Balan et al. J Wireless Com Network  (2020) 2020:231 H
https://doi.org/10.1186/513638-020-01839-6 EU RAS' P JOU rna l on Wi relgss
Communications and Networking

RESEARCH Open Access

: : . ®
A PUF-based cryptographic security solution <«

for loT systems on chip

Alexandra Balan', Titus Balan'"®, Marcian Cirstea® and Florin Sandu’

*Correspondence:

titus.balan@unitbv.ro Abstract

;;Erzzlvvag'rzsgc‘Eeofﬂ'gyma The integration of multicore processors and peripherals from multiple intellectual
Full list of author information property core providers as hardware components of loT multiprocessor systems-

is available at the end of the on-chip (SoC) represents a source of security vulnerabilities for the in-chip commu-
article nication.This paper describes the concept and the practical results of a SoC security

implementation that is illustrative for loT applications. The mechanism employed in this
approach uses physically unclonable functions (PUF) and symmetric cryptography in
order to encrypt the transferred messages within the SoC between the microprocessor
and its peripherals. The mechanism is experimentally validated at FPGA level, the paper
describing also an implementation scenario for an loT ARM based device.

Keyword: loT, Cryptography, Hardware Trojans, FPGA, Electronic systems, PUF, Security

1 Introduction
1.1 Systems on chip for loT devices
Internet of Things (IoT) allows objects to be controlled and/or monitored remotely
across the existing network infrastructure. A typical [oT system contains several end-
point devices that integrate IP cores such as microprocessors, sensors and custom
peripherals in order to ensure the communication and computing capabilities for col-
lecting and processing data. The integrated circuits (IC) manufacturers focus on deliv-
ering specific solutions for IoT creating more robust and powerful SoCs used in the
end-point devices, some designed especially for IoT, like Narrowband IoT (NB-IoT),
LoRA, Sigfox [1, 2].

In a typical microprocessor-based system for IoT, the following components are com-
monly used [3]:

+ Digital system components: a processor (e.g., ARM Cortex-M), bus infrastructure
components (AHB and APB), digital peripherals such as 12C/13C, SPI interfaces, and
other optional IP cores like DMA (Direct Memory Access) controllers, crypto engine
or true random number generator (TRNG) for communication session keys, as well
as secure data storage elements.

. ©The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ Sprlnger Open use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.


http://orcid.org/0000-0002-6839-9279
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01839-6&domain=pdf

Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 2 of 22

+ Memories: Static random access memory (SRAM), non-volatile memory (NVM), for
example flash memory, optional boot loader memory, OTP (one-time programma-
ble) memory or mask ROM.

+  Wireless interfaces, radio interfaces

+ Optional analog components.

For exemplification reasons, the Monarch SX SoC designed by Sequans [4] is
depicted in Fig. 1, to stress out the increased number of interconnecting IP cores that
are part of an IoT element. Based on Sequans’ Monarch LTE-M/NB-IoT module, this
SoC includes, besides interfaces and peripherals, specific engines for media process-
ing in audio and voice applications with support for VOLTE on LTE-M, a low-power
sensor hub, a GPU and display controller, IoT interfaces for USB, screen, microphone,
battery, GNSS, SIM card, Wi-Fi, Bluetooth, keyboard, accelerometer, gyroscope and
other sensors.

In order to successfully integrate these SoCs into IoT, the applications mandatory
characteristics are low cost and minimal consumption. Further application require-
ments include security, which plays a crucial role in the IoT network and must origi-
nate within the endpoint device.

The diversity and increased number of I0oT elements and vendors implementing
SoC and IP cores combined at the IoT endpoint level (e.g., ARM, Altair Semicon-
ductors, Qualcomm) introduce some specific security breaches and vulnerabilities
[5]. Security counter-measures implemented at the software level are not sufficient; a
security mechanism should also be considered in the hardware level of the SoC which
later will be used in the IoT device. Some of the SoCs include cryptographic IP cores
implemented at hardware level which may be responsible for the generation of a pub-
lic cryptographic key, the decryption/encryption of a message received/sent through
the network from another device or network gate.

R Filters

USB, SDIO,
125, SP!

Graphic Rel13
Processing | Cortex@-M4 [ LTE baseband
Unit and direct
conversion RF

[ 2] 2]

ANT

[ 2] 2]

Voice & Music
Processing Unit TxFiters

BHOORE

SQN330

Power Un/Nown
Fig. 1 Different IP cores integrated as part of Monarch SX SoC designed by Sequans [4]




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 3 of 22

This paper addresses the security vulnerabilities of IoT SoCs that integrate different IP
cores, susceptible to hardware attacks (as described in Sect. 2).

The paper introduces a secure mechanism in order to protect the integrity and privacy
of applications and sensitive data from physical attacks.

The proposed cryptographic mechanism introduces two operations, encryption and
authentication, that are translated at the SoC level between microprocessor cores and
peripherals. The two cryptographic operations use PUF (physical unclonable functions)
circuits—their complete implementation and validation is detailed further in this paper.

Inspired by biometrics, PUFs provide a unique way to identify integrated circuits.
Comparable in a simplistic way with a “unique fingerprint” of an IC that differentiates
one IC from another (though apparently identical), PUFs exploit the inherent variability
in integrated circuit manufacturing to implement challenge-response functions whose
output depends on the input and on the physical microstructure of the device. Some
operations, critical from the security point of view, where PUF could serve as unique
identifier as part of the IoT implementation are: authentication, data integrity, access
control, privacy [6].

The novelty of the proposed method resides in the use of PUF to enable secure com-
munication in order to counteract security attacks such as: hardware Trojans, snooping
bus, malware insertions. The paper proposes an encryption concept to provide secure
communication between the components in a SoC in the presence of an untrusted com-
ponent, which can snoop the data transmitted in the shared bus. The untrusted com-
ponent may be either a third-party software application or a hardware Trojan. The PUF
circuit used for the FPGA experimental prototype, validating the proposed mechanism,
is the ring oscillator PUF (RO PUF).

The paper is organized as follows: after describing the security threats for IoT elements
and the use cases where the proposed PUF security approach proves to be efficient—
also presenting similar work and related industry implementations, the paper focuses
on describing the experimental methods used for the implementation of the proposed
security mechanism aimed to integrity and privacy in a SoC designed for IoT. Next,
the paper describes the implementation and testing results of the PUF-based encryp-
tion and authentication mechanism at FPGA level. A discussion follows, analyzing the
advantages provided by this implementation. In order to illustrate the applicability of the
proposed security method, the practical use-case of the design of an integrated circuit
for IoT based on an ARM SoC is also presented, that can be enhanced with PUF-based
elements. A comparison with the industry standard ARM TrustZone technology is also
presented, as representative for many ARM-based IoT implementations. The last section

presents the conclusions.

1.2 Security threats and related work

An Internet-connected device is susceptible to attacks at different levels [7]: (1) commu-
nications (man in the middle, weak random number generator, code vulnerabilities); (2)
security services (code downgrade, change of ownership or environment, factory over-
supply); (3) physical (non-invasive attacks: clock or power glitch, side channel attacks;
invasive attacks: package removal—microprobe station); (4) software (buffer overflows;
interrupts; malware). The classification of attacks is presented in Fig. 2.



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 4 of 22

Attacks against IoT device Physical Attacks:
communication: -non-invasive: clock or power
-man in the midle glitch or SCA
-Weak RNG -invasive: package removal;
- Code Vulneabilities micrﬁrobe
Countermeasure based on Side channel attacks
cryptography countermeasures

Countermeasure based on || Countermeasure based on
security services 1solation

=_=

Attacks against IoT: o
= Software attacks:
-code downgrade
) -malware
-change of ownership or .
: -Interrupts
environment
- buffer overflow
- factory supply

Fig. 2 Classification of security attacks

Considering the classification presented above, the following attacks may be thwarted
by the introduced method: type 3—physical and type 4—software.

Some examples of typical physical attacks and software attacks, targeted by the secu-
rity mechanism that we propose, are described in the following.

The necessities of building large SoCs and achieving a good time-to-market force more
and more companies to turn to third-party reusable intellectual property [8].

One threat model for SoCs is represented by physical attacks against ICs, which
assume the physical investigation of the ICs in order to obtain sensitive information. The
physical investigation of an IC refers to exploring parts of the IC which are not available
through normal input/output pins. For example, attackers may inspect the IC layout in
order to obtain a secret key. These types of attacks are hard to achieve due to high equip-
ment costs. Even so, there are companies specialized in reverse engineering that analyze
the circuits and the semiconductor structure of electronic sub-systems, which may lead
to disclosure of secrets; one of them is Chipworks. Examples of physical attacks using
reverse engineering are presented in [9].

Bus monitoring attacks represent another type of security threats against SoCs. The
bus between the processing part and the memory is one of the most vulnerable points
in the system: an adversary may easily listen on the bus in order to extract critical
information.

Bus monitoring attacks could also reveal access patterns to memories, which may
expose sensitive information.

For example, AES implementations use a table of pre-computed values. The order in
which the table entries are accessed can reveal secret information [10].

DMA transfers are usually performed during idle times of the bus. A disadvantage of
DMA transfers is that they are primarily unsupervised by anti-malware agents. During
a DMA transfer, the unsupervised data could be accessed by malicious software which



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 5 of 22

runs on the CPU [11]. After the completion of a DMA activity, the transferred data can
be scanned for malicious codes.

A hardware Trojan is a malicious modification of hardware during design or fab-
rication which causes an IC to have an altered functional behavior, with security con-
sequences. In modern SoCs, cores communicate with each other via a shared bus.
Unfortunately, the shared nature of the traditional bus architecture raises several secu-
rity issues. Malicious cores can obtain secrets by snooping on the bus. In addition, the
bus can be used as a covert channel to leak secret data from one core to another. One
of the IP cores (for example, the wireless controller) may contain a malicious hardware
modification, a Trojan hardware that could leak information and secret keys which are
being transferred between peripherals via the bus. Minor modifications to the digi-
tal part of a wireless cryptographic chip are enough to leak secret information without
altering the far most sensitive analog parts [12]. Nowadays, the SoCs are created using IP
cores from third party vendors and only custom peripherals are implemented and tested
in house, in order to reduce the cost and to accelerate the time-to-market with minimal
engineering resources. The third-party IP cores may contain hardware Trojans which are
undetectable through functional verification and physical testing. In a proof-of-concept
project, ARM set itself a challenge in 2015 to demonstrate that physical implementa-
tion of SoC for an IoT endpoint device is easily attainable for small design groups of
companies having almost any size. The design team should rapidly build differentiated
solutions by integrating varying combinations of the ARM IP with their own IPs and
third-party IPs.

The above-mentioned physical and software attacks could represent threats for IoT
subsystems: a malicious person could gain access [13] to a commercial HVAC (heating,
ventilation and air conditioning) system, a wireless base station (e.g., for small cells), to
implanted medical devices and their controllers, to smart cars and the emerging gateway
systems, or to remote industrial sensors.

Though not in focus of the implementation described in this paper, the security mech-
anism based on PUF circuits may be extended with cryptographic algorithms in order to
counteract attacks also from the other two classes mentioned above and represented in
Fig. 2: in case of the communication attacks, PUF circuits could generate the secret used
in public key cryptography for message exchange. In case of the security issues related to
factory oversupply, due to the uniqueness property of PUF circuits an identifier may be
generated to uniquely identify each manufactured integrated circuit.

While most of the PUF applications for IoT focus on securing the communication
channels with the exterior elements, the proposed implementation is focused on the
on-chip communication security. Many IoT security mechanisms have been developed
since the discovery of the silicon PUF circuits. Almost all of them address the security
attacks from the communication class: authentication between the IoT device and the
server, message exchange between IoT devices, physical attacks on memory devices.
Some important related work results are resumed below.

The authors of [14] proposed a PUF based mutual authentication protocol between an
IoT device equipped with PUFs and a server from a data center. The proposed protocol
is immune to cloning attacks because the PUF cannot be reproduced and is immune
to physical attacks because the devices do not store any secrets in their memory. A



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 6 of 22

lightweight identity-based cryptosystem is presented in [15] enabling secure authenti-
cation and message exchange among IoT devices. The cryptosystem is based on PUF
circuits and elliptic curve cryptography. The authors of [16] use RF-fingerprints which
are similar to PUF circuits and develop a system architecture that takes advantage of
the embedded RF properties of the Tx to authenticate wireless nodes using a machine
learning framework in the Rx. An alternative scheme, which is able to solve man-in-the-
middle attacks, impersonation attacks and replay attacks, is presented in [17]. The secu-
rity scheme is based on an efficient key communication agreement phase between two
IoT devices. Authenticating IoT devices based on PUF circuits is described in [18]. A RO
PUF that uses spatial reconfiguration on an FPGA to provide secure authentication for
resource-constrained [oT devices is presented in [19].

Compared to the existing work, our implementation proposal covers the hardware
vulnerabilities which can be exploited by software applications or physical investigations
of an IoT integrated circuit—more precisely attacks such as: snooping the bus; access-
ing the sensitive data stored in memories; memory inspection using DMA [20]; copy-
ing critical data using DMA reads [20, 21]; hardware Trojans. All these attacks could be
achieved with malicious programs gaining access to sensitive data, by exploiting hard-
ware vulnerabilities.

A well-known industrial implementation of IoT security is the ARM TrustZone Cryp-
toCell solution, a comprehensive collection of silicon-proven security modules that pro-
vide platform level security services. It provides the system with various cryptographic
related services (implementation of symmetric and asymmetric schemes, HASH and
keyed HASH functions, random number generation) as well as platform security ser-
vices required to assure the integrity, authenticity and confidentiality of code and data
belonging to different stakeholders (such as OEM, or a service provider to the user) [22].
The security modules provide the encryption and authentication of communication
between different devices from the IoT network.

2 Methods/experimental

2.1 Resources used for implementation

The paper proposes and validates experimental an encryption concept to provide secure
communication between the components in a SoC, in the presence of an untrusted com-
ponent that represents a security vulnerability.

The security mechanism is validated through an FPGA (Field-Programmable Gate
Array) prototype that shows: (1) the implementation and validation of two security
operations (encryption and authentication) at the SoC level between microprocessors
and peripherals; (2) the use of PUF secret keys with symmetric cryptographic algorithms
which eliminates the requirement of a secure channel in order to transfer the secret key
to various IP cores; (3) the analysis of the proposed mechanism in terms of performance
and hardware resources.

All implementations were done on Xilinx Virtex 4 FPGA—the XC4VSX35 devices.
The tools used in order to construct the prototype are: (1) Xilinx FPGA Editor for manu-
ally placing and routing the PUF circuits; (2) Xilinx EDK in order to implement the SoC
with the IP cores provided by Xilinx IP catalog; (3) Xilinx SDK for writing the C program
which runs on the SoC; (4) Xilinx Project Navigator in order to add the PUF circuits and



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 7 of 22

the required mechanism for generating the secret keys along the SoC; (5) Xilinx Pla-
nahead tool for constraining the placement of the SoC IP Cores; (6) ISim Simulator in
order to validate the functionality of the applications, to observe the correctness of the
encrypted and authenticated transfer and to analyze the latency with the newly intro-
duced cryptographic operations. All of these tools are part of the Xilinx 12.4 Design and
Embedded Suite.

In order to show the feasibility of the proposed security concept in real applications,
a demonstrator SoC was created with Xilinx IP Cores: a Microblaze microprocessor, a
custom cryptographic (crypto) peripheral with two read/write registers and two GPIO
(General purpose Input Output) ports configured one as output and one as input. The
communication between peripherals inside the SoC was implemented through the
Xilinx PLB bus. The result of this system implementation will be presented in Sect. 3.
As a use case scenario, it is assumed that sensitive user data are entered into the system
on the input port. The critical data is passed to the crypto peripheral and then to the
microprocessor, in order to validate the authenticity of the user. In case of validation, the
system notifies the user through the output port.

After being completed in Xilinx EDK, the system was imported in Xilinx Project Navi-
gator. Here the 128 RO PUF circuits were added along the system and connected to it.
The microprocessor runs a C program which receives the user sensitive data through the
GPIO inputs and sends the data to the crypto module for authentication.

In order to analyze the output of the RO PUE, we have collected the results from 30
identical FPGAs—Xilinx Spartan 3E. The results were collected with the help of the
software analyzer, Xilinx ChipScope, and their values were compared with each other
in order to demonstrate that the sequences are unique. Two binary sequences generated
with PUF circuits are different if on average half of the bits differ. The number of differ-
ent bits between the sequences generated with PUF circuits is named “inter-distance”
and is measured using the Hamming distance.

2.2 The concept of the proposed security mechanism

The introduced method aims to analyze and experimentally validate the use of crypto-
graphic-based operations (encryption/decryption, authentication) inside IoT SoCs with
minimum costs in terms of hardware resources needed for performance.

The encryption used to secure the data transferred through the internal bus or stored
in peripheral registers or in the memory is based on the one-time pad encryption. The
one-time pad (the cryptographic key) used for encryption is generated using PUF cir-
cuits and Salsa stream cipher. The memory address is involved in one-time pad com-
putation when it comes to secure the stored data. The mechanism is based on the
methodology described in the following:

(a) Determining the critical SoC peripherals

+ The IP cores which process sensitive information will own the cryptographic mech-
anism. The data read or written from the critical IP cores is encrypted.

(b) Generating PUF secret keys

+ The secret key is generated using PUF circuits and Salsa 20/20 algorithm. The Salsa
20/20 is a pseudorandom function based on add-rotate-xor operations. The algo-



Balan et al. J Wireless Com Network ~ (2020) 2020:231

(c)

rithm maps a 256-bit key, a 64-bit nonce, and a 64-bit counter to a 512-bit block
of the key stream. The algorithm generates a stream of pseudorandom binary
sequences (512 bit blocks) that may be used as encrypted keys for one-time pad
encryption.

Encryption and decryption

Figure 3 shows the general encryption mechanism involving the microprocessor
and one peripheral inside a critical domain. The secret key is a pseudorandom key
generated with the help of the PUF responses and the pseudorandom stream cipher
Salsa 20/20. Both the microprocessor and the peripheral have easy access (direct
connections) to PUF responses, and they also have a wrapper which contains the
pseudorandom stream cipher Salsa 20/20. The IP core in Fig. 3 is a critical periph-
eral that processes critical information, so the read and write operations between
microprocessor and peripheral registers are encrypted. As both peripherals have
direct connections to the output of PUF circuits, there is no need of a secure chan-
nel in order to convey a secret key, eliminating the drawback of the symmetric
cryptography. The other peripherals that are not allowed to use the critical infor-
mation do not have access to the PUF circuits nor to the Salsa 20/20 stream cipher.
In the same manner, the data written to the system memory or read from the mem-
ory may be encrypted using the one-time pad encryption. The memory address will
be used by the Salsa 20/20 function (as a 64 bits counter value) in order to generate

the same key for the encryption/decryption operations (Fig. 4).

If the SoC is complex, more critical domains may be considered: each domain contains

the peripherals that communicate with each other and each domain will have a unique

key generated with PUF circuits.

d Authentication of IP cores

.

This step involves the completion of the wrapper beside the peripherals and the
microprocessor with the necessary binary registers in order to authenticate an IP

PUF 128b
Nonce 64b

PRG_Salsa_based

key

Plaintext
data

data

Microprocesor Adorpss Signals |
T

I
< Cong|0| Signals »

| Microprocessor Wrapper | | Periferic Wrapper

Peripheral

I Plaintext

—_— e ——— —— =

Fig. 3 Encryption Scheme between Microprocessor and Peripherals

Page 8 of 22



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 9 of 22

128 RO PUF
circuits
64 bits nonce

| Address

Address
Data Data
Encrypted d
CPU ““y‘fte “ | Memory

Fig. 4 Encryption Scheme between Microprocessor and System memory

core (marked with dotted line in Fig. 3). The authentication relies on knowing the
same pseudorandom key. If two IP cores are allowed to exchange data, their wrap-
pers will generate the same pseudorandom sequences. The microprocessor from
one domain may read a mixed bit value of a pseudorandom key and compare it
with its one mixed bit value. Confirming the identity of the data source contributes,
along the encryption/decryption operations, to counteract the security threats pre-
sented in Sect. 2.

3 Results

The implementation follows the methodology presented in the previous section. In order
to analyze and validate the encryption mechanism, a prototype was implemented on an
FPGA element, emulating the hardware design concept that an IoT chip vendor would
normally follow in production.

In the implemented application, the communication between the microprocessor and
the crypto peripheral—in the system presented in Fig. 5—is encrypted.

The proposed security mechanism assumes that both the microprocessor and the
encryption peripheral have an own wrapper for encryption and decryption. In the
experimental approach, a coprocessor connected to the microprocessor was used which
offers access in detail, needed to add the custom cryptographic wrapper. The encryption
peripheral is a custom one, so the encryption wrapper was easily implemented.

The encryption wrappers have access to the hardware area in which the PUF circuits
are implemented.

As may be seen in Fig. 5, the Microblaze microprocessor and the crypto peripheral
have implemented the security wrapper mechanism. Before sending/receiving data to/
from the crypto peripheral, Microblaze encrypts them using an XOR operation with a
pseudorandom sequence generated with Salsa 20/20. In this case, the encryption is made
using the added coprocessor. On the other part, crypto peripherals decrypt/encrypt the
data using the same pseudorandom sequence generated with Salsa 20/20 and bitwise
XOR operation.

The sequence of signals described in Fig. 6 shows an encrypted and authenti-
cated transfer: (1) the PLB signals (dplb_m_request, dplb_mrnw, dplb_m_wrdbus,



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 10 of 22

RO PUF
circuits

coprocessor

P
N
v

A

L4

‘J

Keystream

peripheral

i I
i |
i !
i Crypto !
i I
: I
I

i I
: I

P G —

Fig. 5 System on Chip implemented in Xilinx EDK

UL UL UL U UL L LU LU UL LU LU UL AL AL AL UALLLAL

prng_d1 3 d65b
auth_val_p[0:31] 1 b

Fig. 6 Sequence of signals for an encryption transfer between Microblaze and crypto peripheral

dplb_mwrdack) indicate a master bus request; (2) Microblaze sends the plaintext data
(0 x 00000011) to coprocessor (fsl_s_exist, fsl_s_read, fsl_s_data); (3) the coprocessor
reads the value, encrypts it using an XOR operation and sends the cryptodata back to
Microblaze (fsl_m_data, fsl_m_write); (4) Microblaze performs two serial reads: the
authentication value (0 x 22ddbb44) and the cryptotext (0 x 01637ddc); the value of the
pseudorandom key is 0 x 01637dc4; (5) Microblaze forwards those two values using two
write operations; (6) the PLB signals send those data to the crypto core (m_rnw, m_wrd-
bus, plb_mwrdbus); (7) the authentication value and the cryptotext reach the periph-
eral register (user_bus2ip_wrce, slv_reg_write_sel, slv_reg0). The IP core can validate the
plaintext data through the authentication value. In the case of disparity, the IP core may
alert or stop the microprocessor.

Despite many PUF circuits being presented in the scientific literature, few of them are
suitable for FPGA implementations, due to routing complexity and limitations. After
analyzing most Silicon circuits, two of them were found to be appropriate for FPGA



Balan et al. J Wireless Com Network  (2020) 2020:231

implementations: the RO PUF (Ring Oscillator PUF) and the Latch-based PUF. In the
presented mechanism, the generation of the secret key is based on RO PUE. The RO PUF
is based on the structure presented in Fig. 7a, b.It contains 7 inverters connected in a
loop which generates a periodical signal. Due to the process variations, the frequencies
of the periodical signals will be slightly different. In this way, one of the two counters
will reach first the maximum value setting the comparators output to 0 or 1. The result
is unpredictable due to the process variations that will modify the signal frequencies. By
instantiating more PUF circuits of the same type, a cryptographic key is generated based
on process variations and is embedded in the physical FPGA structure.

Extracting keys from FPGA-based PUFs using the highly structured nature of modern
FPGAs is solution whose feasibility was demonstrated in [23].

One RO PUF circuit is mapped on the hardware resources as in Fig. 7b. This imple-
mentation occupies entirely one configurable logic block with 4 slices. Two other 13

! freq1
; 13
D oli vl o
F E E E 1 counter_instd

sel_puf_clk

ok
- val_o
F E E E 1 counter_inst2 "

sel_puf_clk

‘Synchronization
dirauit

a RO PUF

slice Xi+1Yj+1

D Q
042ns |_>

|——D"X

slice Xi+1Y]j

freq

[=]

0.023ns

0.240ns E— >° J 0.075ns

slice_ XiYj+1 0.101ns

>
g: 0.110ns

slice_ XiYj 0.023ns

==
0.122ns

b RO PUF on Virtex XC4VSX35
Fig.7 a RO PUF, b RO PUF on Virtex XC4VSX35

Page 11 of 22



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 12 of 22

bit binary counters and a crossing clock domain circuit are necessary in order to com-
pute one RO PUF answer. The cryptographic key used with Salsa 20/20 involves 128
PUF circuits.

The RO PUF circuits are implemented on the FPGA hardware resources as in Fig. 8,
where the occupied area was marked. The hardware resources used to implement the
128 RO PUF circuits, as may be seen in Fig. 7a, b, are presented in Table 1. The main
properties of PUF circuits (randomness and uniqueness) were also analyzed in [23,
24]. Our proof-of-concept study considers 30 identical Spartan 3E devices and 4 Spar-
tan 6 devices. The inter-distance histogram (a measure for the uniqueness property)

Area occupied lArea
bv RO PUF Unused

Fig. 8 RO PUF circuits arranged on FPGA hardware resources




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 13 of 22

Table 1 Hardware resources for RO PUF implemented on Virtex 4

Device utilization summary (estimated values using Xilinx XST)

Logic utilization Used Available Utilization (%)
Number of slices 2067 15,360 13

Number of slice flip flops 2674 30,720 8

Number of 4 input LUTs 4066 30,720 13

B Frecuency
-888388¢%

T
o < ®
Mm M o

o]
wn

.|||‘|‘ “‘lll.
T T T T T T T T
N O O < N O O <

<t < N O O N~ I~

Classes

Fig. 9 Inter-distance histogram

shows that the number of different bits between two sequences generated with PUF
circuits is in average, half of the bits (Fig. 9).

The critical peripherals that should exchange sensitive data have access to the out-
put of the PUF circuits, the 128 bits generated with RO PUF. The connection is made
only once when the chip is implemented and then physically manufactured. All other
peripherals from the system cannot access the PUF circuits.

Making the PUF responses available in the peripheral unit will not compromise the
security mechanism; the RO PUF key remains tamper-resistant.

Any attempt to disclose the PUF generated key leads to disruption of the IC. Con-
necting the PUF responses to Salsa 20/20 pseudorandom generator eliminates the
requirement of an error correction and detection algorithm in order to obtain sta-
ble PUF responses. This application has the advantage to not require stable PUF
responses. The oscillating responses help to improve the security level of the mecha-
nism generating different pseudorandom sequences.

The security protocol assumes to adjoin a wrapper that has access to the sequence
generated with PUF for one domain and contains a pseudorandom generator. As
mentioned above, the chosen pseudorandom generator is Salsa 20/20. The key is gen-
erated using 128 PUF circuits, and the value is concatenated two times in order to
obtain a 256-bit key. The Salsa 20/20 algorithm computes the pseudorandom value
of 512 bits in 21 clock cycles. As shown, it maps a 256-bit key, a 64-bit nonce, and a
64-bit stream position to a 512 bit output. Each block is an independent hash of the
key, the nonce, and a 64-bit block number; there is no chaining from one block to the
next. The Salsa 20 encryption function is a long chain of three simple operations on
32-bit words: 32-bit additions, 32-bit exclusive-or and constant-distance 32 bit rota-
tion. Salsa 20/20 starts with the initial state, then it first applies the operations for



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 14 of 22

columns and then for rows in 20 repeated cycles, while the final phase adds the initial
state to the final result. Salsa 20/20 was chosen as encryption method in our demon-
strator due to the fact that it is suitable for a hardware implementation, being based
on simple logical operations. In order to experimentally analyze the security concept,
each critical peripheral was featured with this wrapper. The implementation of Salsa
20/20 core was made on the Virtex 4 board, and the summary of device utilization
may be seen in Table 2. The frequency after synthesis is 139.451 MHz.

The total cycle for transfer and encryption of the data between Microblaze and
the custom peripheral is 19 clock cycles. Considering that each of the two opera-
tions of reading and writing has this latency of 19 clock cycles, that the encryption
and decryption are made combinational (a XOR operation), and that the Salsa 20/20
based on PUF circuits generates the PRG (pseudorandom generator) key in 21 clock
cycles, the mechanism from Microblaze and the peripheral are synchronized.

In order to verify the authenticity of the crypto peripheral, the microprocessor
could read an authentication value from the crypto peripheral registers and compare
it with his own authentication value. In this way, the receiver may verify if the source
of data is valid or if the data are compromised. The authentication value is obtained as
a mixed process between the bits of the pseudorandom value. Reversing the bits was
chosen in order to exemplify the encryption and authentication between the micro-
processor and the crypto peripheral.

A more complicated operation may also be used instead of bits reversion.

4 Discussion

4.1 Analysis of the security protocol

The concept presented in the above section aims to counteract the attacks presented
in the IoT SoC threat model from Sect. 3. The physical attacks which aim to reveal
secret information such as cryptographic keys or sensitive data are counteracted with
the newly introduced mechanism. First of all, the cryptographic keys are embedded in
the structure of the FPGA/IC and any attempt to disclose their values leads to the dis-
ruption of FPGA/IC and implicitly of the SoC or embedded system. This is the most
valuable property of PUF circuits and the main advantage compared to a hardcoded
key. Moreover, the use of the PUF secret key does not require a transfer of the secret
key to the security wrapper; the IP cores have direct connections to PUF responses.
Furthermore, the sensitive information is stored as a crypto text inside the memories
or local peripheral registers due to the encryption/decryption mechanism.

Table 2 Salsa 20/20—device utilization

Device utilization summary (estimated values using Xilinx XST)

Logic utilization Used Available Utilization
(%)

Number of slices 1046 15,360 6

Number of slice flip flops 518 30,720 1

Number of 4 input LUTs 2069 30,720 6




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 15 of 22

The bus monitoring or snooping attacks may also be counteracted. Even if an attack
leaks sensitive information, the information is encrypted using the pseudorandom
generator based on PUF circuits. Practically, it is hard to generate keys with perfect
secrecy. This implies that the total length of the generated keys (the space of the keys)
must be greater than the total length of the messages (the space of messages). To practi-
cally achieve this, a pseudorandom key generator is used. A pseudorandom generation
for a class of statistical tests is a deterministic procedure that maps a random seed to
a longer pseudorandom string such that no statistical test in the class can distinguish
between the output of the generator and the uniform distribution. The PRG used in the
implementation, Salsa 20/20, and the seed generated with PUF circuits make it theoreti-
cally impossible to decrypt the crypto text captured through bus monitoring. The same
explanation is valid for IP cores information leakage due to hardware Trojans insertion
or software malicious modifications. Using Salsa 20/20, starting with values generated
with PUF circuits, as a pseudorandom generator, the length of the stream cipher is 64
bytes =512 bits and the length of the messages is 32 bits =8 bytes as shown above. It is
possible to encrypt an equivalent up to 32 GB of messages.

The size of the output space may increase due to oscillating responses of PUF circuits.
Temperature or supply voltage variations may affect the response of PUF circuits, lead-
ing to the occurrence of instable PUF answers, without affecting the security or perfor-
mance of the presented protocol. Combining the PUF circuits with a pseudorandom
generator eliminates the need for an error correction and detection algorithm. Such
algorithms are mathematically complex and require many hardware resources. Also, the
PUF responses generate a unique identifier which may be used to uniquely identify an
electronic component important for the cyber security or in a cryptographic protocol
between different SoCs in order to create a secure communication channel. In the men-
tioned uses cases (unique identifier; cryptographic protocols), the error correction code
should be involved.

With the proposed mechanisms, peripherals can be assigned as “Secure” or “Non-
Secure” and the bus system can ensure that the secure peripherals can only be accessed
by secure transfers. Also it is possible to have separate memory blocks for secure and
non-secure memories. In the secure memory blocks, data will be encrypted in the same
manner: the key is generated using the same PRG combined with PUF except that the
counter value will be the address of the memory (as seen in Fig. 4). Using the memory
address on Salsa 20/20 core function, would allow us to generate the same cryptographic
key in both encryption and decryption operations.

The hardware resources required by the SoC along with the PUF circuits and the
authentication and communication protocol are: i) the resources required to implement
the SoC; ii) the resources required to implement the PUF circuits and the Salsa 20/20
algorithm. For instance, an FPGA, Spartan 3E XC3S500E, which is a low-spec family of
FPGAs, has a number of 10,000 equivalent logic gates.

Another low-spec FPGA family is Spartan 6, with the following devices:
XC6SLX25 that has a number of 24051 equivalent logic gates; XC6SLX45—43661;
XC6SLX75—74637; XC6SLX100—101261; XC6SLX150—147443. The high-end FPGA
families Virtex, Spartan 7 or Artix 7 have even more hardware resources. All of these
FPGAs have the necessary hardware resources in order to implement a SoC with the



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 16 of 22

presented security mechanism. The instances of RO PUF circuits required a number
about 2500 equivalent logic gates. However, nowadays, a fundamental trade-off between
speed, frequency and security begins to appear. The system architect has to find an
optimal solution for a SoC that will run at high speed, will require optimal hardware
resources and will be also secure. The tradeoff is tightly correlated with the goal of the
final application. Analyzing the implemented system, there are 40 clock cycles from
the moment in which the data are encrypted by the coprocessor until the moment that
data arrive at the register of the IP core. The pseudorandom sequence of the IP core is
delayed by 20 clock cycles in order to synchronize the pseudorandom secret key genera-
tor between the microprocessor and the IP cores. Typically, a transfer on the PLB bus
takes around 5-6 cycles, while an encrypted and authenticated transfer takes 40 clock
cycles. This means that the total execution time of the SoC will increase about 8 times.

CPUexeution time = Ninsrtuctions * Ncycle per insrtuction * Tcycle

_ Ninsrtuctions * Ncycles per insrtuction

Jek

where N,

instruction 1S the number of instructions for a software program; N,

cycle per instruction

is the number of clock cycles for one instruction, and T, is the duration time [ns] for

ycle
one cycle.

Considering the encrypted transfer of data: if the number of clock cycles is increased
8 times (40 clock cycles/5 clock cycles =8), then the overall execution time of a software
program will also increase 8 times.

However, this increase will not drastically affect the overall SoC performance due to
the higher working frequency of SoC and due to the hardware implementation of the
security mechanism. If the frequency is high enough, an increase in the number of clock
cycles may be acceptable.

In the formula presented above, if the number of cycles per instruction will increase
and the frequency will increase enough (for example 8 times), the overall execution time
of a program will remain the same. With a higher frequency, the difference between the
execution time of a program with encryption mechanism and the default execution time
could be minimized.

new CPUexeution time = Ninsrtuctions * 8 * Neycle perinsrtuction * T Leycle

Ninsrtuctions * 8 * Ncycles per insrtuction

1 folk
_ Ninsrtuctions * Ncycles per insrtuction 8
Selk n
8

= CPUexeution time * ;

where T'1¢ycle = m is the increased frequency of the microprocessor.

A security protocol implemented at the hardware level may avoid many software and
hardware security attacks: the software programs are composed of high-level instruc-
tions (e.g., C/C++), and the high-level instructions are compiled by a compiler and
result into assembly language instructions specific to each microprocessor; the assem-
bly language instructions are translated into machine (binary) language instructions.



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 17 of 22

The interpretation of these binary instructions is achieved in hardware by the logic gates
implemented in CMOS technology.

4.2 The use-case of a security mechanism for an ARM loT subsystem

Available for licensing now, the ARM IoT subsystem can be combined with other ARM
building blocks such as Cortex-M processor cores and Cordio wireless interfaces to form
the basics of a complete chip design [26]. This means that a new security protocol could
be easily implemented in the ARM IoT subsystems.

A simple example of SoC for IoT applications is presented in Fig. 10. The system was
obtained as a result of the ARM challenge set in 2015 [26]. The specific task was to rap-
idly implement this prototype silicon demonstrator platform—called Beetle—with only
three engineers and in less than three months. The resulting platform integrates ARM IP
on a single piece of silicon and includes an IoT subsystem [27] with Cortex-M micropro-
cessor, Bluetooth ‘Smart’ Low-Energy (BLE) radio, plus embedded flash memory.

As may be seen in this figure, third-party communication IP cores (Quad SPI, 2Xspi,
2xI2C, DMA, Wifi Radio) are involved in the design. These IPs are serial interfaces that
may be used to communicate with wearables’ sensors or SoCs and have access to the
AHB interconnect. One of these third-party IP cores may be used to leak out of the chip
sensitive information.

Sensitive information may be for example decryption of the data acquired from an
intelligent sensor or cryptographic passwords. Some attack scenarios may be iden-
tified: the I2CWifi Radio interface may have a hardware Trojan that listens on the
AHB interconnect and send the sensitive information on network to the second SoCs.
Without a security mechanism, software applications may snoop on the bus or on the
I/O Memory or use DMA transfers in order to obtain sensitive information. The sen-
sitive information may be sent outside the IoT subsystem on the network. Software

Non ARM IP
| Other ARMIP |
loT SUbsystem Other ARM IP

for Cortex-M

Cortex-M3 o N
« WiFi Radio
Master I |

AHB Expansion Port

Slave

APB Expansion Port

* Peripherals
« ADC
« DAC
P Y P 3 . rc
Embedded  Embedded Cordio
Flash Flash

Radio

Fig. 10 ARM-based IOT System on Chip [28]




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 18 of 22

applications may configure the DMA to get sensitive data from memory areas in
which they do not have access rights.

The proposed mechanism supposes that the information is transferred encrypted
on the AHB interconnect. For example, the Cortex microprocessor will communicate
through encrypted messages with the radio IP core or other IP cores involved in the
computation of sensitive information. The encryptions are made with different keys.
If the encrypted messages are intercepted, it is impossible to compute the plain-text
data or the cryptographic key due to the cryptographic keys generated with PUF cir-
cuits and Salsa pseudorandom generator.

The proposed mechanism may easily join the ARM SoC. The PUF circuits are
implemented on a part of the silicon die, whereas the encryption wrapper may be
added to the IP cores, connected on the data interface.

We have analyzed the possibility to integrate the security encryption wrapper com-
posed of PUF circuits and Salsa PRG on the ARM 3 Cortex design start evaluation
system provided by ARM. Cortex-M3 DesignStart Eval provides developers with an
easy way to develop and simulate SoC designs based on the ARM Cortex-M3 proces-
sor. The ARM 3 Cortex design is presented in Fig. 11 [29].

The RTL design was simulated using an obfuscated RTL version of Cortex M3 pro-
cessor. Even with the obfuscated RTL, we have access to processor interface used to
transfer data on the AHB interface. In this way, the presence of a coprocessor respon-
sible with cryptographic operations is no longer required. On our simulation, the
Cortex M3 runs a C program that is testing the GPIOO write access.

RO PUF

+ 8 o Trace

[ Spare [dp——y L,_
{ mnvL
ANdk) A.H{\! HAE 0 | AHE o
@ SRAM J| SRAM Jf SRaM || s
e o
1 SR oA ;wm.-
E SRAMF 1 SRAMY | (s3]
pR— | -
XOR ] AHE Mux =l A5 o S
1 - r
;’;, i; olele ',‘{ [nulm [ 1 Il 61 Lm.u ][ A,-,,_\J
Salsa i
20/20

Fig. 11 ARM 3 Cortex DesignStart Eval




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 19 of 22

Figure 12 presents a transfer on AHB bus from Cortex ARM3 to GPIOO write regis-
ters. The transfer takes 3 clock cycles from the moment when the microprocessor sets
the peripheral address on HADDRS bus, until data arrives in the GPIOO register.

The transfer size is 32 bits. Considering Fig. 12, the master signals used in a write
transfer are: (1) HADDRS: the 32 system address bus; (2) HWRITES indicates the
transfer direction; when HIGH, this signal indicates a write transfer, and when LOW,
a read transfer; (3) HSIZES indicates the size of the transfer, that is typically byte, half-
word or word; (4) PRNG indicates the pseudo random key generated for encryption; (5)
HWDATAS: the write data bus transfers data from the master to the slave during write
operation; (6) hwdatas_PRNG represents the encrypted data with an XOR between the
HWDATAS and PRNG value. Slave signals used in a data transfer are: (1) HADDR, (2)
HSEL, (3) HWDATA and (4) HWRITE with the same meaning as in the case of master
signals. The HSEL signal is a combinatorial decode of the address bus [30].

The encryption mechanism assumes that both the ARM 3 Cortex and the GPIO
peripheral have an instance of Salsa 20/20 which accesses the PUF circuits. The two
instances of Salsa 20/20 are synchronized on the AHB clock and generate 512 bits at
each 21 clock cycles. The 512 bits pseudo random generated value may be divided in
chunks of 32 bits that are used to encrypt data on consecutive transfers. A transfer takes
3 clock cycles. On the master side, the value of HWDATA may be encrypted using a
simple XOR operation with a chunk of 32 bits from the total 512 bit generated with Salsa
20/20. In the same way, the value received on HWDATA could be decrypted using an
XOR operation with a chunk of 32 bits from the total 512 bit generated with Salsa 20/20.

The same mechanism may be used with more complex peripherals.

There are many suppliers of peripherals based on AHB and APB protocols. Designers
might also reuse existing peripherals from a previous design based on legacy processor
architectures. The IP core may be modified by the designer in order to connect to the
encryption wrapper.

The ARM TrustZone Technology offers hardware-isolation for trusted software. It can
be used with a Cortex-A processor, and recently, it is supported in the latest Cortex-M23
and Cortex-M33 [31]. In this paper, the proposed method creates an addition mecha-
nism that may help a SoC used in IoT applications to secure the sensitive information.
The advantages of using PUF circuits are that the generated binary sequence may be

- Groupl
o-FCLK st
-DHWRITES sto

4 HADDRS[310] 32'h0000_0000
4 DHSIZES[20) 3ho

4 0 PRNG[31.0] 32'halbs_

4 hwdatas_PRNG[31:0]

= Groupz
o-FCLK st

% 0 PRNG[31:0] 32'hatbs_4763

o-PERIPHHWRITE_| st
4B~ PERIPHHADDR_i[31:0] 32'h0000_0000
+-0-PERIPHHWDATA_i[31:0] 32'h0000_0000
+-5-HADDR[11:0] 12h000
4 0-HSIZE[20] 3ho

o-HSEL S0

o-HWRITE s

Fig. 12 ARM 3 Cortex and GPIOO RTL simulation




Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 20 of 22

used to uniquely identify the chip or may be involved as well in communication proto-
cols among IoT devices and servers. Also the encryption could be used in ICs that are
based on other processors than ARM or on MPSoC (multiprocessor system on chip)
with more than one microprocessor in a SoC [32]. In the ARM-based architectures, the
mechanism may be used in conjunction with the ARM TrustZone Technology.

The concept of ARM TrustZone Technology is based on peripheral isolation. Some
relevant examples of ARM TrustZone components are [33]:

+ A memory protection controller for partitioning of a memory block into Secure and
Non-Secure spaces

+ A peripheral Protection Controller for assigning peripherals into Secure and Non-
Secure domains

+ Bus security wrappers useful for legacy bus masters.

5 Conclusion

The paper presents a security concept for a complex SoC with more than one micropro-
cessor and validates experimentally its significant benefits through an illustrative imple-
mentation of cryptographic operations. The paper shows (1) the implementation of RO
PUF circuits and how they are to be used along the Salsa 20/20 algorithm in order to
create a pseudo random generator and (2) how to use symmetric encryption inside a
System on Chip based on two different microprocessors: Microblaze and ARM.

The aim of the proposed mechanism is to contribute to the overall IoT security. While
most of IoT security concepts address the communication between IoT elements, the
proposed mechanism targets the security on the communication between the IP cores
inside an IoT SoC. The hardware implementation proposed in the paper can easily be
extended to accommodate more complex SoCs with an increased number of peripherals
and interfaces, including IoT-specific radio IP cores.

The cryptographic operations (encryption/decryption and authentication) are based
on a pseudorandom generator composed of PUF secret keys and the Salsa 20/20 algo-
rithm. The advantages of using a PUF secret key instead of a hardcode key are: (1) all the
IP cores inside a domain have access to the PUF responses through direct connections,
eliminating the requirement of a secure channel in order to share a secret key; (2) the
PUF circuits may be used to create an unique identifier for the physical circuit and may
be used against security attacks like counterfeiting, cloning integrated circuits, stealing
IP cores or software applications, and (3) the PUF circuits are tamper-resistant, which
means that any direct contact to the physical device will destroy the original PUF secret
key.

Cryptographic security primitives by themselves are not enough to guarantee security,
since the mobile computing devices and IoT devices are open to other threats such as
physical attacks and hardware Trojans. The method presented in this paper uses sym-
metric key algorithms in order to thwart some security issues of the SoCs. Considering
other research results reported in this field, it can be stated that this encryption/decryp-
tion mechanism is introduced for the first time at the SoC level, between the IP cores.

Adding the PUF circuits at the core of a PRG increases the randomness in the generator.



Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 21 of 22

The experimental results show that the performance/speed of symmetric key algo-
rithms may be used to construct a security mechanism at hardware level between the IP
cores.

As an increased number of IoT devices are based on ARM SoCs, the paper also pre-
sents a proof-of-concept use case for the security mechanism, implemented for ARM
IoT elements, as well as a comparison with the ARM TrustZone industry standard
technology.

System-on-Chip security is a mandatory requirement, even if not sufficient, for the
security of IoT end devices, facing the challenge for the Cloud “hardware as a service” of

tomorrow.

Abbreviations

AHB: Advanced high performance; APB: Advanced peripheral bus; DMA: Direct memory access; FPGA: Field program-
mable gate array; IC: Integrated circuit; IP Cores: Intellectual property cores; 12C: Inter-integrated circuit—serial interface;
NVM: Non-volatile memory; OTP: One-time programming; PUF: Physical unclonable function; SoC: System on chip; SPI:
Serial peripheral interface; SRAM: Static random access memory; TRNG: True random number generator.

Acknowledgements
The authors would like to thank the members of the COST Action CA15104 IRACON, “Inclusive Radio Communication
Networks for 5G and Beyond,' for their valuable advice and guidance related to the concepts presented in this paper.

Authors’ contributions

AS has the main contribution for the security mechanism concept and was responsible for developing the PUF security
mechanism in FPGA. TB was responsible for investigating the security mechanisms that are suitable to be implemented,
the implementation of the pseudorandom generator mechanism and has authored the manuscript in relation to the

loT security threads. MC has contributed to the security mechanism concept and was responsible for the analysis and
interpretation of data resulted from the implementation, as well as suggesting other relevant use-cases for the PUF
based testing. FS has contributed to the FPGA implementation environment selection and setup and was responsible for
drafting the manuscript and revising it critically. All authors read and approved the final manuscript.

Funding
Part of the research presented in this paper was supported by the Sectoral Operational Programme Human Resources
Development (SOP HRD), ID137070 financed from the European Social Fund and by the Romanian Government.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that they have no competing interests.

Author details
! Transilvania” University of Brasov, Brasov, Romania. > Anglia Ruskin University, Cambridge, UK.

Received: 7 September 2018 Accepted: 20 October 2020
Published online: 04 November 2020

References

1. R.Sharan Sinha, Y. Wei, S. Hwang, A survey on LPWA technology: LoRa and NB-IoT. ICT Express 3(1), 14-21 (2017)

2. B.Vejlgaard, M. Lauridsen, H. Nguyen, I.Z. Kovacs, P. Mogensen, M. Sorensen, Coverage and capacity analysis of

Sigfox, LoRa, GPRS, and NB-IoT, in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, pp. 1-5.

J.Yiu, Designing a System-on-Chip (SoC) with an ARM Cortex-M processor. A starter guide. ARM Whitepaper (2017)

4. Sequans Communications S.A, Sequans Introduces Monarch SX: LTE-M/NB-loT System-on-Chip for Integrated loT
Devices. Press Release. https://www.sequans.com/wp-content/uploads/2018/08/PI-Monarch-SX-5-20180807.pdf.
Accessed Dec 2018

5. M. Ammar, G. Russello, B. Crispo, Internet of Things: a survey on the security of loT frameworks. J. Inf. Secur. Appl. 38,
8-27(2018)

6. R.Maes, |. Verbauwhede, Physically unclonable functions: a study on the state of the art and future research direc-
tions, in Towards Hardware-Intrinsic Security. Information Security and Cryptography. ed. by AR. Sadeghi, D. Naccache
(Springer, Berlin, 2010)

7. Y.Yang, L.Wu, G.Yin, L. Li, H. Zhao, A survey on security and privacy issues in Internet-of-Things. IEEE Internet Things
J.4(5), 1250-1258 (2017)

w


http://www.sequans.com/wp-content/uploads/2018/08/PI-Monarch-SX-5-20180807.pdf

Balan et al. J Wireless Com Network ~ (2020) 2020:231 Page 22 of 22

8. M.Rihani, M. Mroue, J. Prévotet, F. Nouvel, Y. Mohanna, ARM-FPGA-based platform for reconfigurable wireless com-
munication systems using partial reconfiguration. J. Embed. Syst. 2017, 35 (2017)

9. A Waksman, S. Sethumadhavan, J. Eum, Practical, lightweight secure inclusion of third-party intellectual property.
IEEE Des. Test 30(2), 8-16 (2013)

10. P.Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, Protecting data on smartphones and tablets from memory
attacks, in ACM International Conference on Architectural Support for Programmning Languages and Operating Systems
(2015)

11. M. Eckert, I. Podebrad, B. Klauer, Hardware Based Security Enhanced Direct Memory Access, Communications and Multi-
media Security, Volume 8099 of Lecture Notes in Computer Science (Springer, Berlin, 2013), pp. 145-151

12. Y. Jin, Y. Makris, Hardware trojans in wireless cryptographics ICs. [EEE Design Test Comput. (2010)

13. R.Newell, The Biggest Security Threats Facing Embedded Designers, Electronic Design (2016). https://www.elect
ronicdesign.com/iot/biggest-security-threats-facing-embedded-designers. Accessed Dec 2018

14. AM. Naveed., K.C. Chua, B. Sikdar, Physical unclonable functions for loT security, in Proceedings of the 2nd ACM Inter-
national Workshop on loT Privacy, Trust, and Security (2016)

15. U.Chatterjee, R. S. Chakraborty, D. Mukhopadhyay, A PUF-Based Secure Communication Protocol for loT. ACM Trans.
Embed. Comput. Syst. 16, 3, Article 67, 25 (2017). https://doi.org/10.1145/3005715

16. B.Chatterjee, D. Das, S. Sen, RF-PUF: loT security enhancement through authentication of wireless nodes using
in-situ machine learning, in 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (2018),
pp. 205-208

17. A.Braeken, PUF based authentication protocol for IoT. Symmetry 10, 352 (2018). https://doi.org/10.3390/sym10
080352

18. M. Barbareschi, P. Bagnasco, A. Mazzeo, Authenticating loT devices with physically unclonable functions models, in
10th International Conference on P2F, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, pp. 563-567 (2015)

19. C.Marchand, L. Bossuet, U. Mureddu, N. Bochard, A. Cherkaoui, V. Fischer, Implementation and characterization of a
physical unclonable function for IoT: a case study with the TERO-PUF. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 37(1),97-109 (2018)

20. P.Stewin, Detecting Peripheral-Based Attacks on the Host Memory (Springer, Berlin, 2015)

21. A.Huang, Keeping Secrets in Hardware: The Microsoft Xbox Case Study (MIT, Cambridge, 2002)

22. ARM Developer, Trust Zone Cryptocell (2017). https://developerarm.com/products/system-ip/security-ip. Accessed
Dec 2018

23. A Stanciu, M. Cirstea, F. Moldoveanu, Analysis and evaluation of PUF-based SoC designs for security applications.
|EEE Trans. Ind. Electron. 63(9), 5699-5708 (2016)

24. A.Babaei, G. Schiele, Spatial reconfigurable physical unclonable functions for the Internet of Things, in Security,
Privacy, and Anonymity in Computation, Communication, and Storage. SpaCCS 2017. Lecture Notes in Computer Science,
vol 10658, ed. by G. Wang, M. Atiquzzaman, Z. Yan, KK. Choo.

25. D.Robinson, ARM details on-chip subsystem to ease development of 10T silicon. https://www.v3.co.uk/v3-uk/
news/2411007/arm-details-on-chip-subsystem-to-ease-development-of-iot-silicon. Accessed Dec 2018

26. J.Yoshida, Cellular IoT Chip Battle Escalates at MWG, in EE Times (2017).

27. L. Jalal, V. Popescu, M. Murroni, loT architecture for multisensorial media, in 2017 IEEE URUCON, Montevideo, pp. 1-4

28. Breker ARM-based SoC Verification. https://brekersystems.com/products/armv8/. Accessed Dec 2018

29. ARM 3 Cortex DesignStart Evaluation. https://developerarm.com/products/designstart. Accessed Dec 2018

30. AMBA 3 AHB Lite Protocol. https://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-
Lite_SPEC.pdf. Accessed Dec 2018

31. T.Whitfield, Implementing an IoT end-point SoC platform, in £E Times Europe (2016). https://www.eenewseuro
pe.com/archives/pdf-eete-feb-2016.pdf. Accessed Dec 2018

32. J.Yiu, Enhanced Security and Energy Efficiency of Microcontrollers and SoCs, in EmbeddedWorld 2016 Exhibition
&Conference

33. Introducing ARM TrustZone. https://developerarm.com/technologies/trustzone. Accessed Dec 2018

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://www.electronicdesign.com/iot/biggest-security-threats-facing-embedded-designers
https://www.electronicdesign.com/iot/biggest-security-threats-facing-embedded-designers
https://doi.org/10.1145/3005715
https://doi.org/10.3390/sym10080352
https://doi.org/10.3390/sym10080352
https://developer.arm.com/products/system-ip/security-ip
https://www.v3.co.uk/v3-uk/news/2411007/arm-details-on-chip-subsystem-to-ease-development-of-iot-silicon
https://www.v3.co.uk/v3-uk/news/2411007/arm-details-on-chip-subsystem-to-ease-development-of-iot-silicon
https://brekersystems.com/products/armv8/
https://developer.arm.com/products/designstart
http://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
http://www.eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
http://www.eenewseurope.com/archives/pdf-eete-feb-2016.pdf
http://www.eenewseurope.com/archives/pdf-eete-feb-2016.pdf
https://developer.arm.com/technologies/trustzone

	A PUF-based cryptographic security solution for IoT systems on chip
	Abstract 
	1 Introduction
	1.1 Systems on chip for IoT devices
	1.2 Security threats and related work

	2 Methodsexperimental
	2.1 Resources used for implementation
	2.2 The concept of the proposed security mechanism

	3 Results
	4 Discussion
	4.1 Analysis of the security protocol
	4.2 The use-case of a security mechanism for an ARM IoT subsystem

	5 Conclusion
	Acknowledgements
	References


