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In socially monogamous animals, including humans, pairs can meet and
spend time together before they begin reproduction. However, the pre-breed-
ing period has been challenging to study in natural populations, and thus
remains largely unexplored. As such, our understanding of the benefits of
mate familiarity is almost entirely limited to assessments of repeated breeding
with a particular partner. Here, we used fine-scale tracking technology to
gather 6 years of data on pre-breeding social associations of individually
marked great tits in a wild population. We show that pairs which met earlier
in the winter laid their eggs earlier in all years. Clutch size, number of hatched
and fledged young, and hatching and fledging success were not influenced by
parents” meeting time directly, but indirectly: earlier laying pairs had larger
clutches (that also produce higher number of young), and higher hatching
and fledging success. We did not detect a direct influence of the length of
the initial pairing period on future mating decisions (stay with a partner or
divorce). These findings suggest a selective advantage for a new pair to
start associating earlier (or for individuals to mate with those they have
known for longer). We call for more studies to explore the generality of
fitness effects of pair familiarity prior to first breeding, and to elucidate the
mechanisms underlying these effects.

1. Introduction

Repeated breeding with the same partner (i.e. pair fidelity) has been shown to
benefit fitness through increased breeding success [1], and greater survival of
pair members [1-3]. The increase in breeding success partly arises because of
the ‘mate familiarity effect’ [1,4,5], even when accounting for confounding fac-
tors, such as age/experience related increases in reproductive parameters [1,6],
as familiar partners improve coordination, cooperation and responsiveness
[7,8]. Furthermore, shared vigilance and increased competitiveness (e.g. access
to food or roosting sites) of a pair outside of the breeding context [5,9,10] probably
benefit survival. These fitness benefits of mate familiarity play a role in the
evolution of long-term partnerships and social monogamy in birds [1].
However, the concept of mate familiarity extends beyond that of repeated
breeding within a pair [11]. Pre-breeding familiarity, even when based on short
encounters of potential future partners (e.g. vole species which use short-term
olfactory cues [11]) and in species that do not form a pre-breeding bond, has
been shown to influence mate choice (e.g. studies on rodents, see overview in
[11], birds, e.g. [12], or fish [13]). In species where new pair bonds form a rela-
tively long, and variable amount of time before the subsequent mating event,
as recently demonstrated in birds [14,15] familiarity can have further impli-
cations for fitness. Partners that meet earlier might have more time to assess
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Figure 1. A schematic of the possible mechanisms through which time when a pair met prior to their first breeding attempt can influence breeding success (i.e.
components of breeding success other than laydate) and later mating decisions (i.e. breed with the same partner, or divorce a partner). Full arrows represent direct,
and dashed arrows indirect (i.e. acting through one or more other mediators) effects.

each other and thus make a more informed choice on whether
to breed together [16,17], and will also have more time to
develop compatible behaviours that increase breeding success
(see [18]). In this way, familiarity can benefit individuals’
breeding success [19] and survival through direct benefits
(early pairing benefits, [16]). On the other hand, early pairing
can also potentially reduce an individuals’ fitness, for
example, owing to decreased opportunities to sample more
potential partners [15], and increased effort reinforcing the
pair bond, which could be costly.

Although the fitness implications of meeting a breeding
partner earlier are important from an evolutionary, behavioural
and conservation perspective, only a few studies have acknowl-
edged this possibility [8,11,12,13,16,17] and only two studies
have addressed the link between pre-breeding familiarity and
breeding success, both CONDUCTED in captive experimental
setting [19,20]. The first one [20], conducted on a species with an
unknown social mating system and probably only maternal
care, showed that captive pygmy rabbits (Brachylagus idahoen-
sis) which were familiar with their breeding partner through
being housed in nearby cages raised more litters with more off-
spring. The second study [19], conducted on a socially
monogamous biparental species, showed that the length of
time that randomly matched pairs of captive bearded reedlings
(Panurus biarmicus) spend together prior to breeding influenced
their breeding success. Pairs with the longest pair formation
period achieved the highest behavioural synchronization in
nest building, bred the earliest, and had the highest hatching
and fledging success [19]. Similar effects should also appear
in free-living populations, especially if earlier pair formation
allows for earlier breeding, which in turn increases breeding
success (laydate has been shown to be under strong selection
in many populations as it strongly affects subsequent
components of breeding success, e.g. [21-24]).

We studied whether meeting a future breeding partner
earlier translates into fitness benefits in a free living popu-
lation of socially monogamous bird; the great tit (Parus
major). We used radio-frequency identification (RFID) tech-
nology to track wild individuals over the pre-breeding
winter period (when breeding pairs form [15,25]), and we

monitored their reproduction in the following spring. Specifi-
cally, we tested whether breeding success of a pair can be
predicted from the time when a pair was first detected
together on feeders in winter. Furthermore, we tested
whether meeting time affects components of breeding success
directly (likely via an increased coordination of parental
duties of familiar pairs), and/or indirectly (e.g. birds that
meet earlier have an earlier laydate, which further relates to
reproductive benefits) as represented in figure 1. Previous
studies have already shown that earlier laydate generally
translates into higher breeding success and reproductive
output [21-24].

Finally, we tested a prediction that pairs which meet ear-
lier in winter have a higher probability of breeding together
again in the following year (i.e. breeding together twice).
We expect to find this if birds that meet earlier have a
longer period of partner assessment (direct route, figure 1)
or if pairs that meet earlier have increased breeding success,
which in turn reduces divorce probability (indirect route,
figure 1). Our study system is particularly well suited for
answering these questions as birds of future mating pairs
associate more consistently and generally more frequently
with each other in winter flocks compared to other flock-
mates [25]. Furthermore, previous work [15] has shown that
meeting time is a good representation of the onset of pair
bonding in this study system. We discuss the wider impli-
cations of our findings (meeting a future partner earlier on
has fitness benefits in a wild population) and the broader sig-
nificance of pair familiarity that extends beyond the breeding
season.

2. Methods
(a) Study system

The great tit is a small, short-lived (adult annual survival rates 25—
65%, mean lifespan 1.9 years), cavity-nesting passerine [26]. Pairs
are socially monogamous and breed on distinct territories, laying
onaverage 8.5 eggs, and fledge on average seven chicks [24,26] per
nest. After the breeding season, birds form fission—fusion flocks
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[27-29] and breeding pairs generally form between birds co-
occurring together in the same winter flocks [15,25,30]. Most of
the birds that will ever breed recruit into the breeding population
in their first year, and around 14% of fledged young are recorded
to go on to breed (i.e. are ‘recruited’) [31]. Reported between-year
divorce rates in great tits are quite variable between populations,
ranging between 0 and 51% (e.g. [31,32]).

Our data come from a wild population of great tits in Wytham
Woods, Oxford (51°46’ N, 1° 19’ W) that breeds almost exclusively
in nest boxes (11 = 1020 nest boxes, around 450 pairs yr '), between
April and July, and close to 98% of pairs have only one breeding
attempt per season. The majority of the breeders (53% of females
and 60% of males) were born in Wytham [33]. The population is
non-migratory, and the majority of breeders stay in the woods
during winter [34]. Breeding data are collected using standard
protocols [29,35] to record parental identities and the breeding
parameters of a pair (date of first egg, maximal clutch size,
number of hatched chicks and number of fledged young). The
data on winter flocks were collected between the winter beginning
in 2007 until the end of the winter in 2014. In our population, an
average flock size is 7.5 individuals (range 2-80 birds) while the
flock size experienced by an average individual is around five
birds [28].

(b) Winter data collection set-up

Data on winter flocks were collected using RFID technology: birds
marked with passive integrated transponders (PIT-tags) were
detected on feeders equipped with RFID-antennae [27-29], with
4023 unique great tits detected over the six study years considered
here. In this study system, an estimated 82% of the primary popu-
lation is marked with PIT-tags and visit the recording devices
over the winter season [34]. The winter data collection protocol
(spatial positions and opening times of feeders) changed halfway
through the study. In the first three winters (2007,/2008 to 2009/
2010), data were collected between August and March when 16
(out of 67 feeders) were always opened, and these were rotated
every 4 days. In the second three winters (2011/2012 to 2013/
2014), data were collected between early September and early
March when all of the 65 feeders were opened during each week-
end. Detailed description of the data collection set-up can be
found in [27-29,36]. The feeder-availability protocol minimized
the possibility that flocks would get attracted to the constant food
sources and we assume that data gathered at feeders represent snap-
shots of the social composition of different flocks at the time of
recording. Furthermore, individuals’ use of feeders is not related
to reproductive success [29].

(<) Meeting time and social structure

We applied the Gaussian mixture model for event streams
method [25] to the spatio-temporal datastream collected from
the loggers to determine flocking events [25,27]. This method is
robust for inferring flocking events and preferable to other
methods such as using arbitary time intervals [27]. Furthermore,
the flocking events extracted using this method are known to be
non-random in social composition [28], related to individuals
social associations in other contexts [37,38] and important to var-
ious social processes such as information spread [39,40] and
mating [15,25,36]. We defined pair meeting time as the month
(the first three winters) or the weekend (the last three winters)
when the members of the future breeding pair were first ident-
ified in the same flock (i.e. gambit of the group approach, [41]).
Time-frames for these were chosen based on the collection set-
up in each set of winters.

A typical individual in this dataset experiences approximately
five flock mates [28] Thus, it is reasonable to assume that future
breeding partners have indeed met in the foraging flock when
first observed together. Furthermore, we know that birds of new

pairs tend to spend the prior winter in the same flocks together
[25], and previous work on the same dataset has shown that cal-
culating the time when a pair first met in this way is good
approximation of the beginning of pair bonding and relates to
future pairing behaviour [15]. Thus, we can be confident that
the majority of pairs not only meet but also begin bonding in
the time period (month, weekend) in which they were first
detected in the same flock. Nevertheless, we also carried out
additional sensitivity analysis to ensure that our investigations
are robust to these assumptions (see the electronic supplementary
material, Methods and statistical analysis section).

Social networks were constructed based on flocking events
using a simple ratio index (SRI, [42]), that describes the affinity
of two individuals to co-occur in the same flock, and can range
from 0 (never observed together) to 1 (always observed together).
SRI is calculated as the number of times (within a certain period:
winter, month, weekend in our case) that two individuals were
observed in the same flocking event together, divided by the
sum of times when they were observed at all (in the same flock,
in different flocks at the same time, and when only one of the indi-
viduals was observed). Our previous work has demonstrated that
our data collection methods (sampling snapshots of social struc-
ture throughout the winter) in combination with creating SRI
social networks from the underlying gambit-of-the-group
approach are good representations of social associations and
bonds between individuals [15,27].

(d) Dataset construction

To be included in our primary analysis, a pair had to meet
several requirements. First, it had to be newly formed in the
winter prior to the breeding season. This excludes pairs that
had previously bred together. Second, both pair members had
to be detected at winter feeders at least once. Third, both mem-
bers had to be tagged either prior to the winter of interest (as
nestlings or adults), or newly tagged in the current winter as
immigrants at least two sampling periods before the pair meet-
ing time. This eliminates pairs that had been associating but
not detected as such purely because one or both members were
not tagged at the time. Finally, we excluded six pairs (out of over-
all close to 400 pairs, i.e. less than 2%), where both individuals
were known to be tagged prior to the winter, but were detected
for the first time in the late autumn/winter (i.e. after October) as
already paired. These pairs probably formed outside of the main
woods, and returned already paired. These requirements were
met by 169 pairs in 2008-2010 breeding seasons, and by 252
pairs of the 2012-2014 breeding seasons. Among these, members
of 29, and nine pairs, respectively, were never detected in the
same flock. In all of these pairs at least one of the birds was
either detected at feeders very rarely (in the lowest 20th percen-
tile of the distribution of the number of times each bird was
detected in a given winter), or had a larger number of detections
but in one month/weekend only. Thus, the final sample size for
the analysis included 140 pairs breeding in 2008-2010, and 243
pairs breeding in 2012-2014 spring.

(e) Statistical analysis

We ran separate sets of analysis for the two periods with a differ-
ent protocol for winter data collection (2007/2008 to 2009/2010
winters; and 2011/2012 to 2013/2014 winters). We conducted
statistical analysis in R [43] v.3.6.3 using package Ime4 [44], and
produced figures using package ggplot2 [45]. We compared the
performance of the candidate models (please see below) based
on the Akaike information criteria (AIC) values [46]. We con-
sidered that a model gained better support if its AIC value was
2 or more units lower than the AIC value of the competing
model/models. For models that gained similar support (within
2 AIC), we considered the model with a fewer parameters to be
more informative [47].
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(i) Meeting time and breeding success

To test whether meeting time can predict subsequent reproduc-
tive success, we ran separate model selection for each breeding
success component. Our main response variables were: standar-
dized laydate (date when the first egg was layed in the nest,
standardized per year), clutch size (maximal number of eggs in
the nest), the number of hatched young, the number of fledged
young, hatching success (proportion of eggs that hatched), fled-
ging success (proportion of hatchlings that fledged), and binary
fledging success (fledged at least one young or not). We used
generalized linear models (GLMs) with appropriate error distri-
bution: Gaussian for laydate; Poisson for clutch size, number of
hatchlings and number of fledglings; and binomial for hatching
success and fledging success. In models with Poisson and
binomial errors, and after model selection, we re-run the
best model(s) with quasi-poisson and quasi-binomial error
distribution to account for over-dispersion.

For each breeding success component, we ran the analysis in
three steps (main analysis, table 1) and conducted a sensitivity
analysis to confirm the robustness of the results (electronic sup-
plementary material). When constructing our candidate
models, we followed the rule that the number of estimated par-
ameters (k) should be k < ‘sample size’/10 [48]. In the first step
of model selection, we generated candidate models from combi-
nations of three main predictors and their two-way interactions
(table 1): meeting time, year (categorical variable) and pair
type. Meeting time was a continuous variable, increasing
monthly between 1 (August) and 8 (March) in winters 2007/
2008 to 2009/2010 (eight values), and increasing weekly between
1 (weekend 2 of September) to 26 (weekend 1 of March) in win-
ters 2011/2012 to 2013/2014 (26 values). Categorical variable pair
type codes for males’ and females’ breeding experience in a
population because previous work has showed that breeding
experience can influence breeding success [49]. The variable
can take four values: (i) both partners are experienced (pre-
viously bred in a population); (ii) both partners are new to the
population (first year breeders and new immigrants); (iii)
female is experienced, male is new; (iv) male is experienced,
female is new. This way we have also partly controlled for age
and immigration effects as ‘new’ breeders in our dataset are
mostly immigrants and first-year breeders from the population.
Breeding success components were correlated (see the electronic
supplementary material, table S2 for the correlation coefficients).
Thus, we controlled (additive effect) for: laydate when modelling
clutch size, hatching and fledgling success; clutch size for the
number of hatchlings and fledging success; and number of
hatchlings when modelling the number of fledglings. This way
we were also able to separate direct and indirect (i.e. acting
through the preceding component of breeding success) effects
of meeting time on breeding success (figure 1).

If a model (or models) with meeting time gained the best
support (lowest AIC) in the first step, in the second step, we ran
the same model with the quadratic and cubic effects of meeting
time (table 1). We repeated the model selection on the number of
fledglings and fledging success on a subset of data with pairs
that had fledged at least one chick. We did this because complete
fledging failure was often externally caused (e.g. predation), and
thus does not fully reflect parental ability to raise chicks (22 pairs
in the first study period, and 33 pairs in the second experience a
complete fledging failure). We did not apply the same procedure
to the hatching component because only one pair across years
experienced complete hatching failure.

In our dataset, meeting time is, as expected, correlated with
the male and female arrival time (please see the detailed analysis
in the electronic supplementary material). Male and female arri-
val time were defined as the month (first three winters) or a
weekend (last three winters) when a male or female was first
detected in the dataset (same as the meeting time). Thus, if the

Table 1. The main steps of model selection to explore the influence of [}

meeting time on breeding success. (In the first step, 16 generalized linear
models with the listed basic structure were compared. The main predictor
variables were meeting time (continuous variable), pair type (categorical
variable with four categories) and year. If meeting time was supported as
a predictor of breeding success, the quadratic and cubic relationship were
modelled in the second step, and female and male arrival time in the
third. + = additive effect of a variable; x = interactive effect.)

step 1 model structure (for the explanatory variables)

intercept

pair type
year

meeting o
year + meeting time X pair type
yeér + meetihg time + péir typ‘e
year X meeting time + pair type

meeting time + year X pair type
meeting time X year

» mééting time + year‘ »
meeting time + pair type »
year X pair type

year + pair type

year X pair type 4+ meeting time X year
step 2

modelling nonlinear effects

keep the structure of the best model(s) from step 1
and add quadratic and cubic function to the effect
of meeting time

test for the influence of male and female
arrival time

step 3

(a) replace the meeting time with the female/male
arrival time in the best model from above

(b) control for female/male arrival time by adding it
as an additive effect to the structure of the best
model from above

check for the robustness of the results, based
on the best model selected in the main analysis

sensitivity
analysis

(a) control for measures of the pair bond strength
(additive effect)

(b) control for preference for a partner (additive effect)

(c) control for gregariousness (additive effect)

previous steps supported meeting time as a predictor of breeding
success, in the third step of the analysis, we checked whether:
(@) male and female arrival time better explain variation in breed-
ing success by replacing the term ‘meeting time’ in the best
supported model from the previous steps, with male or female
arrival time; and (b) adding male and female arrival time to
the best model changes the estimate for the effect of the meeting
time. Finally, we check the robustness of the results when con-
trolling for several variables that describe the strength of the
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pair association, preference for a partner, and gregariousness of
individuals (details on this analysis are provided in the electronic
supplementary material). We did not include a random term for
the individual identity in models as less than 9% of individuals
were replicated in this dataset.

(ii) Future mating decisions: fidelity and divorce

We tested whether new pairs (first breeding together in spring t)
that met earlier in winter (preceding t) had a higher probability of
breeding together in breeding season t + 1 compared to pairs that
started to associate later. We used data on only those pairs where
both members had survived to breed in t + 1. We applied a GLM
(with binomial error structure) with status of a pair in t+1 as a
binomial response (divorced or faithful), and meeting time as
the main predictor. We controlled for breeding success, known
to predict divorce probability in monogamous birds [50]. Specifi-
cally, we controlled for laydate and clutch size based on the results
of a meta-analysis on breeding success and divorce that we have
conducted using published data on great tits and three closely
related species (please see details on meta-analysis in the elec-
tronic supplementary material, data used are a subset of data
from [50]). To keep the models simple (owing to the small
sample size; table 2), we only considered six possible structures
for the explanatory part of the model for the first set of years
(2007-2010, sample size is only 17 pairs): intercept model,
‘clutch size’, ‘clutch size + meeting time’, ‘laydate’, ‘laydate +
meeting time’, ‘meeting time’. For the second set of years (2011-
2014), where the sample size was higher (50 pairs), we considered
12 possible models, six with the structure as outline above, and six
where ‘year” was additionally added as an additive effect.

3. Results

Pairs met throughout the winter in all 6 years (1 = 140 pairs in
2007/2008 to 2009/2010; n = 243 pairs in 2011/2012 to 2013/
2014, electronic supplementary material, figures S1 and S2).
Some winters had a clear pair meeting peak at the very begin-
ning (electronic supplementary material, figures S1 and S2).
For the majority of pairs, the strength of the pair association
in the meeting month/weekend (the bond meeting SRI value)
was higher than the 75th percentile of all the social associ-
ations (i.e. other SRI values) of all the birds for that month/
weekend (see the electronic supplementary material). Fur-
thermore, for around 70% of future pairs, the pair
association (measured as SRI) in the meeting month/week-
end was among the 25% strongest social associations that a
female and a male of a pair established in that month/week-
end. Overall winter social association of the pair was higher
for pairs that have met earlier in winter, then for those that
have met later (see the electronic supplementary material,
Predictors of pair association strength).

(a) Meeting time and breeding success

Model selection on both datasets showed that meeting time
had a direct effect on the standardized laydate (cubic term),
and not on the other measures of breeding success (hatching
and fledging success, number of eggs, hatchings or fledglings).
Our results further showed that earlier laydate resulted in
larger clutches, and in a higher hatching and fledging success.
The parameter estimates of the best supported models are pro-
vided in the electronic supplementary material, tables S18-
S21. The detailed model selection tables can be found in the
electronic supplementary material, tables S3-S10 (for 2007/
2008 to 2009/2010) and S11-517 (for 2011/2012 to 2013/

Table 2. The number of pairs breeding together for the first time in the [

breeding season ¢, for which partners were tagged and detected associated
in the winter prior to ¢, and where both survived to the season t+ 1 to
either breed together (fidelity) or with new partners (divorce). (For
example, of six pairs that have formed in 2007/2008 winter (and bred for
the first time in the 2008 breeding season), three divorced and three
remained faithful to the 2009 breeding season.)

status/ 2007/ 2008/ 2009/ 2011/ 2012/ 2013/
winter 2007 2008 2009 2011 2012 2013

divorced‘ 3 ‘ 3»1 0‘ 6 ‘2>‘ 4
faithful 3 6 2 16 9 13

Table 3. Model summary (parameters estimates, standard errors, test
statistics) of the best supported (i.e. lowest AlC) standardized laydate model
for 2007/2008 to 2009/2010 dataset, and 2011/2012 to 2013/2014 dataset.

parameter estimate s.e. t-value Pr(>1tl)
2007/2008 to 2009/2010 dataset

meeting time 1.110 0.371 2.999 0.0032
meeting time’ —0.217 0.090 —2.405 0.0175
meeting time® 0.013 0.007 1.980 0.0497
winter_07/08 —1.489 0.452 —3.291 0.0013
winter_08/09 —1.700 0.438 —3.881 0.0001
winter_09/10 —2.002 0.470 —4.263 3.78e-05
2011/2012 to 2013/2014 dataset

intercept —0.448 0171 —2.619 0.0093
meeting time 0.119 0.071 1.679 0.0945
meeting time2  —0012 0007  —1801  0.0729

meeting time’ 0.0004 0.0002 2219 0.0274

2014 dataset). All of the results, and estimates of the effects,
remained robust to our sensitivity analysis ( please see the elec-
tronic supplementary material, Additional sensitivity analysis
on the robustness of the results).

Estimates of the best-supported laydate model for 2007/
2008 to 2009/2010 dataset (i.e. model with the lowest AIC,
laydate® + year, table 3 for parameter estimates) showed that
females which met their male in August laid their eggs the
earliest (e.g. standardized laydate of —0.58, s.e.=0.20 in
2008 spring). The laydate got later for females meeting their
partner up to November (0.32, s.e.=0.11), and stayed
around the same value for females meeting their partners
after November (figure 2a). Model selection provided no sup-
port for the effects of female or male arrival time on laydate
(electronic supplementary material, table S3, third step).

The estimates of the laydate model with the lowest AIC
(cubic effect of meeting weekend) for 2011/2012 to 2013/2014
dataset showed that females of pairs that met at the beginning
of September laid the earliest (—-0.34, 95% confidence interval
(CI): —0.57/-0.11) and females of pairs that met at the beginning
of March laid the latest (1.45, 0.84/2.05). However, the effect of
meeting weekend was strongest after late December (i.e. the
slope of the effect was steeper), figure 2b. There was no support
that female or male arrival time predicted the laydate (electronic
supplementary material, table S11, third step).
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Figure 2. Standardized (for a year and for all breeding pairs) laydate of newly formed pairs of great tits as a function of meeting time of a pair in the preceding
winter for (a) 2008 to 2010 breeding seasons, where meeting time was a month when a pair was first seen together; (b) 2012—2014 breeding seasons, where
meeting time was a weekend when a pair was first seen together. Shaded areas represent 95% Cl of the line. Dots represent the original data points. (Online version

in colour.)

(b) Meeting time and future mating decisions

Model selection on both datasets (2007/2008 to 2009/2010;
2011/2012 to 2013/2014) did not support a direct influence
of meeting time on the probability that a pair breeds together
again. In the first three years, model selection gave the best
support to two models (electronic supplementary material,
table 522). One included ‘laydate’ as the main predictor of
divorce of a pair, and the other one ‘meeting time’ and ‘lay-
date’. However, the credible intervals of the term meeting
time (as well as the laydate) overlapped zero. For the
second three years, several models gained similar support
(electronic supplementary material, table S23). However,
models with the term ‘meeting time’ did not outperform
the models without the term (electronic supplementary
material, table S23), and the credible intervals of all the
parameter estimates in these models overlapped zero.

4. Discussion

Our study is, to our knowledge, the first to report that meet-
ing a future partner early translates into breeding success

benefits in a wild population. We found that in all studied
years, pairs that met earlier and thus started to socially associ-
ate earlier, achieved an earlier laydate, and that these earlier
laying pairs had higher breeding success (indirect effect of
meeting time via laydate) However, our analysis did not
find any evidence of a direct effect of meeting time on the
later components of reproductive success (from clutch size
to fledging success). Interestingly, our results did not support
any direct influence of the time when a pair met (i.e. a poten-
tially longer period of partner assessment) on the future
stability of their bond (divorce or fidelity).

The potential effects of meeting and associating with a
future breeding partner early have thus far mainly focused
on possible hormonal and behavioural synchronization that
partners achieve during this period, and were primarily
addressed in long-lived species [e.g. 8,16]. In these systems,
future pair members sometimes start to associate several
years prior to their first breeding, already forming a distinct
bond [8,16]. Three main functions of these early pairings
have been suggested: direct benefits through higher winter
survival of bonded individuals [8], benefits of within pair
coordination leading to higher breeding success [19], and
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benefits of the prolonged period of partner assessment [17].
Our results are the first to suggest both direct and indirect
(i.e. acting via laydate electronic supplementary material,
figure S5) links between the time when pair members met
for the first time (and started to associate) and their
subsequent reproductive success.

Strong selection for an earlier laydate has been detected
across great tit populations, including the population studied
here (e.g. [33,51,52]). Thus, our finding that meeting a partner
earlier in winter leads to an earlier laydate in all of the six sea-
sons studied here implies that there is a selective advantage
of earlier pairing in a wild populations and that the “pair fam-
iliarity effects” can extend to the familiarity of partners prior
to their first breeding. Our analysis did not support any influ-
ence of female or male arrival time on laydate, thus it seems
that it is truly the effect of pair meeting time, rather than arri-
val times, that leads to this pattern. Interestingly, we detected
that the relationship between the meeting time of a pair and
their laydate was not linear (figure 2). These nonlinear effects
were also found in captive bearded reedlings where pairs
with the longest pairing period (i.e. 6.5 months) performed
significantly better than pairs with a short pairing period
(one month), but there was no difference between short and
medium (four months) pairing periods [19]. In wild popu-
lation, it is possible that the influx of new individuals, and
the return of some birds that leave the woods during
winter, but return to breed [34], maintains the pool of poten-
tial partners up to mid-winter (supported by the distribution
of arrival times of males and females in our dataset, see the
electronic supplementary material). Furthermore, birds of
better quality or with a certain behavioural trait(s), which
also breed earlier, may pair earlier than birds of lower quality,
and that this may, in turn, result in a positive correlation
between meeting time and laydate. Going forward, these
related concepts could be disentangled using experiments
aimed at directly manipulating social associations in the
wild and testing the outcomes directly [37,40].

Pair meeting time has not, however, influenced later com-
ponents of reproductive output in our population directly
(but only indirectly via laydate). Thus, our results do not sup-
port the hypothesis that familiar pairs might achieve higher
behavioural synchronization, and thus make better (more
synchronized) parents. Our results also do not directly align
with previous findings in great tits [53] that found that base-
line corticosterone compatibility increased between two
weeks before breeding, and during breeding, and that pairs
where this compatibility increased raised more fledglings.
However, these previous findings only considered individ-
uals during a short time preceding breeding season, while
our study considers a much longer time period.

Interestingly, when considering divorce in subsequent
years, we found no evidence that the length of the initial
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