Complex & Intelligent Systems
https://doi.org/10.1007/s40747-021-00605-5

ORIGINAL ARTICLE l‘)

Check for
updates

A metaheuristic-based framework for index tracking with practical
constraints

Man-Chung Yuen' . Sin-Chun Ng? - Man-Fai Leung'® - Hangjun Che3

Received: 28 April 2021 / Accepted: 26 November 2021
© The Author(s) 2021

Abstract

Recently, numerous investors have shifted from active strategies to passive strategies because the passive strategy approach
affords stable returns over the long term. Index tracking is a popular passive strategy. Over the preceding year, most researchers
handled this problem via a two-step procedure. However, such a method is a suboptimal global-local optimization technique
that frequently results in uncertainty and poor performance. This paper introduces a framework to address the comprehensive
index tracking problem (IPT) with a joint approach based on metaheuristics. The purpose of this approach is to globally
optimize this problem, where optimization is measured by the tracking error and excess return. Sparsity, weights, assets
under management, transaction fees, the full share restriction, and investment risk diversification are considered in this
problem. However, these restrictions increase the complexity of the problem and make it a nondeterministic polynomial-
time-hard problem. Metaheuristics compose the principal process of the proposed framework, as they balance a desirable
tradeoff between the computational resource utilization and the quality of the obtained solution. This framework enables the
constructed model to fit future data and facilitates the application of various metaheuristics. Competitive results are achieved
by the proposed metaheuristic-based framework in the presented simulation.

Keywords Passive investment - Index-tracking problem - Metaheuristic - Tracking error - Excess return - Risk diversification -
Penalty method

Introduction accurately reflect real values. Thus, investors aim to beat the

market through their experience, in-depth research, finan-

Basic fund investment strategies are classified into active and
passive strategies. In an active strategy, investors believe in
the inefficient market hypothesis that market prices cannot
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cial forecasting, and stock analysis [19,34,35]. In contrast,
investors who adopt a passive strategy believe in the efficient
market hypothesis (EMH), which states that market values
accurately include and reflect all information at all times
[40,41,51]. Under the EMH assumption, investors believe
that it is difficult to outthink market performance, and they
assume that the market posts positive returns over time. As
a result, investors adopt the buy-and-hold portfolio strategy
over the long term with minimal trading activities, and they
seek to replicate the performance of the chosen benchmark
market index as closely as possible.

Recently, the significance of passive management strate-
gies has increased tremendously. Three major motivations
have been determined for this phenomenon [5,11,54,61].
First, the benchmark index continually rose in the past. Under
this observation, passive investors have a greater possibility
of earning a reasonable return. Second, fund managers have
difficulty beating the market in the long term. The longer
the selected time frame is, the more likely it is that investors
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underperform the market. Third, active management requires
expensive fixed costs, while passive management requires
less fixed costs.

The aforementioned reasons have prompted investors to
shift from active investment strategies to passive investment
strategies [1]. Passive investment can be achieved through
different instruments, such as index funds, passive mutual
funds, and passive exchange-traded funds. The principal
approach behind these instruments is index tracking. This
method is designed to replicate the performance of a partic-
ular market index; it can be viewed as a matching between
the tracking portfolio and the actual market index.

The most straightforward approach is full replication,
which considers all stocks in the index with their corre-
sponding weights. The perfect tracking error is achieved,
as this method utilizes all stocks with the same proportion
as that of the chosen benchmark index. However, full repli-
cation does not work well in practice, as it brings several
drawbacks. Imagine an investor who purchases whole Dow
Jones Wilshire 5000 Total Stock Market Index or Standard
and Poor’ s 500 stocks. First, the cost becomes relatively
expensive for small assets under management (AUM), which
significantly diminishes the investment return. Second, this
process contains various small, illiquid stocks that are dif-
ficult to sell for cash without a considerable loss. Thus, the
approach damages the return and incurs relatively high costs.
Third, when rebalancing the tracking portfolio, the propor-
tions of the whole tracking portfolio must be reassessed.
Thus, more fund management is needed.

The second index-tracking method is partial replication.
This approach utilizes a small number of stocks to approxi-
mately simulate the performance of a chosen market index.
Although the tracking error is no longer a perfect match,
the costs are lowered, and the process of rebalancing port-
folio weights is simplified. Unlike full replication, partial
replication involves lower transaction costs and can avoid
purchasing illiquid stocks, as only a small number of stocks
are employed. In addition, this method partly reassesses the
proportions of the tracking portfolio. Thus, partial replica-
tion requires less rebalancing costs and is less complicated
than full replication.

Under these deliberations, the greatest challenge with
index tracking is the tradeoff between the tracking accuracy
and cost. When the given portfolio includes a large num-
ber of assets, the cost becomes expensive. A common way
to handle this problem is the partial replication of market
performance without using all assets. However, sparsity and
other practical constraints bring complexity, as they form a
discontinuous global function optimization problem. A meta-
heuristic is preferable for dealing with index tracking, as the
traditional local method may become trapped in local solu-
tions. The contributions of this paper are briefly discussed as
follows:
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— A framework is proposed for the comprehensive index-
tracking problem (ITP) based on metaheuristics.

— The comprehensive ITP is addressed through a fully
global method instead of other reviewed suboptimal
global-local methods.

— Competitive simulation performance results are obtained
on a benchmark tracking index.

— The proposed framework can be extended with other
practical constraints and via the application of other meta-
heuristics.

In this paper, we present a metaheuristic-based framework
to address the enhanced ITP (EITP) with various practical
constraints. We propose a solution strategy that incorporates
a quantitative tracking model, metaheuristic procedure, look-
back approach, and constraint validator. This method aims to
reduce the complexity of the considered problem, presents
an efficient model, and systematizes the process. This paper
focuses on the US market.

The structure of this paper is organized as follows. The
next section discusses a literature review and related works.
The third section presents the formulation of the EITP with
various practical constraints. The fourth section presents the
proposed framework. The fifth section presents the simu-
lation results and discussion. The last section provides the
conclusion of the paper.

Related work

We first define some notations that we use throughout the
paper. These notations are presented as follows:

— E; is the measured tracking error.

— 1 denotes the computed return of the tracking portfolio:
Z,];/:l Tp(r,n) © W, in time ¢ and the current stocks 7,
and it is expressed as [r (1), ..., Fp(1)]-

— w, ) denotes the weight to be optimized for n stocks,
and this is repeated over time 7.

— rp denotes the return of tracking benchmark in time ¢,
which is expressed as [rp(1), . . ., o) -

— T is the maximum number of trading days in the given

period,andr =1...T.

N is the total number of available assets in the tracking

benchmark, andn =1... N.

— O denotes the Hadamard product [25,44].

The well-known modern portfolio theory (MPT) was an
important breakthrough in personal investing, and it provides
insight into index tracking. The mean-variance model was the
first approach in MPT to discover the efficient frontier for a
tradeoff between the expected return and risk [42]. Some
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reviewed papers are based on portfolio optimization in mul-
tiobjective (MO) test problems, where the overall return and
financial risk are optimized [22,31,32,36,60]. The ITP has
been widely studied by different researchers and financial
analysts. The objective is to minimize the difference between
the chosen benchmark index and the tracking portfolio. The
artificial index should be as similar to the benchmark index
value as possible. This problem is handled with a lookback
approach in which historical price information provides hints
about the future. The empirical index-tracking error equation
is shown as follows:

. 1 )
min E; = ?Hrl, —1pll3

N
S.t. an <1.
n=1

ey

The portfolio weights must be optimized to approximately
replicate the market performance. The out-of-sample met-
ric is used to estimate the performance of the proposed
framework, as the optimization of index tracking is based
on historical information.

In addition, an investor is also concerned about the interest
of their portfolio. Enhanced index tracking no longer involves
a single-factor model, as it tries to achieve greater returns
than those of the benchmark index by sacrificing a degree of
tracking error. The measurement of this problem becomes a
task of tracking the error and excess return to estimate the
solution. The square root of the tracking error E; is applied
to the equation for balancing its measurement with that of
the excess return, as shown as follows:

, 1
min E; = 7||rp —rpll3. (2)

The excess return E, is shown as follows:
max E, = ?r,, — Ip. 3)

This function generalizes the tracking error and excess
return into a single minimization function, and it is shown as
follows:

min A(Ey) — (1 — A)E,

N
S.t. an <1.
n=1

“

The tradeoff between the tracking error and excess return
is determined by A. In addition, the logarithmic return is
applied in this paper instead of the arithmetic return, as it
is more suitable for estimating the tracking portfolio.

A simple example is discussed here to explain why the
logarithmic return is better than the arithmetic return. When
astock price rises from 50 to 100, the arithmetic return will be
1.0, and the logarithmic return will be 0.69 with some decimal
places. When the price decreases from 100 to 50, the arith-
metic return will be — 0.5, and the logarithmic return will be
— 0.69 with some decimal places. Based on this observation,
arithmetic returns do not present the same price change mag-
nitudes. As aresult, arithmetic returns probably overestimate
excess returns, and logarithmic returns give the same price
change magnitudes for both positive and negative movements
[26,27,50]. The formula of an arithmetic return is shown as
follows:

_P— Py

5
o &)

Ta

The formula of a logarithmic return is shown as follows:

T —1H<P[1> . (6)

Note that the number of days used for the profit return is one
less than the number of days used for the closing price. The
returns of tracking portfolio 7, ») and benchmark ry(,) are
computed by ;.

The first approach to deal with sparse index tracking is a
two-step procedure that decomposes this problem into stock
selection and weight allocation. The manual process was
an early stock selection method that was based on finan-
cial analysis tools, such as composition features [30]. After
that, researchers focused on automating the stock selection
process, as this approach is superior to a manual or random
method. Various evolutionary heuristic and clustering algo-
rithms have been applied to this process [9,15,20,29,38,52].
Once the stock is determined, the weight allocation process
is addressed by an exact method such as quadratic program-
ming. However, this procedure is a suboptimal global-local
method that accomplishes the two steps separately. A second
approach was introduced to address this problem, namely, the
joint approach. It integrates the two-step procedure into a sin-
gle process, and it is optimized through various evolutionary
heuristic or stochastic neural networks [3,21,37,46,63,65].
The last approach is to reformulate the sparse ITP into an
alternative approximate function that is optimized through
mixed-integer programming [4,10,43,45]. This approach is
complex, and the approximate function is not entirely equiv-
alent to the original function. The original problem is a
discontinuous and nonconvex. The problem is approximated
by a function that is convex and differentiable. More details
about the MIP approach can refer in these papers [7,8].

Several types of approaches are reviewed, and the pro-
posed framework belongs to the second category. A meta-
heuristic is a principal method for optimizing the joint
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problem in this framework, and it possesses several joint opti-
mization advantages. First, the joint method is a fully global
optimization technique instead of a suboptimal global-local
optimization technique, as the two-step procedure is a sub-
optimal global-local approach. It is not clear whether the
solution is a nearby local solution or a global solution. Sec-
ond, the joint problem is equivalent to the original problem,
which implies that further constraints can be applied with-
out reformulating the whole equation. Unlike for the third
approach, adding more considerations is not complex for the
joint approach. When more objectives and constraints are
introduced, to the complexity of the approximate function
is increased. Third, the joint method is a direct approach, as
joint optimization depends on the selected metaheuristics. A
desirable solution is expected with an acceptable computa-
tional resource cost through metaheuristics.

Metaheuristics

A metaheuristic is a high-level, problem-independent pro-
cedure that designs a collection of guidelines to develop
heuristic optimization algorithms [55]. Sparsity and other
constraints bring complexity to the problem, making it a dis-
continuous and nondifferentiable function that is difficult to
address with an exact method. Although metaheuristics do
not guarantee globally optimal solutions, they obtain good
approximate solutions via convergence and the possibility
of acquiring the globally optimal solution. In addition, the
performance of metaheuristics is often superior to that of
traditional methods [6,48,56]. For instance, metaheuristics
have been successfully applied to a wide range of fields,
such as recommender systems, job scheduling, fake news
stance detection, feature selection processes, fuzzy short-
est paths, and electric vehicle routing [39,49,53,62,64,66].
Thus, a metaheuristic is adopted in the proposed framework
to address the comprehensive ITP.

A genetic algorithm (GA) was developed by Holland and
his students [24]. It was inspired by Darwin’ s theory of
natural selection based on the “survival of the fittest” rule,
and it was seemingly the first approach to practice this strat-
egy. The GA is a stochastic search method that simulates
the mechanics of biological behaviors. The search operators
include reproduction, crossover, and mutation. First, repro-
duction maintains better solutions through selection pressure
from the set of candidate solutions. Then, crossover swaps
the information of two parents to generate offspring. Finally,
the mutation operator is an uncommon random modification
that maintains genetic diversity.

Particle swarm optimization (PSO) was developed by
Kennedy and Eberhart [28]. It simulates social behaviors
such as bird flocking and fish schooling. The swarm searches
for food in multidimensional space through its velocity,
personal-best position, and global-best position. However,
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PSO suffers from the premature convergence problem. Some
researchers have combined Gaussian mutation with PSO to
maintain the population density and escape local minimal
solutions [23,57].

A competitive swarm optimizer (CSO) was developed by
Cheng and Jin for large-scale optimization [12]. Although
this algorithm was inspired by PSO, their concepts and the-
ories are dissimilar. The CSO operates based on a random
pairwise competition mechanism with the current swarm to
generate a set of losers and winners among the particles. The
swarm updates its position through the competition mech-
anism instead of the global-best position or personal-best
position. The losers learn from the winners, and the winners
are retained in the next generation.

Differential evolution (DE) was developed by Storn and
Price [58]. This heuristic algorithm is simple and efficient;
only demands a few problem parameters; and combines the
mutation operator, crossover operator, and selection operator.
First, mutation generates the candidate solutions by joining
the existing solutions. Next, crossover determines the new
vector based on a predefined crossover rate probability. Then,
selection retains the best fitness value for the next iteration.
This algorithm has two mechanism update schemes. Scheme
one includes a crossover rate and an amplification factor, and
scheme two introduces an additional control term to incor-
porate the current best position.

These metaheuristics are applied in the proposed frame-
work, and their performance is compared via objective
measurement. Metaheuristics can be viewed as alternative
ways to address this nondeterministic polynomial-time (NP)-
hard problem through their search abilities and gradient-free
optimization process. A good solution is expected when
addressing the comprehensive ITP with practical constraints.

Problem formulation
Enhanced index tracking and practical constraints

The significance of time series is considered in the optimiza-
tion process to better deal with the EITP. The weight of the
time series increases steadily throughout the training dataset,
as the days that are closest to the trading days in the test
dataset are more important in financial data:

min A(E;) — (1 — M) E,

N
st. 1y, =10 er(t,n) O W)
n=1
rp = Tp O Ipr)
& T
=57
2i=1 8
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where 7, denotes the biased time factor, and ¢, denotes the
biased coefficient for non-negative real numbers. If the biased
coefficient is set to zero, it is the same as the standard ITP.
When the biased coefficient becomes larger, the recent data
is given greater weight. The numerator takes the increasing
with the natural logarithm, and the denominator gets the sum-
mation over the numerator. We take this equation instead of
iteratively increasing to avoid the value growth too fast. Note
that ¢ is start from one for training and test dataset.

In particular, fund managers not only consider the EITP
but also consider other constraints such as sparsity, weights,
AUM, transaction fees, the full share restriction, and risk
diversification. Various real-life constraints are considered
in this comprehensive model.

Commission fee structures can be divided into tiered pric-
ing and fixed pricing frameworks. For tiered pricing, the
prices are split into a few levels. When the investor purchases
more stocks, the transaction fee decreases. Fixed pricing
includes all exchange and regulatory fees, and it is applied to
demonstrate the cost constraint for simplicity. The regulatory
fees come from the Financial Industry Regulatory Authority
(FINRA) trading activity fee.

The prices of fixed costs in this paper are based on Interac-
tive Brokers (IB), as it is one of the largest trading platforms
in the US market. The IB brokerage firm charges USD 0.005
per share, the minimum cost is USD 1.00, and the maximum
cost is 1.0% of the trade value. Note that if the calculated
maximum per order is smaller than the minimum per order,
the maximum per order will be evaluated. The FINRA trad-
ing activity fee charges 0.000119% of the total trade volume,
the minimum trading activity costis USD 0.01, and the max-
imum trading activity cost is USD 5.95. The equations of
the commission fee and the FINRA trading activity fee are
shown as follows:

0, =1.0<000501, <& 0w, ©0.01
u, =0.01 <&060w,®0.000119 <5.95
N ®)

n = Z(On + up),

i=1

where o, denotes the commission fee for n current assets, u,
denotes the FINRA trading activity fee for n current assets,
& denotes the value of the AUM, w,, denotes the weight for
the n current stocks, N denotes the total number of stocks, i
denotes the index 1 - - - N, and n denotes the total transaction
fee.

In addition, a suitable transaction fee is considered.
According to the standard practice, the FINRA 5% rule stip-
ulates that the broker should not charge more than 5% of the
commission fee value in the US stock market. The equation
of the proper transaction fee is shown as follows:

on—EQw, 00, ifo,>E0w, 00
v, = )

O, lfOnS%_@wn@Q

where o denotes the percentage of the acceptable commission
fee to be subtracted from the budget value for a rate of 0.05.

Regarding risk, systematic risk and unsystematic risk exist
in the finance market. Systematic risk represents the aggrega-
tion of risk from all investors in the market, such as the risks
related to natural disasters and epidemics. Unsystematic risk
denotes the risk that is unique to a particular company value,
and it is lowered by diversifying the portfolio weights among
different stocks. Therefore, systematic risk is unpredictable
in the finance market, and unsystematic risk is considered in
risk diversification.

Finance analysts recommend that investors practice risk
management strategies that incorporate a broad range of
investments within a portfolio. A combination of distinct
assets can lower financial exposure to any particular asset
risk. The portfolio standard deviation (SD) and upper bound
are used to lower the total risk. Before discussing the port-
folio SD, the stock correlation coefficient (CC) and portfolio
VAR are discussed first, as they are highly related terms.

The stock CC measures the movement relation between
two or more assets by calculating the Pearson CC, and the
value of the CC is between — 1 and 1 (Asuero et al. [2];
Taylor [59]). A positive CC means that when one stock price
increases, the other stock price also increases. Conversely,
a negative CC denotes an inverse correlation between these
stocks, where the stock prices move in opposite directions.
For instance, a highly positive CC implies that the compared
stock prices move simultaneously in the same direction and
at similar percentages most of the time. Note that a nega-
tive stock CC is unusual in the real world. The equation for
calculating the stock CC is shown as follows:

cov(xy, x2)
p(x1, x2) = —————,
Oy 0x,

(10)

where p denotes the CC operand, cov denotes the covariance
operator, and o denotes the SD operator. The CC equation
for assets x1 and x; can be expanded as follows:

S (1) — XD (X0 — X2)
T — —
\/2121 (x(1.n — XD (X, — X2)?

. (1)

p(x1, x2) =
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where x is the return of x asset, and X is the mean value of
x. Then, the matrix of correlation coefficients is shown as
follows:

1 p(x1, x2) p(x1, Xp)
p(x2, x1) 1 p(x2, Xp)
R(X) = ) . . ) , (12)
p(xp, x1)  p(xp, x2) - 1

where R(X) denotes the CC matrix. After introducing the
stock correlation concept, we turn back to the portfolio SD,
which measures the overall portfolio risk. A low portfolio SD
implies that the portfolio exhibits less volatility and higher
stability. In contrast, a high portfolio SD highlights that the
investment risk is high. The equation for calculating the port-
folio SD is shown as follows:

0p =/ wn ® cov(ry,) ® (13)

where o), denotes the portfolio SD, ® denotes the matrix
multiplication operation and w; denotes the transpose of the
matrix. Note that the order of the elements is not exchange-
able in matrix multiplication. However, it is hard to determine
whether the portfolio SD value whether it is high or low based
on the value itself. Therefore, an equally weighted portfolio
SD is used to determine the baseline. The multiplier is indi-
cated to relax the risk constraints, as cardinality restricts risk
diversification. The more stocks held in the portfolio, the
lower the risk exposure is [16].

Various real-life constraints are considered in this model.
First, the cardinality constraint restricts the maximum num-
ber of stocks and provides sparsity [33]. Thus, the manage-
ment cost is decreased, and the fund administration workload
is reduced. Second, the investor is not able exceed the budget
value, and the budget should be utilized as much as possible.
Thus, the minimum percentage of the budget value is deter-
mined. Note that this also implies that the summed portfolio
weights should be smaller than one. Third, the transaction
cost should not be too expensive, and this cost is limited.
Fourth, risk diversification is considered to benefit a return
due to the use of a portfolio with less risk, and risk diver-
sification is measured by the portfolio SD. Fifth, the full
share restriction is examined, as the number of buyable stocks
should be an integer. Although the idea of a fractional share
has been raised, this approach is not available at every bro-
kerage. Sixth, the lower bound for the weights is defined as
greater than or equal to zero, and short selling is not permit-
ted. Short selling is a high-risk activity that may cause very
large losses. Seventh, the upper bound for the weights is
defined to provide risk diversification, as the investor should
not put all of their eggs in one basket. This prevents all
resources from concentrating on a particular asset, as one
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could lose everything in such a scenario. Under these con-
siderations, the equation of the EITP with various practical
constraints is formulated.

The notations and equation are presented as follows:

— K denotes the cardinality constraint that restricts the num-
ber of assets in the portfolio.

— & denotes the amount of AUM being invested.

n denotes the transaction fee. There are two major types

of transaction fees, with tiered pricing and fixed pricing

structures. For simplicity, fixed pricing is considered in
this framework.

— ¢ denotes the minimum percentage of the budget value
that must be contributed to the portfolio.

— ¢, denotes equally weights, which are stated as follows:
en = [%1’ %2'”%N]

— (w © o)T denotes the matrix transpose operation.

— wy ® cov(rp(,ny) ® wnT denotes the portfolio variance
(VAR), and the portfolio SD is the square root of the
portfolio VAR.

— €, ®COV(rp(r,n) ® enT denotes the equally weighted port-
folio VAR, and the square root of the equally weighted
portfolio VAR is the equally weighted portfolio SD.

— ¢ denotes the multiplier coefficient for the equally
weighted portfolio SD.

— t denotes the modulo operator.

— P, denotes the closing price on the starting day of the
specific period of interest for the n current assets.

— u denotes the upper bound for each stock.

Note that some notations have been previously mentioned.

min A(E) — (1 — M) E,

N
S.t. ZA(wn) <k

n=1

N
PE<Y EQw) +n<E

n=1

N
vao
n=1

\/wn ® COV(rp(t,n)) ® w,{ < ¢\/en ® COV(rp(t,n)) ® EZ
1(EQey, Py)=0

O<w, <p.

(14)

The A denotes the operator for measuring the cardinality
constraint. When the weight of a stock is larger than zero,
the cardinality is one:

0, ifw, =0
A (w,) = 15
(wn) 1, if w, > 0. (1)
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In addition, fractional rounding is practiced to address
the full share restriction, as the equality constraint is hard
for metaheuristics to handle [13]. As a result, the rounding
mechanism is applied, and the price is estimated on the start-
ing day of the training and test period. Note that the minimum
trading unit is one share in the US. Therefore, investors can
invest more freely in the US market than in other regions. For
instance, Hong Kong Exchanges have a restrictive policy in
which the minimum trading unit is one lot. The equations of
fractional rounding are shown as follows:

lx] = sup{m € Z,m < x},
[x] = inf{m € Z, m > x},
lx], if (x—1[x])<gq
[x1, if (= x]) > ¢

(16)
[x] =

where x denotes the element set of integers, [x] denotes the
rounding operand, | x | denotes the floor operand, [x] denotes
the ceiling operand, sup denotes the supremum, inf denotes
the infimum, g is set to 0.5 (corresponding to midpoint round-
ing), x denotes the set of all real numbers, and Z denotes the
set of integers. The equation for integer rounding is shown
as follows:

the numbers of full shares are obtained, the portfolio weights
are reassigned. The equation of the weights reassignment
process is shown as follows:

P,OI
w, = TQ (18)

After the weight solutions for the test data are rounded, an
equation is practiced to prevent cardinality constraint viola-
tions. The equation is shown as follows:

We = A(wp) O we, (19)

where w, is the weight of the test data, and wy, is the best
discovered weight of the training data.

Penalty technique

The enhanced penalty technique is practiced to handle var-
ious practical constraints, as it is widely applied [14]. The
concept of this technique comes from Lagrangian relaxation
(LR), which is an early method for approximating a chal-
lenging constrained problem to a straightforward [17,18].
The constraint inequality optimization problem is shown as
follows:

w
1n=[€i } (17)
" min ¢’ x
where I, denotes the number of full shares and P, denotes the st. Ax <D (20)
closing price of the current n assets on the starting day. Once X € x,
ﬂjecﬁves ﬁ?isk Diversification \

( Tracking Error ’

[ Stock Upper Bound ’

{ Portfolio Standard Deviation ]

S

Actual Budget

‘ Assets Under Management

J

{ Summation and Bound of Weights ] [ Commission and Transaction Fee

|

[ Excess Return ]
> —Consider—>] /General Constraints
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Fund Manager
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v
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Fig.1 Diagram of the ITP
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where x denotes the optimal variables for the primal problem,
b and ¢ are given vectors, ¢! denotes the transpose operand
for transforming c, x denotes a set of elements, and Ax < b
denotes the inequality constraint. Then, the equation of the
inequality constraint with LR is shown as follows:

. T

d(Ax — b
min ¢’ x + d(Ax ) 21
s.t.x € x,

where d denotes the positive Lagrangian multiplier coeffi-
cients. After discussing the LR method, the enhanced penalty
technique is presented. This method handles the inequality
constraint through the summation of the penalty term and an
original objective function; this fitness function is shown as
follows:

S
Fx)=f(x)+ ) psles()?, (22)

s=1

where f(x) denotes the original objective function, S denotes
the number of constraints, s is an index from 1---§, ()
denotes the absolute value operand that returns zero for a
negative value, py denotes the penalty parameter that adjusts
the magnitude of the sth constraint, and g,(x) denotes the
constraint for the current s.

Constrained index tracking

Eventually, the EITP with various practical constraints is
considered in this metaheuristic-based framework. First, the
cardinality constraint is applied to capture the sparsity of
this problem. Second, the maximum and minimum budgets
and transaction fees are limited. This also implies that the
summed weights should not be greater than 100%. Third, the
acceptable commission fee is examined. Fourth, the portfolio
SD and benchmark portfolio SD are considered the portfo-
lio risk. These constraints are based on Eq. 11. However,
the magnitudes of different constraints are not in the same
order. Before determining reasonable penalty terms, a frac-
tion is applied to regulate these magnitudes. In addition, some
constraints are not yet restricted, and they are handled by
the proposed framework. The equations of this problem are
shown as follows:

Fig.3 Dataset with the standard
Pareto principle L

Complete Dataset ’

\ 4 Y

—

Training Dataset J Test Dataset 1

< 80% >»<€<—20%—>
< training days of whole dataset >
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y
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Table 1 Major objectives under
the cardinality constraint with
k=15

Table 2 Major objectives under
the cardinality constraint with
k=10

Table 3 Major objectives under
the cardinality constraint with
k=15

GA PSO CSO DEI DE2
Training data
Mean tracking error N/A 2.87E-03 N/A 2.49E—-03 2.50E-03
Mean excess return N/A 3.91E-04 N/A 4.93E—-04 2.77E—04
Mean fitness value N/A 1.24E—-03 N/A 9.97E—04 1.11E-03
Best solution in training data
Tracking error N/A 2.78E—03 N/A 2.39E-03 2.33E-03
Excess return N/A 5.22E—-04 N/A 5.50E—04 2.58E—04
Fitness value N/A 1.13E-03 N/A 9.20E—04 1.04E—03
Test data
Tracking error N/A 3.90E-03 N/A 3.16E—03 2.98E—03
Excess return N/A 8.86E—05 N/A — 3.05E-04 — 8.87E—06
Fitness value N/A 1.90E—03 N/A 1.73E—03 1.50E—03
GA PSO CSO DE1 DE2
Training data
Mean tracking error 1.85E—03 1.79E—03 2.54E—-03 1.63E—03 1.79E—03
Mean excess return 4.36E—04 3.86E—04 2.36E—04 4.61E—-04 4.58E—-04
Mean fitness value 7.08E—04 7.02E—04 1.15E-03 5.84E—04 6.68E—04
Best solution in training data
Tracking error 1.71E-03 1.70E—03 2.12E-03 1.46E—03 1.76E—03
Excess return 3.87E-04 4.87E—-04 4.51E-04 3.67E-04 5.44E—04
Fitness value 6.60E—04 6.05E—04 8.36E—04 5.49E—-04 6.09E—04
Test data
Tracking error 2.79E—-03 2.39E-03 3.32E-03 2.91E-03 2.25E-03
Excess return 1.29E—-04 — 2.26E-04 2.86E—04 6.95E—04 — 2.60E—-04
Fitness value 1.33E-03 1.31E-03 1.52E—03 1.11E—-03 1.25E—-03
GA PSO CSO DEl DE2
Training data
Mean tracking error 1.50E—03 1.31E-03 1.86E—03 1.28E—03 1.31E-03
Mean excess return 3.11E-04 3.99E—-04 2.11E-04 4.18E—04 3.97E-04
Mean fitness value 5.93E-04 4.57E—04 8.23E—04 4.33E-04 4.57E—-04
Best solution in training data
Tracking error 1.27E-03 1.26E—03 1.48E—03 1.24E-03 1.32E-03
Excess return 3.61E-04 4.79E—04 2.45E—04 4.44E—-04 4.54E—-04
Fitness value 4.56E—04 3.89E—04 6.18E—04 3.99E—04 431E-04
Test data
Tracking error 1.81E—03 1.83E—03 2.98E—03 1.91E-03 1.78E—03
Excess return 1.57E—-04 4.71E-05 1.07E—-04 1.35E—-04 3.08E—04
Fitness value 8.28E—04 8.92E—04 1.44E—03 8.88E—04 7.38E—04
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Table 4 Major objectives under

L . . GA PSO CSO DEI DE2
the cardinality constraint with
k=20 Training data
Mean tracking error 1.26E—03 1.12E-03 1.64E—03 1.12E-03 1.06E—-03
Mean excess return 3.02E—-04 4.16E—04 2.54E—-04 4.40E-04 3.77E—04
Mean fitness value 4.77E-04 3.49E—-04 6.91E—04 3.38E—04 3.42E-04
Best solution in training data
Tracking error 1.01E-03 1.00E—03 1.21E-03 9.73E—04 1.03E-03
Excess return 2.52E—04 4.06E—04 1.69E—04 3.78E—04 4.01E-04
Fitness value 3.79E—04 2.99E—04 5.21E-04 2.98E—04 3.14E-04
Test data
Tracking error 1.80E—03 1.77E-03 1.76E—03 1.27E—-03 1.62E—03
Excess return 1.83E—04 1.50E—-04 — 2.94E-04 1.45E—04 — 4.78E—05
Fitness value 8.07E—04 8.08E—04 1.03E-03 5.65E—04 8.33E—04
S
: 2
min A(Eg) — (1 = W) Ee + Y pslge(x))
s=1
N
st i = 2 2 K
- N N -
N ]
anl(s O wy) +1 ©
&2(x) = : -1 o
N 3
da=1EOwy) +1 £
$(x) =9 — °
§
N
Zn:l v
X)==—"7"7—"—
84(x) N
gs(x) = \/wn ® COV(rp(t,n)) ® wr{ 0.99 ) . . ) . ) . . . .
(23) 1 5 10 15 20 25 30 35 40 45 50
_ (P\/en ® COV(Vp(t,n)) ® e; trading days
N Fig.4 Simulation results obtained on the test data when k = 5
rp =0 rpt) © Wien)
el 1.1 T T T T T T T T T T
T = Tp O Tp@r)
T
T = T( )
2 i=1 8
1 2 T £
-1 Zt:l U Zt:l U Zt:l U '9'_'3)
é’b - + § T ) T 90 ey T o
2=t Vg 21V, Y=t Vig £
=)
U =[n),In2),,....In(T)7] s

s € Rxo,

where S denotes the number of penalty constraints, and s
ranges from 1 - - - 5. The biased time factor ¢ is only applied

to the major objective, not to the constraints.
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Fig.6 Simulation results obtained on the test data when « = 15
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Fig.7 Simulation results obtained on the test data when k = 20

Proposed framework

This proposed metaheuristic-based framework addresses the
comprehensive ITP. An investor considers the major objec-
tive, general constraints, risk diversification, and the total
budget. Therefore, these considerations form a mathematical
formulation via the penalty technique, and they are addressed
through the framework. The investor determines the qual-
ity of the solutions and the number of iterations, and he or
she repeats this process until reaching the maximum num-
ber of iterations. The overall considerations and operations
are reviewed in Fig. 1. Furthermore, other considerations can
incorporated into this framework.

The framework starts by collecting asset data for the track-
ing index and computing their returns. Then, the investor
considers this problem with various realistic constraints.
Once the issue is settled, these considerations are formulated

with the penalty technique. After formulation, the dataset is
split into training and test subdatasets. Once the dataset is
available, metaheuristic optimization is applied to optimize
the portfolio weight. The following step is to check whether
the optimized portfolio violates any constraints. Eventually,
the performance of the optimized portfolio is evaluated. The
process flow of the framework is summarized in Fig. 2.

The movement of the dataset is discussed here. When the
solutions satisfy the problem constraints in the training set,
these solutions are passed to the candidate set. After checking
for constraint violations, the best solution is applied to the test
dataset. The training dataset is used to discover the optimal
evaluation model in the development stage. In addition, the
standard Pareto principle is applied to split the dataset prop-
erly, as the 80/20 rule states that 80% of the results come
from 20% of the causes [47]. The training and test datasets
are set from 0 to 64%, from 64 to 80%, and from 80 to 100%
of the whole dataset. The dataset is summarized in Fig. 3.
The experimental dataset is derived from Standard and Poor’
s 100 Index from 01/01/2017 to 31/12/2017.

The procedure of the proposed framework is shown in
Framework 1. The pseudocode begins by retrieving the clos-
ing price of the tracking index. Once the asset dataset and
benchmark data are ready, the return is computed. Next,
other functions and parameters are confirmed. After these
steps, the portfolio weight is optimized through metaheuris-
tics. The following step is to check for constraint violations.
Once the solutions satisfy the feasible region, the weight is
stored in the candidate solutions. When all candidate solu-
tions are available, the best candidate in the training dataset is
applied to the test dataset. Eventually, the simulation results
are reported, and the graph is plotted.

Simulation
Simulation settings

In this simulation, the investors are assumed to not have any
bias with respect to the tracking error or the excess return.
Thus, A is set to 0.5. The AUM is set to 10°, the minimum
percentage of the budget to be spent (¢) is set to 0.98, and the
multiplier coefficient for an equally weighted portfolio SD
(¢) is set to 1.2. The cardinality constraint is separately set
to 10 and 20. When the cardinality constraint is set to 10, the
upper bound is set as 0.2. When the cardinality constraint is
set to 20, the upper bound is set as 0.1.

For a fair comparison, the population sizes for all meta-
heuristic algorithms are set to 100. The stopping criteria are
defined by maximum number of iterations 20,000. The CSO
is set to 40,000 maximum number of iterations because it
evaluates half of the particles for each process.
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Table 5 Major objectives under

the cardinality constraint k = 5 s=0 § =20 s =300 s =750 s = 1000
ggl; biased coefficient ¢ on Training data
Mean tracking error ~ 2.49E—03 247E-03  250E-03  2.43E-03 2.45E-03
Mean excess return 4.93E-04 2.37E—04 2.35E—-04  2.09E-04 2.15E—04
Mean fitness value 9.97E—04 1.12E-03 1.13E—-03 1.11E-03 1.12E-03
Best solution in training data
Tracking error 2.39E-03 233E-03  2.34E-03  2.44E-03 2.44E—-03
Excess return 5.50E—04 1.I9E-05  6.75E—05  2.43E-04 2.43E-04
Fitness value 9.20E—04 1.16E—03 1.14E-03 1.10E-03 1.10E-03
Test data
Tracking error 3.16E-03 351E-03  3.62E—-03  2.99E—03 2.99E-03
Excess return — 3.05E—-04 1.71E-04 1.81E-04  —1.84E—-04 — 1.84E—-04
Fitness value 1.73E-03 1.67E—03 1.72E—03 1.58E—03 1.58E—-03
Table 6 Major objectives under c=0 ¢ =250 ¢ =500 c =750 c = 1000

the cardinality constraint k = 10
with biased coefficient ¢ on
DE1

Training data
Mean tracking error 1.63E—03 1.70E-03 1.69E—03 1.70E—03 1.76E—03
Mean excess return 4.61E—-04 2.28E—04 2.52E—-04 2.43E-04 2.85E—04
Mean fitness value 5.84E—04 7.38E—04 7.18E—04 7.30E—-04 7.36E—04
Best solution in training data

Tracking error 1.46E—03 1.73E-03 1.73E—03 1.73E—03 1.69E—03

Excess return 3.67E—04 2.95E—04 2.99E—04 291E—-04 2.95E—04

Fitness value 5.49E—-04 7.17E—04 7.15E—-04 7.18E—04 6.98E—04

Test data

Tracking error 2.91E-03 1.95E-03 1.96E—03 1.95E-03 1.98E—03

Excess return 6.95E—04 2.24E—04 2.38E—04 2.35E-04 — 5.75E—-04

Fitness value 1.11E-03 8.65E—04 8.59E—04 8.56E—04 1.28E—03
Table 7 Major objectives under c=0 ¢ =250 ¢ =500 ¢ =750 ¢ = 1000

the cardinality constraint x = 15
with biased coefficient ¢ on

Training data

DEI Mean tracking error 1.28E—03 1.40E—03 1.39E—-03 1.43E-03 1.41E-03
Mean excess return 4.18E—-04 3.13E-04 2.61E-04 1.99E—-04 231E-04
Mean fitness value 433E-04  5.41E-04 5.66E—04 6.16E—04 5.88E—04

Best solution in training data
Tracking error 1.24E-03 1.32E—-03 1.28E—03 1.25E—-03 1.22E-03
Excess return 444E—-04  3.53E-04 2.71E-04 1.50E—04 2.14E-04
Fitness value 3.99E—-04  4.84E—04 5.05E—-04 5.49E—-04 5.01E-04
Test data
Tracking error 1.91E-03 1.75E—03 1.37E—-03 1.77E—-03 1.92E—-03
Excess return 1.35E—-04 —198E-06  — 1.36E—05 — 2.06E—-04 1.53E—-04
Fitness value 8.88E—04  8.75E—04 6.93E—-04 9.87E—04 8.85E—04
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Table 8 Major objectives under

the cardinality constraint « = 20 s=0 s =250 s =300 s=70 s = 1000
ggl; biased coefficient ¢ on Training data
Mean tracking error 1.12E-03 1.22E-03 1.24E-03 1.20E-03 1.23E-03
Mean excess return 4.40E—04 2.59E—-04 2.90E—04 2.51E—-04 2.66E—04
Mean fitness value 3.38E—-04 4.80E—04 4. 73E—04 4. 7T6E—04 4.80E—04
Best solution in training data
Tracking error 9.73E—04 1.19E-03 1.21E-03 1.17E-03 1.18E—03
Excess return 3.78E—04 2.57E—-04 3.13E-04 3.63E—04 2.80E—04
Fitness value 2.98E—04 4.66E—04 447E—04 4.05E—04 448E—04
Test data
Tracking error 1.27E-03 1.54E-03 1.31E-03 1.39E-03 1.79E-03
Excess return 1.45E—04 1.04E—-04 — 5.02E-05 3.02E—04 1.07E—04
Fitness value 5.65E—04 7.17E—04 6.81E—04 5.45E—-04 8.39E—-04
1.07 T T T T T T T T T T 1.07 T T T T T T T T T T
—— S&P 100
1.06 - biased coefficient ¢ = 0 1.06 - s& RI0O _
R . iased coefficient ¢ =0
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Framework 1 pseudocode of the metaheuristics-based

framework

The tracking index and the period of the dataset are determined

n is the current number of the assets under the tracking index.

wy is the portfolio weight for the current n assets.

Cg,n: represents the candidate solutions for the calculated weight.

s is the number of feasible solutions for the weight.

Runs represents the number of independent runs used for the tested metaheuristic.
my is a performance measurement of the objective function on the training dataset.
m, is a performance measurement of the objective function on the test dataset.

F (x): represents the fitness function of the EITP with various constraints determined
by the penalty technique according to equation 23.

s <1
for each Runs do
sets the dataset to the training set.
while metaheuristic is not convergence do
I, < calculates the full share constraint with the rounding algorithm via equa-
tion 17
wy < reconstructs the weight with the number of whole shares /,, determined
by equation 18
wy < optimizes the weight through a metaheuristic for the fitness function
F(x)
end while
I, < calculates the full share constraint with the rounding algorithm via equation
17
wy < reconstructs the weight with the number of whole shares 7, by equation18
(gs(x)) < measures the constraint violations on the training set.

if V((gs(x))) €0 then
m; < evaluates the performance achieved on the training set by f(x) without
constraints
Cs,n < wp saves the feasible solutions of the weights.
s<s+1
end if
end for
if Cs.n # ¢ then
id < denotes the index of the minimum value over the objective functionmin (i, )
or the training dataset.
wp < Cign
Set the dataset to the test set
I, < calculates the full share constraint with the rounding algorithm via equation
17
wy < reconstructs the weight with the number of whole shares I, by equation

wy < rounds the weight to prevent cardinality constraint violations via equation
19
while budget overrun do
x < find the id for available stock with smallest stock price to remove
In < I, —1
wy < reconstructs the weight with the numbers of whole share 7;, by equation
18
end while
me < evaluates the performance achieved on the test set by the best solution for
F(x) without all constraints
else
all Cs 5, denotes the solutions not in the feasible region that violate the constraints.
end if
The result are reported, and the graph is plotted.

For the GA, binary tournament selection and uniform
crossover are used. For PSO, the inertia weight is set
to 0.72984, and personal-best and global-best acceleration
parameters are set to 2.05. Mutation is applied to enhance
the algorithmic performance. The mutation rates of the GA
and PSO are set to 0.02. For the CSO, the control parame-
ter of the mean position is set to zero because the number
of decision spaces is less than one thousand. Note that this
parameter is suggested from the original paper. Regarding
DE, two schemes are compared in this paper. The amplifi-
cation factor is set to 1, and the crossover rate is set to 0.3
in scheme 1. In scheme 2, the amplification factor is set to
1, the crossover rate is set to 0.2, and the additional control
parameter is set to 0.99.
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Simulation results

The penalty terms control the magnitudes of the constraint
violations. Thus, the penalty terms need to be investigated
carefully. The penalty terms p1(x), p2(x), p3(x), pa(x), and
ps(x) are set to 100, 100, 2000, 10 and 200, respectively.
After determining the suitable penalty terms, the remaining
simulations are based on the described settings.

The performances of the GA, PSO, CSO, and DE are com-
pared within the proposed framework. The major objectives
of various cardinality constraints are presented in Tables 1,
2, 3 and 4. The cumulative returns are presented for the test
data in Figs 4, 5, 6 and 7. Note that N/A denotes the con-
straint is not satisfied and the solution is dropped. It can be
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seen that DE1 performs better than other compared algo-
rithms in most of the test cases. Based on this observation,
further investigations are conducted using DE1. When the
value of the biased time coefficient is greater, the weight is
biased towards the later period. It is expected that the later
period of the training data is more important in the ITP, and
a biased time coefficient can improve the result. The biased
time coefficient is set to 0, 250, 500, 750, and 1000, and the
performances of various biased time coefficients are tested.
Results are presented in Tables 5, 6, 7 and 8. Figures 8, 9,
10 and 11 present the cumulative returns on cardinality con-
straints with various biased time coefficients. Note that the
cumulative return is calculated by the cumulative product
for the return. When the cardinality constraint is relaxed, the
fitness value is decreased. Figure 12 shows the change in fit-
ness value with various metaheuristics. Figure 13 presents the
change in fitness value with various biased time coefficients
on DEI. It can be concluded that the use of metaheuristics
in the proposed framework is able to solve the formulated
optimization problem.

Conclusion

In this paper, the EITP and various practical constraints are
addressed by the proposed metaheuristic-based framework.
The proposed framework is different from traditional frame-
works which makes use of a fully global approach rather
than a suboptimal global-local approach. The traditional
method achieves unstable performance. Metaheuristics can
obtain global solutions with probabilities. Moreover, sparsity,
weights, AUM, transaction fees, the full share restriction, and
risk diversification are considered.

In summary, the comprehensive ITP is addressed by the
proposed framework. In the simulation, the GA, PSO, the
CSO, and DE are applied to the comprehensive ITP, and a
competitive result is obtained by the proposed method. In
addition, the framework can incorporate other practical con-
straints. In the future, this framework will be able to feasibly
be run on further simulations through other metaheuristics
and datasets derived from other benchmark market tracking
indices.
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