH:IPH ¼ IPH ; cellI0;. Also,

the thermal voltage is represented by Vt ¼ Ncell
KT
q whereas
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the diode’s reverse saturated I is represented by I0 ¼
I0; cellVt: The parallel as well as series equal or corre-

spondent resistance(s) is denoted by Rsh as well as

Rs; respetcively : Rs ¼ NcellRs;cell

Whereas Rsh ¼ NcellRsh;cell (Villalva et al. 2009).

3.3.1 Strategy used to identify faults

This study focuses on detecting photovoltaics system’s

faults, which are associated with the degraded photo-

voltaics array and photovoltaics array’s partial shading,

short circuits, as well as open circuits. Silvestre et al.

(2014) formulate Eqs. (55, 56) for defining the photo-

voltaics system’s indicators of current and voltage, as well

as describing it using defect feature quantity. The Eqs. (55,

56) are shown below:

RV ¼ V

Voc
ð53Þ

RI ¼
I

Isc
ð54Þ

where RV � voltageindcator, whereasRI �
indicatorofcurrent=I in a photovoltaics module. Similarly,

I-is current and V-is voltage of the photovoltaics module in

its maximum power point. The photovoltaics array’s short-

circuit current is-Isc whereas the voltage open-circuit is

represented as Voc: According to (Silvestre et al. 2014),

Eqs. 57 and 58 below represents theVoc,Isc

Isc ¼ NPð
Iscm STC

1000
Gþ KI T � TSTCð ÞÞ ð55Þ

Voc ¼ NsðVocm STC þ KV T � TSTCð Þ þ Vtln

Isc
Np

Iscm STC

 !

Þ

ð56Þ

In which:

Ns-refers to the number of the photovoltaic modules of a

photovoltaic string

NP-refer to the number of the photovoltaic array’s

photovoltaic string

Vt-implies the photovoltaics’s thermal voltage.

T - refers to photovoltaics’ temperature

G-refers to photovoltaics component that receives

irradiations

KV -refers to an open-circuit voltage’s Temperature

coefficient

KI-refers to short-circuit current’s Temperature

coefficient

At standard testing settings, which are TSTC ¼ 250C

[temperature] as well as GSTC ¼ 1000W=m2[irradiation],

the Vocm STC -refers to photovoltaics module’s open-

circuit voltage whereas Iscm STC refers to the photovoltaic

modules short-circuit current.

Silvestre et al. (2014) stated that no fault operations (i.e.,

no faults in the indicators of current or voltage) in the

photovoltaics component as illustrated in Eqs. 55 and 56 is

represented in Eqs. 58 and 59 below:

RVM ¼ Vm

Voc
ð57Þ

RIM ¼ Im
Isc

ð58Þ

whereby:

Im;Vm: The photovoltaics module’s output current as

well as voltage of the PV system in fault-free operation

RIM: Photovoltaics module’s current indictors of the PV

system in fault-free operation

RVM: Photovoltaics module’s voltage indictors of the PV

system in fault-free operation

Additionally, Eqs. 61 and 62 below shows the Vm, Im of

the photovoltaics array at a maximum power point

(MPP)during a fault-free state. (Silvestre et al. 2014).

Im ¼ NPð
Imm STC

1000
Gþ KI T � TSTCð ÞÞ ð59Þ

Vm ¼ NsðVtln 1þ Isc � Im
Isc

e
Voc
NsVt � 1

� 	� �
� Im
Np

Rs ð60Þ

whereby at normal testing conditions:

Rs: Photovoltaics component’s series equal resistance.

ImmSTC
: The current at the maximum power point of the

photovoltaics module at Standard Test Conditions.

3.3.2 Defining the verges of detecting faults

A. Open-circuit fault

Yahyaoui and Segatto (2017) stated that the faulty

string’s I tend to be equivalent with the photovoltaics

array’s output current’s decreased percentage, which usu-

ally occurs whenever there is a faulty open circuit.

Therefore, the I-indicators in this condition is represented

in Eq. 63 below:

RIO ¼ ðNp � 1Þ
Np

Im
Isc

¼ aRIM ð61Þ

where RIO -refers to the current indicator when there’s an

existence of an open circuit fault in a photovoltaics array

where a tend to be:

a ¼ 1:0� 1:0

Np
ð62Þ

Therefore, the fault detection threshold of open circuit

faults is be defined by Eq. 65 (Yahyaoui and Segatto 2017).

TIO ¼ eRIM ð63Þ
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whereby:

e-refers to a fault detection allowable offset coefficient

and e ¼ 2:0% (Silvestre et al. 2014).

TIO-refers to an open circuit fault’s threshold. Silvestre

et al. (2014) argued that TIO Value should be above the

RI � value (see Eq. 56), particularly if one or more the

photovoltaics strings given has an open circuit fault.

B) Short-Circuits fault

Likewise, if there is an occurrence of short-circuit

photovoltaics module in any photovoltaic strings, the short-

circuit voltage of the photovoltaics module is equal to the

decreased portion of the output voltage of the photovoltaics

array. Therefore, the following equation (Eq. 66) is used to

calculate voltage indicator Yahyaoui and Segatto (2017).

RVS ¼
ðNs � 1Þ

Ns
:
Vm

Voc
¼ bRVM ð64Þ

where: RVS-refers to an indicator of voltage in presence of a

short-circuit in the photovoltaics occurring within photo-

voltaics string(s). Equation 67 show b, illustrated below:

b ¼ 1� 1

Ns
ð65Þ

Therefore, the fault detection threshold of short-circuit

faults are be defined by (Yahyaoui and Segatto 2017).

TVS ¼ ebRVM ð66Þ

RV � value (Provided in Eq. 55) should be lower than

TVS values.

TVS -refers to short-circuit fault’s threshold whenever

one/more photovoltaic module string offered with a short

circuit fault.

C) Partial shading fault

Partly shading of photovoltaics array causes drastic

decrease in the current output since part of the array

receives solar irradiation. Therefore, Eqs. 69 and 70 below

are used to calculate the indicators of current and voltage in

an event of partly or incomplete shading

RVP ¼ Vmp

Voc
ð67Þ

RIP ¼ Imp
Isc

ð68Þ

where:

Imp refers to a photovoltaics array’s current output at a

maximum power point

Vmp refers to a photovoltaics array’s voltage output

maximum power point

RIP refers to fractional shading fault’s the indicators of

current

RVP refers to partly shading fault’s the indicators of

voltage

Equation 71 and 72 are used to calculate photovoltaics

array’s ImpaswellasVmp whenever there is a partly shading,

where the photovoltaics array receives maximum irradi-

ance in unshaded side.

Imp ¼ Np
Imm STC

1000
GP þ KI T � TSTCð Þ

� �
ð69Þ

Vmp ¼ NsðVtln 1þ Isc � Imp
Isc

e
Voc
NsVt � 1

� 	� �
� Imp

Np
Rs

ð70Þ

where GP -gets photovoltaics optimum irradiance in par-

tial-shading states. Thus, Eq. 73 below is instrumental in

detecting and identifying the threshold of faults during a

partly-shading.

TIP ¼ eRIP ð71Þ

where TIP-refers to the partial-shading fault’s thresholds.

TIP values should be higher than the RI Values (provided in

Eq. 56) whenever all or partial shaded for the photovoltaics

array.

where TIP is the threshold of partial shading faults, and

when partial or all shaded for the PV array, the value of RI

(given as Eq. (56) must be below the value of TIP Table 1.

3.4 Problem definition and proposed Model

Having identified the models for the environment, the

operation, and the generated signals, now the problem of

the accurate generated power prediction can be formulated

as below.

FðA�Þ ¼ max
0	g	 1

P;g; min
0	QS 	 1

QS

� �

The above definition is a min–max-optimization prob-

lem, where,

P: PV power output (LSTM and GRU Final Compara-

tive Results) Table 3.

g: Is conversion efficiency of PV module (Maximum

efficiency for GRU and LSTM algorithms) (Durisch et al.

2007) Table 4.

QS: Respects the thermal energy losses through radiation

and convection heat transfer from modules (Castillejo-

Cuberos and Escobar 2020; Lave et al. 2015; Van Haaren

et al. 2014) Figs. 16, 17.

While the optimization variables can be defined as:

A ¼ S; b; c; hr; hc; l;GT ;VWS;u;f h, , , £, <, a,
l; n; #;-; , }

However, a problem with all these variables can be

defined as an NP-Hard problem. And cannot be solved

using tradition optimization techniques. Therefore, to solve

this problem we will follow the below methodology

Table 2.
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After having modelled the environment, the operation

and the signals to generate the patterns that is like the real

patterns of the physical instruments, this pattern is clus-

tered using k-mean clustering algorithm.

After that, we implement a monte-carlo simulation with

the identification of all the bounds of the remained

stochastic variables, and the optimization outputs, as

mentioned in the above table. Inside the iterations of this

simulation, Particle Swarm Optimization (PSO) algorithm,

which is a metaheuristic stochastic-based algorithm is

applied in order to identify the optimal values of the

selected optimization variables.

After finding the optimal values of the parameters, these

parameters as well as the output values, will be used in

addition to the current and previous loads in order to pro-

duce the short-term prediction, for example, LSTM or

GRU algorithms will be used in this phase. The below

figure shows the block diagram of our proposed solution.

The below figure summarizes this proposed method Fig. 2.

In the prediction phase,initially LSTM, see Fig. 3a, has

been selected with training input is the output of the

clustering phase with size of 1400 9 34and then this and

300 hidden layers with three output signals, representing

the next or the future temporal values of n; p and the Qs in

the LSTM we have used look up in order to use only the

most useful or the most related samples in building that

pattern. Moreover, GRU, see Fig. 3b, followed the same

structure to compare both algorithms using the same

benchmark in order to be able to figure out which one

provides us with the most accurate future temporal value,

and which one provides us with a most with the fastest

processing time.

3.5 Datasets

Regarding the load, we have acquired it from a with short-

term slots of a frequency of 5 min which is very useful for

our application in short-term prediction. This dataset

(Dataset employed by this research can be retrieved from

UK Smart Grid Industry 2021–2024) contains 371 samples

each sample is 5 min separated from the other sample from

the period of the first of January to the second of January in

the year in the previous year 2020.This dataset was

Table 1 Nomenclature

Parameter Description Value

q Charge on an electron 1.602 9 10 - 19 [C]

K Boltzmann’s constant 1.380 9 10 - 23 [J/K]

A Ideality factor of diode 1.3

Ns Number of series connected cells (diodes) 72

Rs Series resistance of the PV module 0.221 [X]

T The cell’s temperature 25 [�C]
V ¼ Vmp The voltage at the maximum power point 26.3 [V]

T0 Real-time temperature 273.15[K]

Ki Temperature coefficient of

Isc cell short circuit current 0.058 [%/ Æ C]

NP Total parallel cells 1

Isc Short-circuit current at STC 9.06 [A]

Voc Open circuit voltage 46.22 [V]

G = Gref Solar Irradiance 1000 at STC

Tref Reference temperature 25 [�C]
Pm Maximum power at Standard Test Conditions (STC) 320 [W]

Vm Maximum power voltage 37.38 [V]

Im Maximum power current 8.56 [A]

IPh Photocurrent of a solar PV cell generated due to solar irradiation 8.214 [A]

Eg Forbidden Energy band gap, for silicon 1.12 [ev]

Kv Temperature coefficient of Open-Circuit Voltage -80 [mV/�C]
K1 Temperature coefficient of short circuit Current 0.065 [%/�C]
e A fault detection allowable offset coefficient 2:0%

Rp Parallel resistance of the PV module 415.405 [X]
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Table 2 While the definitions of the used notations and their ranges, are illustrated in the below table

Notation (Variable) Definition Range Ref

S is the temperature surface area of PV module -55 to ? 150 Saloux et al. (2011); Sun et al. (2017)

b is temperature coefficients of PV module 25 to 65 Sun et al. (2017)

c is solar irradiance coefficient of PV module 200 to 1000 W/m2 Mills and Schleich (2012)

hr Heat transfer coefficient of radiation 0 to 1 Cao (2010)

hc Heat transfer coefficient of convection 2.5 to 5 W/(m2 9 K) Patil and Vijay (2012)

l BOARD length 150 to 165 cm Sun et al. (2017)

GT is surface solar radiance flux on module plane 200 to 1000 W/m2 Mills and Schleich (2012)

VWS Wind speed 25 to 40 mph Sun et al. (2017)

u Maximum Power Point 0.78 to 0.92 Sarvi et al. (2015)

h Life Cycle Impact Assessment 2742 to 2857 kWh/kWp (Lamnatou et al., 2015)

Life Cycle Inventory 10 to 25 Sun et al. (2017)

auxiliary electricity demand 1 to 160 kW Sun et al. (2017)

£ Cleaning of the panels 0.2 to 0.325 Al-Housani et al. (2019)

< Maintenance $13 to $25/kW/yr Al-Housani et al. (2019)

a Decommissioning, dismantling 20 to 30 years Mahani et al. (2019)

l Waste processing 20 to 30 years Mahani et al. (2019)

n Front electrode deposition 20 to 30 years Mahani et al. (2019)

# Electron transport layer deposition 20 to 30 years Mahani et al. (2019)

- Active layer deposition 20 to 30 years Mahani et al. (2019)

Back electrode deposition 20 to 30 years Mahani et al. (2019)

Hole transport layer deposition 20 to 30 years Mahani et al. (2019)

Fig. 2 Methodology Block Diagram

Fig. 3 GRU and LSTM Structures
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generated from a real site located in London city in the UK.

The exact coordinates are 51.5074� N, 0.1278� W.

4 Implementation and results

The modeling of the sun position for the selected location

in London city in the UK, according to the location of the

site from which we obtained the datasets which contains

the temperature and solar radiation is shown below.

Figure 4 shows, the first plot which is the alpha angle of

the sun position from day 0 to day 350. So, for entire year

according to the position of the coordinate of London city

UK. Where the second plot is the Theta for the period time

for the same position for the same location.

Figure 5, below chooses the hourly extraterrestrial solar

radiation profile for 16 days of January, each plots of this

16 plots for a specific date is shown that the plots almost

similar to each other but the related plot for corresponding

days increase with the increase of that day which means the

peak value of each day as increasing according to the day

number for example day 1 we have the value around 350

for day 2 its around 360 and so on the big value.the x-axis

here is LMTð Þ and y -axis the GextHð Þ.While Fig. 6 shows

five minutes step for only one day Fig. 7.

Figure 7a shows the solar radiation for one day in Jan-

uary for 5 min step. And 7b the diffuse solar radiation for

the same period of time also the step time 5 min.

Figure 8 shows sample of the global solar radiation and

diffuse solar radiation for sample days, the first day, day

number 50, 100, 180, 250, and 360, which choose the

variation of the solar radiation in this day. In this result we

have used 60 min step so hourly based solar radiation for

each day this value helps us to predict the next solar

radiation for following minutes.
Figure 9 shows the 5 min step solar radiation for the

same days which also helps us to predict the short-term

solar radiation for each 5 min, as we can see the pattern is

almost similar, it looks smoother than the previous figure.

Figure 10a shows the sun position for 5 min of one day

in January the sun position alpha angle and theta angle.

it shows corresponding voltage, current and power for

each sun position Fig. 10. between the sun position and

generated power.

It appears from the above figures, that the sun position

for the same day in different years is not the same. This is a

physical fact that applies on all the natural resources and

factors, such as wind, dust, shading, etc. Consequently, and

as clearly shown in the figures above, the behavior of the

natural factors is totally stochastic and cannot be predicted.

Since the generation of the electricity is based and affected

by these resources and factors. This leads to the fact, that

the prediction of the generated energy based on renewable

resources is a challenging problem. Therefore, this work
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Fig. 4 The alpha angle of the sun position
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contributes to this field by developing a methodology to

allow the process of short-term prediction for the short-

term future generated energy that is based on and affected

by renewable resources and factors.

4.1 Data Generation and Montecarlo simulation

Figure 11 shows the generated signals that contains1000

normal and 1000 faulty signals, each of which contains 34

features. However, these signals have been also generated

using the stochastic features of the Montecarlo simulation.

To test the Prediction model Fig. 12.

In This phase we need to know the status of the pattern.

Weather this signal is normal or a fault signal. However, in

our problem we don’t have target. There is no data set with

a target. Also, the behavior of the normal traffic and that

the behavior faulty traffic in the real life is a little bit of

stochastic that does not follow a stable pattern. Therefore,
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we will not be able to identify the exact features of the

input pattern and the target for them. Therefore, our

problem can be defined as a clustering problem, In order to

solve this clustering problem, We have used k-mean

clustering algorithm the previously generated sample traf-

fic have been sent to k-mean clustering algorithm then

trained on it after that the clustering algorithm showed as a

very clear recognition for the statues of traffic as shown in
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Fig. 10 The sun position alpha angle and theta angle and Sun position and generated power
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this figure, the given pattern is found in the first column of

the table and then the predicted pattern have been output by

k-mean clustering algorithm and as we see here both of

them are identical with no any missing values. Therefore,

we calculate the loss we have found it very, close to 0

which means that the accuracy is almost 100% (Loss

K-means Testing = 2.2204e-16).

4.2 Prediction final results (for LSTM)

the below Fig. 13 shows the plots of the input training and

target training, input testing and targeted testing for the

prediction process (LSTM). It also shows the output pre-

diction process which is almost exactly as the target testing

this also can be improved by showing accuracy, which is

almost near to 99.5%.

the below Figs. 14 show the prediction finally this

classified, or cluster recognized pattern should be sent to

the prediction algorithm in order to prediction the Future

traffic. For this we have used long short-term memory,

which is best reignition technique and we have identified

parameters using train and error as shown is this table,

however, the training validation and testing process as

shown in the figure, after the completion of the training

validation and testing process is seen in this figure and as

shown, the root mean square error is almost 0.71%.

While in the below Fig. 15, GRU is used to do the same

prediction task, using the same inputs. This phase is made

for a comparison purpose. Where it is clearly noticed that

the GRU is slightly faster than the LSTM. But with higher

error rate (1%) Table 3.
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4.3 Identify Qs value

This section illustrates how to identify the QS value.

However, in (Castillejo-Cuberos and Escobar 0.2020) it

was determined that the overall specific static and dynamic

characteristics of solar irradiance for a determined time

period, or state, are summarized by the clearness index

(Kt), the diffuse fraction (K) and the variability of the solar

Fig. 13 The input training and target training input testing and targeted testing for the prediction process (LSTM)

Fig. 14 Prediction (LSTM model and parameters)
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resource. By defining a variable termed the solar resource

quality score (QS), irradiance patterns can be classified in

an explicit scheme comparable to clustering techniques but

providing a straightforward approach and a simple ana-

lytical expression on which to perform the classification,

easily translatable across studies, overcoming the issue of

data specificity previously discussed.

The only variables needed are the global horizontal

irradiance (GHI). The QS is a measure of how close a

particular state is from the ideal of full atmospheric

clearness (Kt = 1), no attenuation (K = 0) and constant

irradiance (variability = 0).

Lave et al. (2015) was used, defined as the probability

that a particular ramp rate (RR = l GHI
GesinðaÞ

� 	

 0:03)

exceeds a given threshold ramp (RR0 ¼ 1000W=m2 during

an evaluation period, andðe ¼ 0:02Þ.

The Variability Score (CDF based) ðVScdf Þ uses the

normalized, which is the result of linearly mapping the

VScdf from the range 0.002–0.4054 to 0–1 (Castillejo-

Cuberos and Escobar 2020), Dtð Þ temporal resolution

timestep

VScdf ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RR

RR0

� �2

þ ðP RRDtj j[RR0ð Þ � 1Þ2
s0

@

1

A

ð72Þ

where,

Dtð Þ ¼ 5mints.

Fig. 15 Prediction (GRU model and parameters)

Table 3 LSTM and GRU final comparative results

Algorithm LSTM GRU

Elapsed time (s) 0.167865 0.104726

accuracy 0.9950 0.9900

RMSE 0.0071 0.0100

MAPE 0.0033 0.0075

MAE 0.0050 0.0100

MBE 0.0050 0.0100

0 50 100 150 200 250 300 350 400
0.0

...

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1
Qs Values for the studied minutes

Fig. 16 Qs values using GRU
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The quality score (QS):

QS ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ktð Þ2 þ K2 þ ðVScdf Þ

2

ffiffiffi
3

p

s0

@

1

A ð73Þ

Van Haaren et al. (2014), the Daily Average Ramp Rate

(DARR) is calculated as the sum of the absolute value of

the changes in irradiance on a minute basis, normalized

with an irradiance (G) of 1000 W/m2.

DARR ¼
Xk¼371

k¼1

GHIk � GHIk�1j j
G

ð74Þ

where,

GHI ¼ 0\GHI\ 100þ 1:5 � G � ðsinaÞ1:2
� 	

After implementation the Qs value are determine as

shown in the below Figs. 16 and 17:

4.4 Identify efficiency Value:

The maximum power point is given by:

Pmax ¼ VmaxImax ð75Þ

The maximum efficiency of a solar cell is expressed as:

g ¼ Pmax

Pin
¼ ImaxVmax

AGa
ð76Þ

where,

A: Area of the PV module,Ga: Radiation.

After implementation maximum efficiency for the GRU

and LSTM algorithms value are determine as shown in the

below Table 4:

After implementing the optimization algorithm, we have

obtained the optimal below values for using LSTM and

GRU algorithms. The below tables Illustrate the exact

optimal values for the future predicted values of the P, QS,

and the efficiency Table 5.

5 Conclusions and future work

This work addresses the problem of future value estimation

based on data with stochastic behaviour. The dependent

variables used are the future active generated power, Qs,

and the efficiency for the PV grid. While the independent

variables are represented with the weather conditions and

load behaviour. In this work we proposed a solution based

on K-means clustering that converts the stochastic beha-

viour of the independent variables into a known pattern.

Then it becomes easier for either the LSTM or the GRU to

use it for the short-term future estimation of the dependant

variable. A mathematical model in addition to dataset are

Table 4 Maximum efficiency for GRU and LSTM algorithms:

LSTM maximum efficiency 0.4160

GRU maximum efficiency 0.4160

Table 5 Exact optimal values for the future predicted of the P, Qs,

and efficiency for using LSTM, GRU algorithms

Optimization

variables

Future predicted values

of the P, QS, and the

efficiency for LSTM

Future predicted values

of the P, QS, and the

efficiency for GRU

S - 40.3791 -31.6842

b 52.5599 64.1509

c 548.9758 689.3164

hr 0.11198 0.060177

hc 3.4146 4.5122

l 158.5407 156.2825

GT 72.5209 367.3079

VWS 34.9638 34.2958

u 0.78 0.78

h 2773.0819 2752.9003

12.8308 12.5744

176.2378 30.3052

£ 0.2 0.2

< 16.9878 21.0931

a 28.4468 23.3764

l 29.7625 26.4615

n 25.619 29.7124

# 25.5178 24.1549

- 23.7174 20

25.6212 27.932

29.7412 20.9187

0 50 100 150 200 250 300 350 400
0

...

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1
Qs Values for the studied minutes

Fig. 17 Qs values using LSTM
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used to build a complete environment, with its operation

and signals. And mote- Carlo method is used for simula-

tion. As outcomes of a comparative study, we can confirm

that although GRU is a fast algorithm, LSTM provides

more accurate short-term predictions. Moreover, it’s been

concluded that stochasticity is an important factor to be

considered in any future estimation process. However, the

method proposed in this work shows clear outcomes in

solving the stochasticity issue and enhancing the perfor-

mance of the prediction. Uncertainty in this dynamic

environment is an important factor that could be considered

in future perspectives.
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