
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rspb20

Sports Biomechanics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rspb20

Attractor dynamics of elite performance: the high
bar longswing

Sophie Burton, Domenico Vicinanza, Timothy Exell, Karl M. Newell, Gareth
Irwin & Genevieve K. R. Williams

To cite this article: Sophie Burton, Domenico Vicinanza, Timothy Exell, Karl M. Newell, Gareth
Irwin & Genevieve K. R. Williams (2021): Attractor dynamics of elite performance: the high bar
longswing, Sports Biomechanics, DOI: 10.1080/14763141.2021.1954236

To link to this article:  https://doi.org/10.1080/14763141.2021.1954236

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 26 Jul 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=rspb20
https://www.tandfonline.com/loi/rspb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14763141.2021.1954236
https://doi.org/10.1080/14763141.2021.1954236
https://www.tandfonline.com/action/authorSubmission?journalCode=rspb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rspb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14763141.2021.1954236
https://www.tandfonline.com/doi/mlt/10.1080/14763141.2021.1954236
http://crossmark.crossref.org/dialog/?doi=10.1080/14763141.2021.1954236&domain=pdf&date_stamp=2021-07-26
http://crossmark.crossref.org/dialog/?doi=10.1080/14763141.2021.1954236&domain=pdf&date_stamp=2021-07-26


Attractor dynamics of elite performance: the high bar 
longswing
Sophie Burton a, Domenico Vicinanza b, Timothy Exell c, Karl M. Newelld, 
Gareth Irwin a and Genevieve K. R. Williams e

aSchool of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK; bDepartment of 
Computing and Technology, Anglia Ruskin University, Cambridge, UK; cSchool of Sport, Health and Exercise 
Science, University of Portsmouth, Portsmouth UK; dDepartment of Kinesiology, University of Georgia, 
Athens, GA, USA; eSchool of Sport and Health Sciences, University of Exeter, Exeter UK

ABSTRACT
Combining biomechanics and motor control, the aim of this study 
was to investigate the limit cycle dynamics during the high bar 
longswing across the UK elite gymnastics pathway age groupings. 
Senior, junior and development gymnasts (N = 30) performed three 
sets of eight consecutive longswings on the high bar. The centre of 
mass motion was examined through Poincaré plots and recurrence 
quantification analysis exploring the limit cycle dynamics of the 
longswing. Close to one-dimensional limit cycles were displayed 
for the senior (correlation dimension (CD) = 1.17 ± .08), junior 
(CD = 1.26 ± .08) and development gymnasts (CD = 1.33 ± .14). 
Senior elite gymnasts displayed increased recurrence characteristics 
in addition to longer longswing duration (p < .01) and lower radial 
angular velocity of the mass centre (p < .01). All groups of gymnasts 
had highly recurrent and predictable limit cycle characteristics. The 
findings of this research support the postulation that the further 
practice, experience and individual development associated with 
the senior gymnasts contribute to the refinement of the longswing 
from a nonlinear dynamics perspective. These findings support the 
idea of functional task decomposition informing the understanding 
of skill and influencing coaches’ decisions around skill development 
and physical preparation.

ARTICLE HISTORY 
Received 14 November 2020  
Accepted 6 July 2021 

KEYWORDS 
Dynamical systems; motor 
control; correlation 
dimension; recurrence; 
gymnastics; longswing

Introduction

Biological systems described by their attractor dynamics, with reference to recurrence 
and predictability, provide a framework to understand the fundamental characteristics of 
skilled performance. Since traditional biomechanics can quantify the biomechanical 
demands of individual skills, further understanding of skill development can be obtained 
by determining the attractor dynamics and investigating how movement control evolves 
in time through practice. Mathematical concepts, embedded within nonlinear dynamics, 
underpin the dynamical systems approach for understanding the emerging, self- 
organising processes of coordination (Haken et al., 1985; Kelso, 1995; Kugler & 
Turvey, 1987; Profeta & Turvey, 2018), and analysing sports performance (Beek et al., 
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1995; Irwin et al., 2019; Vicinanza et al., 2018). One challenge is to understand how 
coordination and control evolve in a complex, dynamical system to allow for the 
emergence of new and evermore functional patterns that satisfy the biomechanical and 
behavioural constraints (Newell, 1985; Waldrop, 1992).

Evidence suggests that most biological systems tend to settle into relatively few 
preferred coordination patterns, emerging as functional attractor states, whereby ordered 
behaviour is observed (Kauffmann, 1995). Kelso and Ding (1993) stated that within 
movement systems, attractors are generated through ‘an infinite number of unstable 
periodic orbits’ (p. 304), implying that even within the most stable systems; a certain level 
of variability is present to allow for flexibility. The time dependence of nonlinear 
measures can reveal properties of the dynamics that are not typically uncovered with 
traditional biomechanical analysis (Newell & Slifkin, 1998; Stergiou, 2004). These mea-
sures will allow coaches to decompose the task and better conceptually understand how 
the skill ‘works’ as highlighted by the model of Irwin et al. (2005).

The longswing has the inherent characteristics of a periodic attractor, specifically the 
closed-trajectory features of a limit cycle, whereby repeated rotations are maintained 
through energy input (Beek et al., 1995; Irwin et al., 2019; Vicinanza et al., 2018). The 
longswing is a task in which gymnasts rotate around the high bar from handstand to 
handstand (Hiley & Yeadon, 2003), where angular momentum dictates the successful 
skill (Figure 1). The longswing is recognised as an important skill in gymnastics that 
supports the development of more complex skills on the high bar (Hiley & Yeadon, 2003; 
Irwin & Kerwin, 2005, 2007a). Elite male gymnasts from around the age of 8 years are 
expected to have mastered the longswing and perform the skill with consistency and 
precision throughout their development, junior and senior career. However, from 

Figure 1. A gymnast performing a backward longswing on high bar. A circle angle of 0° represents the 
gymnast in handstand above the bar and directly under the bar at 180°. Quartile 1 = 1°-90°, quartile 
2 = 91°-180°, quartile 3 = 181°-270° and quartile 4 = 271°-360°. Arrow denotes the direction of the 
longswing.
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a dynamical systems perspective, how this complex system is controlled and organised 
throughout the evolution to becoming an elite gymnast has received limited study.

Gymnasts specialise in the sport at an early age, experiencing increased contact time 
with coaches, which can lead to higher levels of acute skill development (Feeley et al., 
2016; Hartley, 1988; Root et al., 2019). Within the UK, performance-level gymnasts 
compete in age groups and are expected to continue along the development squad (up 
to 14 years) performance pathway through to junior (14–18 years) and senior squads 
(18 years and over) to compete at both national and international level. Gymnasts within 
the development, junior and senior groups all share an ability to successfully perform the 
general longswing (i.e., handstand to handstand) at their preferred pace without the need 
to perform a more complex skill. The gymnasts sharing an elite status, however, differ in 
age group classification (development, junior and senior). Although all gymnasts are 
biomechanically competent with the longswing skill, the nonlinear dynamics approach 
may reveal differences in the coordination, control and skill stages of learning (Newell, 
1985) within and between these three groups. A reduced correlation dimension (CD) and 
increased recurrence quantification analysis (RQA) measures (e.g., determinism and 
length of diagonals) are more indicative of the skill stage of learning, with increased 
CD and reduced RQA measures suggestive of the coordination and/or control stages of 
learning. Vicinanza et al. (2018) compared an elite gymnast and non-elite gymnasts 
performing the longswing and highlighted higher levels of correlation dimension for the 
non-elite gymnasts compared to the elite gymnast, suggesting a coordination/control 
stage of learning compared to the skilled stage between the two athlete groups.

High bar routines performed by all elite age groups include multiple longswings 
(Readhead, 1997). Understanding the longswing skill has been approached from 
a number of scientific paradigms, including forward dynamics modelling (Hiley & 
Yeadon, 2003), biomechanical approaches (Arampatzis & Brüggemann, 2001; Irwin & 
Kerwin, 2005; Williams et al., 2012) and more recently from the nonlinear dynamics 
perspective (Vicinanza et al., 2018). Vicinanza et al. (2018) examined the limit cycle 
characteristics of the longswing, recognising the potential use of this nonlinear dynamics 
approach to understanding skill development. Building on the underlying biomechanical 
work and employing the nonlinear dynamics approach, this study employed a cross- 
sectional design with the three UK age groups of elite gymnasts (development, junior and 
senior). Understanding the limit cycle and its characteristics would allow insights into the 
constructs of movement control (Schöner & Kelso, 1988) complexity (Van Emmerik 
et al., 2016) and predictability (Kelso et al., 1981) of the longswing.

The aim of this study was to investigate the limit cycle dynamics during the high bar 
longswing across the UK elite gymnastics pathway age groupings (development, junior 
and senior). The purpose of this study was to use biomechanics and nonlinear dynamics 
concepts to provide a more accurate task decomposition, potentially allow for better 
conceptual understanding of skill, and potentially make training more effective. It was 
hypothesised that all groups would show similar qualitative properties of the limit cycle 
trajectory in terms of shape and size in phase space due to the basic nature of the task and 
the elite nature of a particular cohort. However, it was additionally hypothesised that 
senior gymnasts would show further dynamical refinement of quantitative RQA mea-
sures reflecting increased recurrence and predictability of the longswing dynamics 
compared to junior and development gymnasts.
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Methods

Participants

Prior to the onset of the study, ethical approval was gained from the XXXX University 
Ethics committee. Thirty elite-level male artistic gymnasts gave voluntary informed 
consent to partake in the study. All gymnasts were performing at the highest possible 
level within their age category, competing at national and/or international competi-
tions. Ten senior level (age: 20.4 ± 3.0 years, mass: 64.0 ± 6.5 kg, stature: 
1.65 ± 0.07 m, gymnastics experience: 12.7 ± 2.9 years), 10 junior level (age: 
15.0 ± 0.6 years, mass: 49.4 ± 7.6 kg, stature: 1.59 ± 0.08 m, gymnastics experience: 
7.0 ± 1.2 years), and 10 development level gymnasts (age: 10.4 ± 1.0 years, mass: 
33.2 ± 6.6 kg, stature: 1.27 ± 0.16 m, gymnastics experience: 4.5 ± 1.9 years) were 
recruited. A legal parent or guardian provided informed consent for participants 
under the age of 18 years. Each participant performed three sets each of a series of 
eight consecutive looped longswing. Participants were looped to the high bar to ensure 
safety and were familiar with performing the looped longswing within regular 
training.

Data collection and processing

An automated 3D motion capture system (CODAmotion, Charnwood Dynamics Ltd, 
Leicester, UK) sampling at 100 Hz captured all kinematic data. Two CX1 scanners 
provided a field of view exceeding 2.5 m around the centre of the bar (Williams et al., 
2012). Eight active CODA markers (three x XM-200 and five x XM-400) were attached to 
four-marker drive boxes and affixed to the gymnast and high bar. Markers were posi-
tioned unilaterally on the fifth metatarsophalangeal joint, lateral malleolus, lateral 
femoral condyle, greater trochanter, estimated centre of rotation of the glenohumeral 
joint, lateral epicondyle of the elbow and mid forearm, with an additional marker on the 
underside of the centre of the bar. All calculations were based on the relative movement 
of the gymnast and the bar.

Raw marker data from both the vertical and horizontal directions were determined 
from CODA output and all of the following examination was undertaken in R (http:// 
www.r-project.org) using a modified code (Vicinanza et al., 2018). Density values were 
obtained from De Leva (1996). Based on the body segment inertia parameters, the 
principle of moments was used to calculate the centre of mass (CM) location of the 
performer. The angular orientation of the gymnast about the bar was defined by the circle 
angle (θc). Circle angle was distinguished by the CM to bar vector with respect to the 
horizontal, where a θc of 0° and 360° defined the gymnast’s CM as above the bar (in 
handstand). Moment of inertia and angular velocity of the CM of the gymnast about the 
bar are denoted as MoI and ωCM, respectively. Using an adapted version of Hof’s (1996) 
gait method, MoI was normalised to a gymnast-specific inertia value (in handstand above 
the bar) and denoted as the percentage of a straight somersault position. Data were 
interpolated using a cubic spline to 1° increments of overall θc about the bar to allow for 
intra-trial comparisons. A fourth-order low-pass Butterworth filter was used to filter 
kinematic data with a cut-off frequency of 12 Hz obtained through a residual analysis 
(Winter, 2009).
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Data analysis

Poincaré plots: Poincaré plots (Kantz & Schreiber, 2004) were used to denote the CM 
trajectory in the phase space as an initial step to examine the presence of attractor 
dynamics (Vicinanza et al., 2018). Takens (1981) theorem states that the Takens’ vector 
enables the reconstruction of an equivalent dynamical system to the original system that 
is produced by the observed time series. Embedding the time series in an n-dimensional 
space generates the set of Takens’ vectors. The n-th Takens’ vector is defined as: 

T n½ �¼ ntime:series n½ �; time:series nþ timeLag½ �; . . . time:series ½nþm � timeLag� (1) 

Takens’ theorem reconstructed the longswing limit cycle through embedding the ωCM 
time series in a 3-dimensional space (Kennel et al., 1992). Time-delayed minimum 
mutual information (taking into account nonlinear correlations) and false nearest 
neighbours techniques were used to generate an appropriate time lag of 16 points 
(Fraser & Swinney, 1986) and embedding dimension of 3 (Kennel et al., 1992). Each 
Poincaré plot displayed the CM trajectory in the phase space for one trial (eight 
continuous longswing) for each gymnast.

Correlation dimension (CD): CD is a measure of fractal dimension and is an approx-
imation of the number of independent pairs of the state coordinates on the attractor 
(Stelter & Pfingsten, 1991), delivering further understanding into the effective number of 
dynamical degrees of freedom (DoF). CD was used to assess the dimensionality of the 
ωCM about the bar across eight consecutive longswing for each gymnast. CD quantifies 
the number of dimensions needed to capture the deterministic structure of the long-
swing. Grassberger and Procaccia (1983a, 1983b) algorithm was used to estimate CD. 
A mean average CD was taken for each participant across the 24 longswing within the 
three performed trials and subsequently averaged for each age group.

Recurrence plots: Through measures of recurrence point density and diagonal structures, 
RQA and Poincaré analysis were used to investigate the capability of the system to return to 
the same condition within a certain boundary, providing an insight into the reproducibility 
of the signal (Castanié, 2006; Van Emmerik et al., 2016; Zbilut & Webber, 1992). RQA 
allows for nonlinear data analysis of a dynamical system, quantifying the duration and 
number of recurrences presented within the generated state space (Marwan et al., 2007).

Recurrence plots displayed results for the ωCM time series for eight consecutive 
longswing performed by each gymnast within a single trial. Percentage determinism 
was determined with a radius r = 0.08, to calculate the quantity of recurrent points 
organised into diagonal line structures in the recurrence plots. The longest length of 
diagonals (Lmax) and the mean length of diagonals (Lmean) were identified from each 
recurrence plot to indicate, within 8% of the maximum variability, the predictability of 
the longswing dynamics across each swing. Lmax and Lmean values were divided by the 
sampling frequency to gain the time at which the longswing dynamics can be predicted 
across each swing.

Statistical analysis

A one-way analysis of variance examined the effect of group seniority on each individual 
variable. A Bonferroni post hoc test was then used to examine where differences were 
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found; the alpha level was set at p ≤ .05. Hedges g calculations were used to generate 
between-group effect sizes (g) for all discrete variables where small effect = 0.2, medium 
effect = 0.5 and large effect = 0.8 (Cohen, 1977). Statistical tests were processed using the 
IBM SPSS Statistics 26 Software (IBM SPSS, Inc., Chicago, IL, USA).

Results

Biomechanical measures

Tables 1 and 2 show the biomechanical characteristics of the longswing with specific 
reference to longswing time, ωCM and MoI. Senior gymnasts displayed the highest 
individual longswing times and lowest ωCM for the whole swing and within each quartile 
in comparison to junior and development gymnasts. Significant differences were found 
for individual longswing time and ωCM between groups across the whole swing and each 
quartile (p < .05).

Post hoc analysis revealed significantly faster longswing times and lower ωCM values 
for development gymnasts in comparison to senior gymnasts across the whole swing and 
all four quartiles (p < .001). Development gymnasts had significantly faster longswing 

Table 1. Mean (±SD) individual longswing (LS) time (s), angular velocity of the gymnast’s mass centre 
about the bar (ωCM) (rad/s) and normalised total body moment of inertia (MoI) (% straight somersault 
(ss) position) for the whole swing and across each quartile of the swing for senior, junior and 
development gymnasts.

Mean ± SD Whole Quartile 1 Quartile 2 Quartile 3 Quartile 4

Senior
LS Time (s) 1.77 ± 0.86 0.59 ± 0.21 0.35 ± 0.03 0.37 ± 0.02 0.56 ± 0.23
ωCM (rad/s) 3.55 ± 0.12 2.65 ± 0.24 4.47 ± 0.16 4.26 ± 0.19 2.82 ± 0.28
MoI (%ss) 90.89 ± 2.04 96.36 ± 3.25 89.55 ± 2.54 82.37 ± 3.52 92.15 ± 3.56
Junior
LS Time (s) 1.64 ± 1.01 0.58 ± 0.26 0.33 ± 0.03* 0.33 ± 0.02* 0.54 ± 0.28
ωCM (rad/s) 3.82 ± 0.14 2.70 ± 0.13 4.83 ± 0.21* 4.80 ± 0.36* 2.93 ± 0.20
MoI (%ss) 94.07 ± 1.34 98.44 ± 0.58 94.07 ± 1.17 88.55 ± 8.70 93.31 ± 2.19
Development
LS Time (s) 1.53 ± 0.66*^ 0.52 ± 0.16*^ 0.31 ± 0.02*^ 0.32 ± 0.02* 0.47 ± 0.17*^
ωCM (rad/s) 4.10 ± 0.17*^ 3.02 ± 0.23*^ 5.13 ± 0.18*^ 4.91 ± 0.33* 3.32 ± 0.26*^
MoI (%ss) 97.29 ± 2.15 98.05 ± 3.35 96.01 ± 1.15 93.57 ± 2.68 97.87 ± 2.42

*denotes significant difference to senior gymnasts (p ≤ .05). ^ denotes significance difference to junior gymnasts 
(p ≤ .05).

Table 2. Hedges’ g effect sizes (g) for individual longswing (LS) time, gymnast mass centre angular 
velocity about the bar (ωCM) and moment of inertia (MoI) across senior (Snr), junior (Jnr) and 
development (Dev) gymnasts.

Hedges g effect size Whole Quartile 1 Quartile 2 Quartile 3 Quartile 4

LS Time (s) Snr—Jnr 0.13 0.05 0.88 1.92 0.08
Snr—Dev 0.30 0.38 1.59 2.29 0.39
Jnr—Dev 0.13 0.27 0.70 0.32 0.26

ωCM (rad/s) Snr—Jnr 2.04 0.28 1.51 1.88 0.48
Snr—Dev 3.70 1.59 2.96 2.45 1.88
Jnr—Dev 1.78 1.71 1.56 0.32 1.69

MoI (%ss) Snr—Jnr 0.15 0.05 0.13 0.53 0.22
Snr—Dev 0.17 0.29 0.18 0.20 0.17
Jnr—Dev 0.12 0.09 0.20 0.45 0.12
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times and higher ωCM values compared to junior gymnasts across the whole swing and 
within quartiles 1, 2 and 4 (p < .001) although no significant differences were found for 
quartile 3. Junior gymnasts showed significantly faster longswing times within quartiles 2 
and 3 (p < .001, g = 1.15 and p < .001, g = 1.71, respectively) and significantly larger ωCM 
values within quartiles 2 and 3 (p < .001, g = 0.88 and p < .001, g = 1.92, respectively) in 
comparison to senior gymnasts. No significant differences were found between the 
groups for MoI (p > 0.05).

Phase space and correlation dimension

Poincaré plots (Figure 2) denote the closed-loop limit cycle trajectories in phase space. 
Position divergence from a perfect elliptical shape can be clearly observed within the 
Poincaré plots for all gymnasts. The CD of the Poincaré plot trajectory is close to one- 
dimension for senior, junior and development gymnasts (1.17 ± .08, 1.26 ± .08 and 
1.33 ± .14, respectively) (Table 3); however, significant differences were found for CD 
between groups (F(2,87) = 19.215, p < .001). Post hoc analysis revealed significantly lower 
CD for senior gymnasts in comparison to junior (F(2,87) = 19.215, p < .001, g = 1.04) and 
development gymnasts (p < .001, g = 1.39), with junior gymnasts exhibiting significantly 
lower CD when compared to development gymnasts (p = .009, g = 0.67).

Figure 2. Poincaré plot representation of a senior (left), junior (centre) and development (right) 
gymnast across one full trial of eight longswings. Arrows denote the direction of the longswing.

Table 3. Mean ± standard deviation, Hedges’ g effect size (g) and 95% confidence intervals (CI) for 
correlation dimension (CD), percentage determinism (DET) and mean (Lmean) and longest (Lmax) length 
diagonals within recurrence plots across senior (Snr), junior (Jnr) and development (Dev) gymnasts.

CD DET (%) Lmean (s) Lmax (s)

Snr 1.17 ± 0.08 99.41 ± 0.01 0.33 ± 0.13 2.03 ± 1.01
Jnr 1.26 ± 0.08 * 99.42 ± 0.01 0.25 ± 0.08 * 1.97 ± 0.88
Dev 1.33 ± 0.14 *^ 99.41 ± 0.01 0.23 ± 0.09 * 1.82 ± 0.40

g [95% CI]
Snr—Jnr 1.04 [0.11–1.98] 0.00 [−0.87–0.88] 0.10 [−0.78–0.98] 0.70 [−0.27–1.60]
Snr—Dev 1.39 [0.41–2.37] 0.00 [−0.88–0.88] 0.70 [−0.20–1.61] 0.86 [−0.05–1.78]
Jnr—Dev 0.67 [−0.23–1.57] 0.00 [−0.88–0.87] 0.21 [−0.67–1.09] 0.25 [−0.63–1.13]

*denotes significant difference to senior gymnasts (p ≤ .05). ^ denotes significance difference to junior gymnasts 
(p ≤ .05).
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Recurrence analysis

Recurrence provides a measure of the limit cycle reproducibility. Shorter lengths of 
diagonal lines within the recurrence plots displayed lower recurrence rates in phase 
space for development gymnasts compared to senior and junior gymnasts over eight 
longswing (Figure 3). Recurrent points formed distinct diagonals parallel to, but offset 
from, the main diagonal (line of origin), typical of a periodic deterministic structure. 
Percentage determinism was extremely high across all participants (Table 3).

Lmax and Lmean (Table 3) were highest for senior gymnasts and lowest for development 
gymnasts. Significant differences were found for Lmean between groups (F(2,87) = 9.134, 
p < .001) with post hoc analyses revealing significantly higher Lmean for senior gymnasts 
in comparison to junior (F(2,87) = 9.134, p = .004, g = 0.10) and development gymnasts 
(p < .001, g = 0.70).

Discussion and implications

Understanding the biomechanics and nonlinear dynamics of the longswing across elite 
age groupings provides more functional task decomposition and better conceptual 
understanding of skill and potentially informs training practices. All gymnast groups 
displayed similar qualitative properties of the limit cycle trajectory in terms of shape and 
size in phase space, satisfying the first research hypothesis. The second hypothesis was 
also accepted as senior gymnasts exhibited further dynamical refinement of quantitative 
RQA measures compared to junior and development gymnasts.

Gymnasts are trying to maintain rotation around the bar. In the downswing, the 
gymnast is making their body as long as possible to try to create a turning force down 
towards the ground alongside gravity, which builds angular momentum in quartile 1 and 
2 of the longswing. Due to air resistance, friction of the bar and the bar not being 
completely elastic and gravity acting, the gymnasts must alter their MoI to maintain the 
high angular velocity, displayed in quartile 3 in particular (Table 1). In quartile 4, 
gymnasts begin to lengthen their bodies once more, increasing MoI and decreasing 
ωCM to reach the handstand position above the bar to start the next longswing.

Biomechanical descriptions of the longswing recognised that the senior gymnasts had 
lower radial angular velocity of the CM and subsequently a longer duration of the skill. 
Other factors such as a more refined control of the skill (Vicinanza et al., 2018), more 

Figure 3. Recurrence plot representation of a senior (left), junior (centre) and development (right) 
gymnast across one full trial of eight longswings.
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efficient swing technique (Yeadon & Hiley, 2000) and/or the notion of satisficing (Simon, 
1956) could contribute to these differences. Employing nonlinear dynamics approaches 
will allow us to explore this further.

Skill level and structure of longswing dynamics

The senior gymnasts had increased experience with longswing compared to the junior 
and development gymnasts due to number of practice hours. The most stable dynamics 
and lowest dynamical DoF were seen for the longswing of senior gymnasts, demonstrated 
by higher recurrence and lower CD, a finding that may demonstrate a task-specific 
relationship between stability and practice. Additionally, factors such as chronological 
age, skill level, practice and experience may also play a role in this finding. The identifica-
tion of more stable dynamics and reduced DoF associated with practice and skill adds 
evidence to a long-debated area of motor control (Chow et al., 2008; Lee et al., 2016; 
Vereijken et al., 1992).

The longswing is an important skill for all gymnasts and a large part of their training, 
which may explain why only small differences were observed in the dynamical variables 
between groups. Nevertheless, since all gymnasts can fulfil the biomechanical task 
demands, it is projected that the increased stability and refinement within the longswing 
dynamics for senior gymnasts are a practice effect due to the efficiency and repeatability 
of the movement action (Ericsson et al., 1993).

The gymnasts in this study had varying levels of experience of performing this skill on 
high bars. The senior elite gymnasts would have, generally, learnt this skill by 8 years old 
and as such have been practicing and refining this skill for an average of 13 years. In 
contrast, the junior and development gymnasts have been practicing this skill for approx. 
7 and 4 years, respectively. These practice durations and refinement periods would have 
played an important role in the emergence of the dynamics of the longswing. Senior 
gymnasts’ refinement of the longswing has been driven by the need to meet the demands 
of more complex manoeuvres such release-regrasp skills. The idea of a refined longswing 
concurs with the observations that the dynamics are more predictable and displayed the 
strongest limit cycle attractors. Contrastingly, the development gymnasts are relatively 
early in their gymnastics careers and have been exposed to less training/practice time and 
do not possess the refined dynamics of their senior counterparts.

Limit cycle and trajectory dynamics

The clear position divergence (corners or changes in direction) from a perfect elliptical 
shape observed in Figure 2 are associated with an increased level of energy being injected 
into the system. The position of these divergences in the phase space occurs at the points 
of the functional phase; the location of the energy input to maintain the repeated 
longswing (Irwin & Kerwin, 2007b), which is consistent across age groups of gymnasts. 
The low CD (range: 1.05–1.55) presented an attractor close to a one-dimensional limit 
cycle for all gymnast groups (Table 3). The lower CD of the limit cycle suggests decreased 
movement complexity (Decoster & Mitchell, 1991; Nayak et al., 2018) and infers that 
these gymnasts have reached the skill optimisation stage (Bernstein, 1967; Newell, 1985) 
further supported by the use of kinetics, which was highlighted by Bernstein (1967) to 
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occur when the controller learns to use the force. The lower CD and reduction in 
dynamical DoF may be a result of the highly constrained task instructions and/or practice 
required for successful longswing performance.

The lower limit cycle CD and high determinism values shown for the senior gymnasts 
in this research suggest a highly stable, efficient and predictive movement trajectory. All 
gymnasts exhibited high determinism, indicating high signal reproducibility with few 
reactive adjustments (Zbilut & Webber, 1992), typical of consistent longswing perfor-
mance. However, it is important to recognise the notion of functional variability required 
for flexible movement behaviour (Hiley & Yeadon, 2016; Stergiou et al., 2006); therefore, 
the perfect CD and determinism of 1, denoting perfect cyclical movement, is near 
impossible and likely undesirable even for high-performance athletes. As previously 
mentioned, this can be linked to the skill optimisation stage of learning (Newell, 1985).

Intermittent control of the longswing

Recurrence plots (Figure 3) offer a method to visualise the periodic nature of the 
trajectory and the determinism of the longswing dynamics (Eckmann et al., 1987; 
Marwan et al., 2007). Shorter length diagonals were observed for the development 
gymnasts, which correspond to less predictable longswing dynamics and an increased 
intermittency of control. A higher frequency of feedback at different temporal intervals 
may be required by development gymnasts to correct deviations from the movement 
trajectory and continue swinging.

Findings from the Poincaré plots support the observations of Hiley et al. (2013) who 
indicated that elite gymnasts may be using more feedback control in the less mechanically 
important areas of the skill, in our case, quartiles 1 and 4 of the longswing. The 
development gymnasts may be using this in a larger portion of these quartiles of the 
longswing to make necessary corrections in comparison to the other groups to ensure 
that the lower portion of the longswing can be completed effectively. This could con-
tribute to the more intermittent nature of the recurrence plots and the variation in limit 
cycle trajectory observed within the Poincaré, particularly for development gymnasts in 
quartile 1 and 4 of the longswing. The higher Lmax and Lmean values for senior and junior 
gymnasts may be reflective of the increased practice opportunities (Ericsson et al., 1993) 
and a more automatic longswing technique, with less feedback required, generating 
a more deterministic limit cycle attractor. However, it is important to note that, in this 
instance, the feedback approach cannot be separated from other central contributions for 
intermittency (Gawthrop et al., 2011).

The increased Lmax and Lmean values for the senior gymnasts, paired with the CD and 
recurrence findings evidence a reduction in complexity, increase in determinism and 
stability as gymnasts move further towards skill optimisation (Newell, 1985). The find-
ings of this research support the notion that further practice, experience and individual 
development associated with the senior gymnasts seem to continue to refine the char-
acteristics of the longswing. The application of these findings and the advantages of this 
approach can be set against the context of developing a conceptual mindset of the skill 
based on the movement patterns and body positions for successful performance (Gould 
et al., 1990; Irwin et al., 2005). Understanding the nonlinear dynamics components 
provides a way of holistically viewing the interaction of the more traditional 
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biomechanics and the emergent properties and mechanisms that control the skill. 
Understanding these factors will allow coaches to decompose the task more effectively 
and develop a task- and age-specific mindset of the longswing, which could ultimately 
lead to identifying more effective physical preparation, rehabilitation and skill develop-
ment pathways. This is something we aim to do in the future, building on the work of 
Irwin and Kerwin (2005, 2007a), Williams et al. (2012), Williams et al. (2015), and 
Busquets et al. (2016).

Conclusion

The use of nonlinear dynamics provides a relevant scientific framework for understand-
ing and explaining the control of the longswing. The increase in the deterministic nature 
of the cyclic movement, reduction in dimensionality and increased RQA measures of the 
senior elite gymnasts are indicative of a more skilled, more practiced group. The findings 
provide novel insights into movement control across three age groups of elite gymnasts 
and point to an evolving continuous refinement of the general longswing. From 
a coaching perspective, it is important to consider these changes in the gymnast’s 
technique-training as they develop.
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