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Abstract: Safe cycling requires situational awareness to identify and perceive hazards in the environ-
ment to react to and avoid dangerous situations. Concurrently, tending to external distractions leads
to a failure to identify hazards or to respond appropriately in a time-constrained manner. Hazard
perception training can enhance the ability to identify and react to potential dangers while cycling.
Although cycling on the road in the presence of driving cars provides an excellent opportunity to
develop and evaluate hazard perception skills, there are obvious ethical and practical risks, requiring
extensive resources to facilitate safety, particularly when involving children. Therefore, we developed
a Cycling and Hazard Perception virtual reality (VR) simulator (CHP-VR simulator) to create a safe
environment where hazard perception can be evaluated and/or trained in a real-time setting. The
player interacts in the virtual environment through a stationary bike, where sensors on the bike
transfer the player’s position and actions (speed and road positioning) into the virtual environment.
A VR headset provides a real-world experience for the player, and a procedural content generation
(PCG) algorithm enables the generation of playable artifacts. Pilot data using experienced adult
cyclists was collected to develop and evaluate the VR simulator through measuring gaze behavior,
both in VR and in situ. A comparable scene (cycling past a parked bus) in VR and in situ was used.
In this scenario, cyclists fixated 20% longer at the bus in VR compared to in situ. However, limited
agreement identified that the mean differences fell within 95% confidence intervals. The observed
differences were likely attributed to a lower number of concurrently appearing elements (i.e., cars) in
the VR environment compared with in situ. Future work will explore feasibility testing in young
children by increasing assets and incorporating a game scoring system to direct attention to overt
and covert hazards.

Keywords: virtual reality; serious video game; visual search; cycling; hazard perception

1. Introduction

Cycling is a suitable strategy to increase physical activity levels [1]. Whilst bicycle
ownership is high [2], the uptake of cycling for transport or leisure in both adults and
children is low. This uptake is partly attributed to the risk perception associated with the
dangers of cycling [3]. Although objective dangers, such as road design and traffic density,
are essential factors in determining risk perception, it is equally important to consider
the ability to identify, anticipate, and adapt behavior in these dangerous situations. This
process is commonly referred to as hazard perception.

Hazard perception can be defined as the ability to anticipate dangerous situations
based on perceptual evidence [4]. Research suggests that expertise differences in hazard
perception range from solely identifying salient information (e.g., cars) to “reading” more
complex travel scenes to evaluate potential dangerous scenes of a less salient nature (e.g.,
considering not having a line of sight and covert hazards, [5,6]). These hazard perception
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abilities are typically examined in video-based paradigms, where reaction times, response
rates, and eye movements from a road user’s perspective are investigated.

For example, the authors in [7] developed a 2-D cycling simulator and identified that
young adult cyclists looked more at task-irrelevant objects in the environment compared
to elderly adults. Similarly, researchers in [8] exposed young children to overt and covert
hazards in a video-based paradigm to examine hazard identification and demonstrated
that children had delayed reaction times and time until the first fixation on the latent covert
hazards compared to adults.

While using 2-D video-based approaches to measure hazard perception in cyclists
allows the direction of overt visual attention (i.e., gaze behavior) in identifying potential
hazards to be measured, the initiation of avoidance strategies in response to these hazards
is not commonly assessed. In addition, gaze behavior in 2-D video-based stimulation
is adapted due to a reduction in contextual information [9], and participants’ adaptive
behavior (e.g., avoidance behavior) is often not possible to examine.

The use of a stereoscopic VR environment provides further contextual information
(i.e., depth), allowing enhanced perception of information, particularly if combined with
physical interactivity in this environment. For example, the authors in [10] compared
visual search behavior in real-world walking to navigating a virtual simulation of this
environment. However, differences in gaze distribution were observed potentially due
to the restricted physical movement in VR. There were no significant differences in dwell
times between VR and the real world.

These findings support the use of VR as a simulation of the real world, particularly
as it can enhance experimental control over real-world experiments while maintaining
ecological validity. In our previous work, [11], we examined the visual search behavior
of children cycling through naturalistic environments of various task complexities to
understand children’s hazard perception abilities better. However, the lack of control in
stimuli exposure made it challenging to examine hazard perception changes as a function
of ability, cycle training, or hazard perception training (c.f., [12]). The development of a
VR environment could provide opportunities to examine this while reducing the ethical
and practical risks associated with the on-road assessment of cycling behavior in children
and adults.

Contributions

In the current work, we developed a Cycling and Hazard Perception VR simulator
(CHP-VR simulator). The VR simulator includes a safe and controlled environment that
monitors cyclist behavior while cycling in traffic and cluttered areas [13] (a busy environ-
ment with many distractions, e.g., people and street objects). The CHP-VR simulator reads
real-time data from sensors while the player interacts with the environment. The devel-
oped framework aids in determining the cyclist’s reaction time in a hazardous situation,
visual search behavior when encountering an obstacle/hazard, and managing the various
situations (e.g., initiating an avoidance strategy).

Sensors were used to record the player kinematics, body orientation, and speed on the
stationary bike, which was transferred to the virtual scene, enabling the player to proceed
in the 3D world through a data-driven approach. Concurrently, visual orienting in VR was
assessed by integrating eye-tracking with the VR head-mounted display to collect visual
search data.

Virtual objects are generated using a procedural algorithm to offer an immersive
environment that is replayable. The fusion of Procedural Content Generation (PCG) and
Machine Learning (PCGML) algorithms facilitates a cost-effective optimum computation
time for content generation in a VR environment. Optimum computation time is vital in
this development due to the demand for real-time data from sensors to progress the virtual
environment. Advancements in processing speed and graphics hardware made it possible
to achieve a 3D environment that runs smoothly acquiring real-time messages from sensors
generated by the player.
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In this study, the use of PCGML rendered a unique appearance and performance with
various hazardous conditions on streets and roads. The virtual hazards were generated
via Non-Player Characters (NPCs) and objects, including pedestrians crossing a road,
pedestrians congregating on the side of the road, a bench or bus stop, cars pulling over,
or parking in cluttered areas that distract the player’s attention or obscures their view.
The study uses the generated virtual environment to analyze cyclists’ field of view and
visual fixation.

Pilot data was collected on older adults and demonstrated that it is possible to develop
a CHP-VR simulator that reflects cycling in an outdoor environment. The results also
indicate that cyclists behave comparably in VR compared to in situ environments. However,
further work is needed to fully understand the comparability of visual search behavior in
both VR and situ settings.

The aim of the study was two-fold. First, the aim was to develop an interactive and
immersive CHP-VR simulator that demonstrated potential applicability for developing
hazard perception among young cyclists. Based upon the successfully developed CHP-VR
environment, the study’s second aim was to evaluate the behavior of cyclists in VR and in
situ cycling.

2. Materials and Methods
2.1. Content Generation Algorithms

The virtual environment developed is interactively explored from a first-person per-
spective. All geometrical components of the streets are generated as the user encounters
them. The scene and roads are generated using pseudo-infinite virtual objects in real-
time [14]. A pseudo-irregular number generator is utilized with an integer derived from
buildings, trees, and roads. The road plan is made by consolidating randomly generated
geometries in an iterative interaction to foster intersections with sharp bends.

PCG’s critical property describes the entity as a sequence of generation instructions
rather than static block information. The boundaries set in the algorithm allow the genera-
tion of occasions with differing qualities.

In a PCG, mathematical and texture data are not determined in the ordinary sense.
Instead, details are abstracted into an algorithm with few details. The parameters in the
algorithm are adjusted according to a specific behavior, i.e., the number of PCG segments.
PCG enables capturing the essence of an entity without explicitly bounding it inside the
present reality limit. By fluctuating boundaries, we could deliver a broad scope of results
not restricted to the original model’s limitations.

To generate the terrain, we isolated it into square cells on a 2-D matrix where every cell
addresses an intermediary for its procedurally produced content. The cells are orchestrated
in square loops around the camera’s position situated at the middle. Cells are tried for
possible permeability before their substance is produced. Every cell in our virtual scene
contains buildings, roads, and trees. The point dictates the possible permeability between
the cell and the viewing direction and the camera’s distance. In our execution, only the
substance of cells situated inside a 120◦ survey point and a distance of [loops × cell-size]
are considered apparent.

The street’s appearance was determined by a single thirty-two-bit pseudo-random
number generator (PRNG) seed [15]. The random number sequence creates streets with
buildings, trees, and road layouts through the vertexes and height values. Comparative
initial groupings of arbitrary numbers for comparable seeds were found with the irregular
number generator. Comparative arrangements of numbers could bring about comparable
formats. The terrain types are stored in a macro-matrix grid, which is utilized to make
customized height maps.

If the vertex being analyzed is mapped to a macro-matrix location described as a
green area with trees, a pedestrian crossing, buildings, or roads with traffic lights, then
the algorithm assigns a height value required by that vertex to create the height. PRNGs
produce a sequence of random numbers that are two-dimensional polygons with an initial
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seed value. When initialized with the same seed, indistinguishable groupings of numbers
are delivered.

The subsequent virtual items have their stature and width characterized by the most
extreme size of marked integers. The macro-matrix has (i, j) segments that address a few
vertices in the virtual world. The terrain height generation uses parametric functions that
inform the height value of each vertex. The functions are seeded with the point location in
the world. Consequently, the function can describe all the height information globally with
no limitation concerning its size. The processing time is identified with the user’s view as
the functions employ the point information to calculate its height value.

Simplex noise (SN) stochastic functions are integrated to generate a pseudo-random
gradient vector at each lattice point of the terrain, and the pseudo-random gradients
determine its behavior between lattice points and interpolate a smooth function between
the points. The method comprises making a lattice of irregular slopes, the dot products
of which are then interpolated to acquire values between the grids [16]. Each corner of
the SN containing P has a unit length random gradient vector Gvc = G(P) where G is the
pseudo-random gradient function and c is one of the N + 1 corners of the SN.

The scalar item is found between the inclination vector Gvc and the gradient slopes Grc
to acquire a scalar value of Sc. In SN, each Sc esteem is increased by a radially symmetric
lessening function to obtain a weighted scalar worth. Each Sc will be duplicated by weight
wc addressing each corner’s distance to P. In an execution made by Gustavson [17];

wc = (max(
1
2
− (Dx2

c − Dy2
c ), 0))4 (1)

where Dxc and Dyc are the distances in the x and y directions between each c and P. Only
the c corners influence a point found inside a given Simplex, as other vertices in the Simplex
matrix will disintegrate to zero preceding arriving at the current Simplex. Each edge of the
Simplex is at an equivalent distance. The qualities are, as of this point, weighted depending
on their connection to P to lessen the need to introduce. The outcome is the summation of
weighted qualities for each N + 1 corner of the current SN.

Rare examples are generally portrayed in the recurrence area, and a sign is controlled
by indicating the plentifulness and stage for each recurrence [18]. Four-dimensional SN
was used in this examination because of its low computational intricacies, low number of
augmentations, low spot items, and scale-capacity for higher measurements [19,20]. SN
execution utilized numerical organize changes and slope commotions to produce smooth
and constant capacities without sharp edges.

Most VR games currently developed reuse the same assets when rendering the VR
environment with NPCs and assets [21]. We used machine learning to generate 3D models
employing a class of deep learning algorithms to address this shortfall and to ensure the
cycling (user) did not become overly familiar with the environment being encountered.
The objects were validated via the machine learning model and rendered via the Unity
Game Engine.

The algorithm improved continuously by receiving feedback from the output mesh
after every iteration. We used a UV map to use machine learning to optimize the game
engine performance and avoid a lag when rendering objects. A standard map for the objects
was created, and textures were applied on top of a base mesh and vertices of landmarks
through the baking process. The algorithm generated new content based on provided
examples as a draft for the designer to polish and finish the drafted content afterward.

PCG was fused with machine-learned models (PCGML) to generate VR content. The
models were trained on existing VR contents [22]. PCGML is a technique for creating
different content and replicating designed content to provide the player with infinite
and unique gameplay variations. PCGML autonomously generates game artifacts at the
time of generation. PCGML techniques were organized through two dimensions: Data
Representation and Training Method. Data Representation is the underlying representation
of the data used for training and generation. The machine learning technique was utilized
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for training the model. PCGML uses the created set of representative artifacts (NPCs,
and objects in the scene) in the target domain as a model for the generator, and then the
algorithm generates new content in this style.

2.2. Participants

Six participants aged 33.7 ± 8.5 years (mean ± SD) were recruited to the study
through opportunistic sampling. The participants were approached from an opportunistic
mixed-gender sample that participated in a previous study on visual search behavior in
on-road cycling. Participants who volunteered to partake in the current study were male,
self-classified as “experienced cyclist,” and cycled on average 3.8 ± 2.9 h per week. The
Declaration of Helsinki’s tenants was observed, and institutional ethical approval for the
study was provided. Before participation, written informed consent was obtained from the
participants. MATLAB R2020a was used to analyze the data collected from the participants.

2.3. CHP-VR Simulator Procedure

The participants were invited (individually) to attend a laboratory that included the
CHP-VR simulator set-up. On arrival, a demonstration of the equipment was provided.
The stationary bicycle’s saddle and bar handle height was adjusted to suit the rider’s
position, and the participant was made familiar with the bicycle gearing. It was clarified
that the participant should cycle at a leisurely and comfortable speed, adhering to the
cycling rules outlined in the Highway Code. Following the fitting and calibration of the
head-mounted display (HMD), the participants completed an initial 3-minute practice
trial. Following familiarization, a break was provided, and initial feedback about comfort
was verified.

Participants were asked to cycle for five minutes in the VR environment (observing
the Highway Code) within the second trial. VR visual search behavior (eye fixation and
orientation) was recorded throughout the trial while the players anticipated (through speed
adjustments and steering) other road users’ activities and the associated risks. The collected
eye data incorporated the monocular pupillary distance (PD); the distance measured in
millimeters between the centers of the pupils of the eyes [23]. Monocular PD refers to the
distance between each eye and the bridge of the nose [24].

HMD calibration started at the center of the screen, where the right and left eyes’
positions on the screen have an average distance equal to PD (mm). The adult’s average PD
is estimated to be in the range of [54–74] (mm), while children’s PD range is [43–58] mm.
The player’s PD was measured through the HMD’s initial calibration before starting the
trial. Figure 1 displays a player’s left and right eye positions while incorporating the PD.

Figure 1. The orientation of the eyes while a player was interacting with the virtual world; collected from the HMD in the
frontal plane. (a) Left eye. (b) Right eye.
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2.3.1. FOVE VR Headset

A FOVE HMD was used to develop the VR illustrated in Figure 2a. It was equipped
with a position-tracking camera that recognizes the LED lights situated under the head-
mounted cover with Inertial Measurement Units (IMU) and infrared (IR)-based framework
eye-following sensors. The headset had a (90◦–100◦) field of view (FOV), which gives
a high-quality view experience. The HMD had a head position tracking sampling rate
of 100 Hz. The showcase outline rate was 70 Hz, and the eye-following sensor had a
140–180 Hz sampling rate (120 fps). We positioned the position-following camera within
three meters from the player while navigating the virtual environment. Adaptation of the
VR headset enabled us to track and trace the player’s eyes position whilst interacting with
the virtual assets and to determine the time to react to and avoid hazards.

Figure 2. Sensors used in the development of the Cycling and Hazard Perception VR simulator. (a) FOVE VR Headset,
(b) Wahoo RPM Cycling Speed Controller, and (c) Microsoft Kinect.

2.3.2. Wahoo RPM Cycling Speed

A low profile and wireless Wahoo RPM Speed Sensor was used to track the player’s
cycling speed and transfer it to the virtual reality environment via a Bluetooth Smart
system (https://uk.wahoofitness.com/devices/bike-sensors, accessed on 10 December
2017), (Figure 2b). The sensor uses a three-axis accelerometer to determine the wheel’s
rotation, obtains a reference for the distance, and computes the wheel size. The sensor
starts with self-calibration and enables the player to move forward in the scene based on
the pedaling speed.

2.3.3. Microsoft Kinect

The Kinect V2 device consists of an infrared laser-based IR emitter and a colored (RGB:
red green blue) camera. It detected the position and orientation of 25 individual joints
of the player and transferred it to the virtual reality environment displayed in Figure 2c.
Body position was determined in a two-stage process; (I) computing a depth map and (II)
inferring the participant’s body position. The depth map is constructed by analyzing a
speckle pattern of infrared laser light [25]. Body parts are inferred using a randomized
decision forest learned from over one million training examples [26].

Kinect provided us with approximately seventy skeleton joints (the body’s main joints
and hand joints) and sixty frames per second (fps). The skeleton tracking is illustrated in
Figure 3a by colored cubes showing the players’ main body joints. The static bike steering
operation in real-time is transferred via the skeleton tracking system. This facilitates a
braking system in the virtual world and maneuvering toward left, right, or straight ahead.
Images in the right lower side of Figure 3 show players pictured while cycling on the static
bike and wearing the VR headset collected via the Kinect.

https://uk.wahoofitness.com/devices/bike-sensors
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Figure 3. Cycling and Hazard Perception VR simulator scene with the left and right eye view through HMD. Eyes location
in the scenes illustrated with red circles. (a) The player with the skeleton tracking cubes. (b) An NPC on the pedestrian
cross. (c) A police car is passing on the opposite side of the cyclist’s path. (d) The cyclist turns to the right after crossing the
pedestrians crossing and follows the car turning right. (e) Pedestrians are waiting to cross the pedestrian crossing. (f) The
cyclist turns left while a taxi is leaving the junction.

2.4. Gaze Behavior in VR versus In Situ

To address presence by involvement [27], the current project compared the allocation
of selective visual attention in the VR environment to an in situ environment. Evidence
from perception-action coupling in the sports environment suggests that behavior, and
consequently performance, in video-based experimental paradigms is distinct from in situ
situations [28]. Furthermore, experimental task constraints influence the direction of visual
attention; reduced perception–action coupling changes the direction of visual attention
from the vision for action (control of movement) to the vision for perception (prediction of
intention), [9]. After participating in the CHP-VR simulator, the participants’ visual search
behavior was collected when cycling outdoors in situ; the experiment aimed to compare
gaze behavior while cycling in an in situ environment to a VR environment.
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In Situ Procedure

The participants were asked to cycle both in the VR and in situ environments (on the
road). For familiarity [29], for in situ testing, the participants were allowed to use their
own bikes. In situ testing took place in daylight hours. Before commencing the ride, the
route selection, procedures, and instructions (i.e., where to start and finish) were provided
to participants. The selected route was a straight road in the center of Cambridge (UK).
Next to the road’s left side was a park, and on the right side, a row of houses. The road
was characterized by a selection of bus bays on the left of the route (i.e., in the direction of
the traveling cyclist, see Figure 4a).

The participants were asked to cycle as they would typically, and throughout the
entire trial, a research assistant followed the participant on a bicycle at a safe distance. The
participant was required to wear a bicycle helmet to participate. A portable eye tracker was
used to measure gaze behavior in on-road cycling. The SMI mobile eye gaze registration
system (IviewETG, SensoMotoric Instruments Inc., Teltow, Germany, Ver. 1.0) consists of a
pair of lightweight glasses with two infrared eye cameras and an HD scene camera. The
SMI eye tracker measures the binocular direction of gaze via corneal reflection and the
dark pupil principle. The center of the eye’s relative position concerning the scene camera
is used to determine the direction of gaze in the environment with a frequency of 30 Hz
and a spatial resolution of 0.1◦ and gaze position accuracy of 0.5◦.

The glasses were connected to a laptop (Lenovo X220, Thinkpad, Lenovo Group
Limited, Beijing, China) stored in a backpack worn by the participant. The eye cameras
have a gaze tracking range of 80◦ horizontally and 60◦ vertically where the high definition
(HD) scene camera (1280 × 960 pixel, 24 Hz) has a tracking range of 60◦ horizontally and
46◦ vertically. The data were collected with Iview ETG software (Ver. 2.0, SMI, Teltow,
Germany), and a three-point calibration in the sagittal plane at a five-meter distance from
the participant was completed before the trial started. Following completion of the cycling
route, the calibration of the eye tracker was checked.

Figure 4. Gaze location based on Point of Regard (POR) on an Area of Interest (AOI) was collected (a) via an SMI eye tracker
in situ and (b) via a head-mounted display in the VR environment.

Figure 5 shows the participant’s normalized left and right eye pupil diameter size
variation in situ while passing the bus. As illustrated in the Figure 6, subjects 2 (Figure 6b)
and 5 (Figure 6e) had the most significant alteration in pupil diameter, while subjects 1
(Figure 6a), 3 (Figure 6c), 4 (Figure 6d), and 6 (Figure 6f) had a limited range of change.
Figure 6 shows the subjects’ gaze vector and the visual search behavior in situ. The partici-
pants had different visual exploration performances although the trial’s conditions were



Sensors 2021, 21, 5499 9 of 14

the same. Some participants’ focus was more on the road ahead with an occasional visual
search Figure 6b,c,e In contrast, others kept directing attention to objects and circumstances
around them while cycling—a more comprehensive visual search span; Figure 6a,d,f.

Figure 5. The normalized pupil diameter of subjects while passing the bus in situ taken from the SMI eye tracker.

Figure 6. Subject’s normalized gaze vectors in three dimensions taken from the SMI eye tracker in situ. (a) Player number
one, (b) player number two, (c) player number three, (d) player number four, (e) player number five and (f) player
number six.
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3. Results
Data Analysis

Scene selection was completed post data collection and consisted of identifying the
most comparable scenarios identified in VR and in situ both within and between subjects.
The most comparable identified scenes were characterized by passing a bus in a bus bay in
VR and situ, as illustrated in Figure 4a,b. Gaze location was used to determine the gaze
behavior based on the point-of-regard (POR) for an area of interest (AOI). A constant POR
on an AOI indicated a fixation of gaze on this location. The gaze behavior in selected scenes
(both VR and in situ) was analyzed from the first fixation of gaze on the parked bus until
the cyclist passed the bus. The agreement between gaze behavior in VR and in situ was
assessed via a Bland–Altman plot.

Figure 7 shows the percentage of saccades (24%), blinks (21%), and gaze fixation (55%)
for a participant during the time of passing the parked bus in situ.

Figure 7. Example data from one participant, the percentage of saccades, blinks, and gaze fixation
during the time of passing the parked bus in situ.

Figure 8 present the average time that the gaze was directed to the bus in VR
(3.7 s ± 1.4) and in situ (3.1 s ± 0.5). This difference had a medium effect size (d = 0.59),
and 83% of the participants looked more at the parked bus in the VR environment than in
situ. This suggests that participants tended to examine the bus longer in VR than in situ.
To examine the agreement in dwell time at the bus, we conducted a limit of agreement
analysis where it was identified that the average difference in dwell time between VR and
in situ fell within the 95% confidence limits (see Figure 9).
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Figure 8. The time (sec) that gaze was directed toward the parked bus in VR (grey) and in situ
(amber).

Figure 9. The limits of agreement between the dwell time at the bus in VR and in situ. The orange
line represents the mean difference between VR and in situ. Horizontal black lines represent the 95%
upper and lower limits (±1.96 SD).

Our initial observations for the VR and in situ eye-tracking recordings revealed that
the number of assets in the VR environment was lower than in situ. For example, more
cars were coming from the opposite direction, in addition to cars passing the cyclist in
situ than in VR. These critical areas of interest are visually attended to (i.e., vision for
movement), and thus cycling behavior can be adjusted accordingly. A recommendation is
to enhance the number of used assets in VR based on observations in situ. This would drive
the vision for movement and further enhance the immersive presence in VR. However,
further studies with a larger sample size are needed to examine how presence is reflected
in adopted gaze behavior.
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4. Discussion

Cycling in traffic is a complex perceptual motor skill that requires cognitive abilities
and strategic thinking. An ecological approach to examine the complex skill of cycling
concerning hazard identification and perception requires the implementation of objective
and subjective affordances (i.e., it should include opportunities for action based on the
interactions between the cyclist and the environment). The current study describes the
development of an egocentric 3D VR cycling simulator where cyclists can navigate and
interact with a virtual environment. Pilot data collected on adults allowed perception–
action coupling in VR and naturalistic environments to be compared by analyzing adopted
gaze behavior.

The 3D VR cycling simulator development aimed to create a realistic alternative to
overcome the challenges associated with examining hazard identification and perception
whilst cycling in naturalistic environments. As such, we emphasized creating a presence in
the VR environment over gamification. Presence in the VR environment was addressed
(We regularly observed high levels of presence when participants made visual checks over
the shoulder to look for traffic coming from behind) by including motor skill components
(positioning on a bicycle, steering, creating speed through pedal motion, and braking with
the brake levers), sounds related to motor vehicles, and ambient background traffic noise.

Concurrently, developed assets required strategic thinking in interacting with the
environment (route choice, navigating cars, pedestrians, zebra crossings, and traffic lights).
The 3D VR environment was developed around a PCG algorithm to increase the replay
value, reduce development costs, increase adaptability, and save storage space. Using
procedurally generated content accelerated the development workflow and included ma-
chine learning-based approaches to automatically generate content, infer constraints, and
evaluate the output with limited human intervention [22]. Diversified NPCs and objects
were created, combining the use of both procedural and machine learning-based strategies.

The idea’s primary motivation is to generate realistic scenarios that make the player
feel more immersed in VR. This approach enabled us to assess the players’ behavior while
interacting with the VR environment. Machine learning was used to train the model to
learn the correlation between the input/output. This was done by creating a UV map
where the normal map textures can be applied to the base mesh to produce new NPCs
and objects. Continuous improvement of the learning algorithm enables detecting and
repairing the generated objects.

To evaluate cycling in VR and in situ, we compared adopted gaze behavior concerning
a specific scenario where the cyclist passed a parked bus. The length of time looking at
the parked bus was not significantly different between the in situ and VR environments.
However, 83% of participants looked for longer at the bus in VR compared to in situ (see
Figure 8). Although the limits of agreement analysis indicated that differences fell within
accepted confidence intervals, we have to acknowledge that the low number of participants
influences the limits of agreement analysis.

Future work could explore gaze behavior in cycling and VR and in situ more to confirm
the findings of [10] in a more dynamic environment. To examine this, it is recommended
to design an in situ cycling course that can be replicated in VR. Observations within the
analysis indicated some noticeable differences in the number of stimuli experienced. The
in situ environment contained more and a greater variety of stimuli in comparison to the
VR environment (see Figure 4), which would have served to attract visual attention away
from the parked bus.

A recommendation is to adjust the procedurally generated unique and immersive
content based on observations in naturalistic environments to create different levels of busy-
ness on the road. Concurrently, there is a need to further validate in situ and VR cycling
behavior with a larger sample size and to implement hazard perception features. An up-
dated version of the simulator is under development where gamification and engagement
are enhanced by implementing a scoring system.
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Cyclists start with a score of 100 health and lose health upon failing to recognize haz-
ards (e.g., not looking at dangers) or non-compliance with the road traffic rules. Figure 10a
shows an example of a player colliding with a bus where the score is reduced. Figure 10b
displays the player’s anticipated potential hazard, and the acknowledgment message that
pops up on the screen. This update makes the simulator usable to train hazard identification
and perception [8].

Figure 10. (a) The player hit a bus. (b) The player acknowledged the Hazard, and the NPC could cross the road safely.

5. Conclusions

The developed CHP-VR simulator offers the opportunity to cycle in a virtual envi-
ronment that reflects the situational demands and behavioral responses observed when
cycling in naturalistic environments.

This allows participants to experience more complex situations in a safe and con-
trolled environment whilst adjusting stimuli in a controlled manner (type, complexity, and
amount of hazards). By including a gamification element, we can develop and implement
scenarios where the situational awareness of hazards can be evaluated and trained. Further
research is required to evaluate the effectiveness of hazard perception and situational
awareness training.
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