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Abstract 

Beavers’ habitat is known to alter the terrain, pro-
viding biodiversity in the area, and recently their 
lifestyle is linked to climatic changes by reduc-
ing greenhouse gases levels in the region. To 
analyse the impact of beavers’ habitat on the re-
gion, it is, therefore, necessary to estimate the 
terrain alterations caused by beaver actions. Fur-
thermore, such terrain analysis can also play 
an important role in domains like wildlife ecol-
ogy, deforestation, land-cover estimations, and 
geological mapping. Deep learning models are 
known to provide better estimates on automatic 
feature identifcation and classifcation of a ter-
rain. However, such models require signifcant 
training data. Pre-existing terrain datasets (both 
real and synthetic) like CityScapes, PASCAL, 
UAVID, etc, are mostly concentrated on urban 
areas and include roads, pathways, buildings, etc. 
Such datasets, therefore, are unsuitable for for-
est terrain analysis. This paper contributes, by 
providing a fnely labelled novel dataset of forest 
imagery around beavers’ habitat, captured from 
a high-resolution camera on an aerial drone. The 
dataset consists of 100 such images labelled and 
classifed based on 9 different classes. Further-
more, a baseline is established on this dataset us-
ing state-of-the-art semantic segmentation models 
based on performance metrics including Intersec-
tion Over Union (IoU), Overall Accuracy (OA), 
and F1 score. 

1. Introduction 
Beavers are well-known for changing the existing ecosystem 
and terrain by cutting down trees, digging canals, construct-
ing dams and lodges on streams, thereby, creating wetlands 
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and ponds. Recent studies (Nummi et al., 2018) have in-
dicated that building dams increase the water levels in the 
area and as a result, reduces the carbon levels by absorbing 
carbon directly from soil and carbon dioxide from the air. 
This carbon is further dissolved in the soil to be later used by 
plants or is transferred downstream. To estimate the impact 
on climate, it is, therefore, necessary to frst identify the 
changes in the terrain around beavers’ habitat caused by 
beaver actions. Hence, the main aim of this research is to 
analyse the performance of pre-existing deep learning mod-
els to perform classifcation and recognition of local textural 
patterns like shrubs, beaver lodges and dams, vegetation, 
trees, etc within terrain images. 

Legacy computer vision methods like colour histogram and 
estimating the colour frequency and other feature map ex-
traction models like Random Forests (RF) (Breiman, 2001) 
and Conditional Random Fields (CRFs) (Lafferty et al., 
2001) etc were used previously however such algorithms 
are mostly ineffective as terrain images are susceptible to 
climatic and locality-based changes. Furthermore, colour 
characteristics within the same class make them indistin-
guishable from each other, sometimes, even for a human 
eye. 

Semantic segmentation assigns each pixel in an image a 
specifc class label, which is the core requirement of our 
classifcation problem. Semantic segmentation divides the 
data in the domain into smaller units like superpixels, super 
voxels, grid-based units, etc. Object detection, in contrast, 
uses a template matching algorithm and creates a bound-
ing box over units based on the correlation between the 
matching template and the pixel data. Such a bounding box 
never tightly fts the detected classes and hence not usable 
on terrain patterns captured by aerial drone imagery, where 
the size of such objects is extremely small. Deep neural 
networks outperform any other frameworks used in com-
puter vision for solving problems in domains like pattern 
recognition, feature extraction, and detection/classifcation. 
Because of the complexity of the patterns in terrain, current 
classifcation problem requires proper extraction of features 
from images for classifcation. One of the most important 
challenges thus, using such models, is the lack of datasets 
to train deep models. The key contributions of this paper, 
thus, include (a) A novel dataset that consists of 100 high-
resolution images taken from UAV near beaver habitat. The 
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images are labelled for 9 distinct classes. Images are split 
into two parts, training and validation. Training contains 
70 images whereas validation and testing contain 30 im-
ages. Each image is 18 MB with 300 dpi and pixels size 
is 5472*3648. (b) A benchmark on the proposed dataset 
by evaluating multiple state-of-the-art segmentation mod-
els. The evaluation is performed using 3 different metrics 
namely, Overall accuracy (OA), Dice coeffcient (F1 Score), 
and Jaccard index (Intersection over union - IOU). 

The rest of this paper organized as follows: Section 2 pro-
vides an overview of the current literature, Section 3 intro-
duces our proposed dataset for forest terrain identifcation 
containing patterns that contribute to the climatic conditions, 
Section 4 discusses our evaluation approach and a bench-
mark for the proposed dataset, Section 5 presents evaluation 
results and a discussion of results, and fnally, Section 6 
concludes the paper and discusses future works. 

2. Literature Review 
FCN (Shelhamer et al., 2016) performed segmentation tasks 
with high accuracy by performing an “end-to-end” training 
mechanism. Such convolutional networks take any image of 
any input size based on the model parameters and then out-
put the same image with segmented masks applied. (Zürn 
et al., 2020) explored the self-supervised learning in the 
domain of terrain identifcation for self-autonomous robots. 
(Kattenborn et al., 2021) used different CNN-based archi-
tectures to identify vegetation via remote sensing. 

A powerful deep network U-Net (Ronneberger et al., 
2015) introduced skip connections and residual networks to 
achieve high accuracy on a biomedical dataset. The model 
can be enhanced using multiple architectural backbones and 
weights from different models. SegNet (Badrinarayanan 
et al., 2016) was an upgrade to UNet. Instead of passing 
complete features to the next layer, only the max pooled 
version of features was passed on thereby increasing per-
formance. Similarly, basic computer-vision-related tasks 
like rotation equivariance were performed to segment high-
resolution images captured from a direct fight path. (Arun 
et al., 2019) created dataset using super-high-resolution im-
ages from drones to train different CNN however the dataset 
mostly consists of mild areas and is not suitable for forest 
terrains. (Fikri et al., 2019) used CNN to cluster trees as su-
perpixels and then perform pixel-based segmentation using 
colour threshold. 

Simple Linear Iterative Clustering (SLIC) (Achanta et al., 
2012), and Simple Non- Iterative Clustering (SNIC) 
(Achanta & Susstrunk, 2017) have successfully been im-
plemented to generate powerful superpixel based segmen-
tations. SLIC performs k-means on CIELab colour code 
instead of using RGB images to generate macro superpixels. 

The SNIC algorithm instead of using k-means like SLIC 
clusters pixels by explicitly enforcing connectivity from the 
start. 

Since superpixels make a macro pixel of localized area, 
adding CNN to train such models reduces the complexity 
and improves effciency for semantic segmentation. Such 
a model was used by (Yang et al., 2020) where superpixels 
were used with CNN on a video stream of 50fps. Superpix-
els were then down-up sampled using autoencoder approach 
to generate predictive masks. (Wang et al., 2019) used 
similar approach however they introduced two datasets to 
classify porifera region in water. (Chen et al., 2019) used 
multiple superpixel methods to classify land cover area us-
ing deep neural networks. However, the problem remains 
challenging. 

3. Proposed Dataset 
The goal of this research is to perform a quantitative analysis 
of different terrain patterns for climate analysis using state-
of-art models. To this end, the dataset must contain all 
possible patterns that contribute to the climatic conditions. 
It is also important to capture and identify data that must 
not be biased to a single class as some patterns can be 
in excessive quantity in a terrain than others. For forest 
terrain identifcation, no such dataset so far, to our best of 
knowledge, is available. The terrain identifcation requires 
images, to be captured from an aerial view to encompass a 
large area. Some of the already existing datasets available 
are CityScapes (Cordts et al., 2016) PASCAL (Everingham 
et al., 2015) UAVID (Lyu et al., 2020) etc. However, none of 
the above datasets contain images related to forest imagery 
and are mostly concentrated on urban regions, containing 
buildings, road pathways, etc. 

3.1. Data Collection 

To collect data, UAVs are used with mounted cameras hav-
ing a resolution of 18 megapixels. A single image resolution 
is 5472*3648 with each image size being approximately 13 
MB. The images are captured on a medium sunny day to 
acquire maximum details of the terrain. For annotations, 
multiple 3rd party tools are available. Some of the famous 
tools are QGIS (QGIS, 2020), ArcGIS (ArcGis, 2020) and 
LabelBox (LabelBox, 2020). After careful consideration 
and experiments, we found LabelBox to be easier to use. 
The annotations are performed on 100 different images with 
all images selected in a manner to create a balanced dataset 
for all classes. 

The terrain is classifed into 10 different classes and their 
percentage is dataset is shown in Table 1. ROI (Region of in-
terest) annotations were performed on images on maximum 
zoom to provide the best possible results and therefore took 
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(a) Stones (b) Water (c) Grass (d) Dam 

(e) Shrub (f) Large Shrubs (g) Vegetation (h) SoilFigure 1. Dataset classes 

(a) (b) 

(c) (d) 

Figure 2. (a) and (c) are sample images. (b) and (d) are correspond-
ing generated masks. 
nearly 30 min - 1 hour on an image based on the complexity 
of terrain in each image. Sample images and their corre-
sponding generated masks are shown in Fig 2 and Fig 2. 
Each image was labelled in maximum resolution; therefore 
each image is subdivided into 240 parts keeping aspect ratio 
same to avoid any distortions. Each image thus generated 
has a resolution of 342*243. Furthermore, these images 
are subjected to cropping to adjust their sizes to 340*240. 
This action is performed to avoid size differences, caused 
by applying pooling layers in deep models. 

3.2. Dataset Classes 

Table 1. shows the chosen class attributes and their percent-
age of occurrences in the dataset. It should be noted, even if 
the images were high resolution, there are some instances 
where small terrain patches are not clearly recognized and 

Table 1. Distribution of classes in the dataset 
CLASS TRAIN(%) VALIDATION(%) 

UNKNOWN 1.58 1.64 
SHRUBS 15.72 13.83 
GRASS 14.05 13.74 
LARGE SHRUBS 10.22 11.22 
VEGETATION 13.41 13.16 
STONES 11.38 10.43 
WATER 12.35 13.73 
SOIL 13.05 14.26 
BEAVER DAM 8.24 7.99 

are marked with class unknown. The datasets are marked 
in a fashion to keep such annotations minimum. Further-
more, corresponding class masks are given zero RGB values 
to avoid any conficts with other classes. Sample class im-
ages are shown in Fig 2. 

4. Evaluations 
Evaluation of the performance of any deep learning model 
on a dataset poses different challenges. The models may 
provide good results depending on measured performance 
metrics. However, the real performance (e.g. accuracy) can 
be quite different when wrong metrics are selected, there-
fore, it is necessary to test models on multiple metrics. To 
evaluate the state-of-art models on our dataset, the models 
are evaluated using 3 different metrics and the result are 
summarized in a table. 

4.1. Performance Metrics 

Pixel accuracy is a quantitative metric that calculates the 
percentage of correct pixels classifed for a class compared 
with the actual ground truth. This metric is greatly affected 
by class imbalance. The metric assigns equal weight 
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Table 2. Pre-trained Models used for Evaluation 

Model Description 

UNet (Ron-
neberger et al., 
2015) 
FPN (Lin et al., 
2017) 

HR-Net (Sun 
et al., 2019b) 

An Encoder-Decoder architecture with Skip-Connections. The encoder is feed-forward CNN (backbone) 
to extract feature maps of images. Decoder upsamples the feature map to generate back the information. 

Bottom-up pathway is a CNN (backbone) to extract feature maps. Using pyramid modelling strategy, 
low-resolution feature map from higher layers are merged with high-resolution feature map from lower 
layers and result is provided to object detector model 
The high-resolution features in their initial architecture for pose estimation (Sun et al., 2019a) is 
concatenated with features gathered from facial detection and segmentation transformer (Sun et al., 
2019b) 

Table 3. Baseline Experimental Results 

Model Backbone Batch Epoch Accuracy IOU FI 

UNet (Ronneberger et al., 2015) 
UNet (Ronneberger et al., 2015) 
UNet (Ronneberger et al., 2015) 
FPN (Lin et al., 2017) 
FPN (Lin et al., 2017) 
FPN (Lin et al., 2017) 
HR-Net (Sun et al., 2019b) 
HR-Net (Sun et al., 2019b) 
HR-Net (Sun et al., 2019b) 

Vgg19 (Simonyan & Zisserman, 2015) 
InceptionV3 (Szegedy et al., 2017) 
ResNet50 (He et al., 2015) 
Vgg19 (Simonyan & Zisserman, 2015) 
InceptionV3 (Szegedy et al., 2017) 
ResNet50 (He et al., 2015) 
Vgg19 (Simonyan & Zisserman, 2015) 
InceptionV3 (Szegedy et al., 2017) 
ResNet50 (He et al., 2015) 

32 
32 
32 
32 
32 
32 
32 
32 
32 

50 
50 
50 
50 
50 
50 
50 
50 
50 

0.52 
0.64 
0.55 
0.68 
0.71 
0.67 
0.61 
0.68 
0.65 

0.32 
0.37 
0.33 
0.72 
0.81 
0.76 
0.76 
0.83 
0.81 

0.39 
0.44 
0.42 
0.78 
0.84 
0.82 
0.82 
0.87 
0.85 

to both false positives and false negatives. Consider a bi-
nary classifcation problem in an image, whose contents are 
highly imbalanced containing 90% of one class and just 
10% of second class. The prediction accuracy will be high 
for the class that is imbalanced whereas the actual accuracy 
for all classes can be low. 

IOU (Intersection-Over-Union), also referred to as Jaccard 
Index, is the most commonly used evaluation metrics in 
domains like Object detection and semantic segmentation. 
It evaluates the performance of the model by calculating the 
area of overlap between ground truth results and prediction 
and area of union. IOU can be used to evaluate multi-
classifcation problems by calculating the IOU of each class 
and then taking an average. 

FI Score is a similar metric to IOU and is generally called by 
its second name dice coefficient. The metric can 
be calculated using formula (2 * area overlapped) 
/ (Sum of pixels in the ground truth 
and predicted). Evaluations performed by both IOU 
and F1 score are correlated. Hence, if one metric gives an 
indication that the accuracy is low, the other metric will 
give the same indication. Dice coeffcient measurements 
tend to be closer to average whereas IOU measurements 
tend towards worst-case performance values. 

5. Results and Discussions 
We have used transfer learning approach to create a bench-
mark on proposed dataset. The models used for segmen-
tation training are UNet (Ronneberger et al., 2015), FPN 
(Lin et al., 2017) and HR-Net (Sun et al., 2019b). A de-

scription of models is given in Table 2. To extract feature 
maps from images and their corresponding masks, multiple 
classifcation models’ weight sets are used as a backbone, 
namely, Inception (Szegedy et al., 2017), Vgg19 (Simonyan 
& Zisserman, 2015), Resnet50 (He et al., 2015) weights set 
(trained on Imagenet dataset (Deng et al., 2009)). 

For training purposes, the training batch size is set to 32 
as empirical evidence suggests a batch size of 32 provides 
the best results (Mishkin et al., 2017). Because of limited 
computing power, the epoch is set to 50 to get the most 
results. For the loss function, the Cross-entropy loss is 
opted for accuracy metric whereas, for IOU and F1 metrics, 
Jaccard loss and Dice loss are used respectively. 

The training results acquired from all models are described 
in Table 3. Inception architecture as a backbone gives better 
results as compared with all other backbones for all met-
rics because of its deep layered architecture. The overall 
accuracy has behaved differently than other metrics, this is 
because shrub and vegetation percentage in a single image 
exceeds any other class percentage in the same image. How-
ever, other metrics are used to address this issue which can 
be evident from the results of HR-Net out-performing other 
models for both F1 score and IOU metrics. 

6. Conclusion and Further Work 
This paper introduces a new dataset for forest terrain identi-
fcation using semantic segmentation, near beaver habitat, 
from UAV captured images. Nine different classes were 
identifed and annotated using 3rd party tools. Furthermore, 
the dataset was used to train several state-of-the-art deep 
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neural networks and a benchmark was provided and anal-
ysed for future case studies. For future work, we expect 
to add more classes and to expand the size of the existing 
dataset for training larger deep models. Furthermore, we 
plan to enhance existing deep models to provide a state-of-
the-art novel framework that will outperform the existing 
deep models on our dataset. 
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