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Abstract 

Over the last decade significant research efforts have been devoted to the probabilistic modeling and analysis of system 
characteristics. Especially performance characteristics of systems subjected to random disturbances, such as robustness and 
resilience have been in the focus of these efforts and significant insights have been gained. However, as much of the undertaken 
research and developments aim to fulfill the particular needs of specific application areas and/or societal sectors somewhat 
diverging perspectives and approaches have emerged. In the present paper we take basis in recent developments in the modeling 
of robustness and resilience in the research areas of natural disaster risk management, socio-ecological systems and social 
systems and we propose a generic decision analysis framework for the modeling and analysis of systems across application areas. 
The proposed framework extends the concept of direct and indirect consequences and associated risks in probabilistic systems 
modeling formulated by the Joint Committee on Structural Safety (JCSS) to facilitate the modeling and analysis of resilience in 
addition to robustness and vulnerability. Moreover, based on recent insights in the modeling of robustness, a quantification of 
resilience is formulated utilizing a scenario based systems benefit modeling where resilience failure is associated with exhaustion 
of the capital accumulated by the system of time. The proposed framework and modeling concepts are illustrated with basis in a 
simple interlinked system model comprised by an infrastructure system, a governance system, a regulatory system and a geo-
hazards system. It is shown how the robustness and the resilience of the interlinked system may be modeled and quantified, how 
robustness and resilience are influenced by the stochastic dependency structure of the disturbance events and corresponding 
resistances, how robustness and resilience depends on the capacity of the social system to plan for and respond to disturbances 
over time and how robustness and resilience interrelate.  
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

During the last 4-5 decades the understanding and modeling of system characteristics in general and systems 
robustness and resilience in particular have attracted significant interest and efforts in the international research 
community, see [1]-[7], [10]-[17]. More recently, these topics have also attracted the attention on the global political 
agenda as one of the concerns in the context of climate change and sustainable societal developments ([1]). Societal 
infrastructures including energy production and distribution systems, the built environment, transport systems, 
communications systems, food production and distribution systems, waste disposal and treatment systems play very 
significant roles for the success of society in the short, medium and long run. Societal infrastructures provide 
indispensable functionalities to society and fundamentally comprise the basis for economic growth, health and 
welfare. Societal infrastructures however also constitute one of the major consumers of raw materials, space, energy 
and water and thereby severely impose stresses to the environment and at the same time represent significant 
economic investments and substantial expenditures in terms of maintenance and renewals. In [11] serious gaps are 
highlighted in the general body of knowledge concerning the performance of complex interlinked systems and it is 
emphasized that even smaller and localized disturbances of interlinked systems have the potential to trigger 
scenarios of cascading failures with widespread and disastrous consequences and calls for increased research efforts 
and focus to close these gaps.  

Traditionally in the field of civil and infrastructure engineering, robustness of systems has been understood as a 
systems ability to limit the consequences of damages, failures and other disturbances within an order of magnitude 
of the cause of the disturbances ([8]). Whereas the intention of this interpretation of robustness might be intuitively 
clear, it is not immediately obvious how to apply this qualitative interpretation in support of design and management 
of systems. First attempts to model and quantify robustness of systems in civil and infrastructure engineering are 
reported in [3]-[18] taking basis in risk concepts. Robustness of systems in this sense is understood as a systems 
ability to limit the expected value of total consequences (the risk) originating from of damages and failures of 
individual system constituents to the same order of magnitude as the risks associated with damages and failure of 
these constituents in isolation.  

Similarly as for systems robustness, resilience interpreted qualitatively as a systems ability to plan for, recover 
from and adapt to adverse events over time ([10], [15], [16], [17]) provides a strong concept and relevant objectives 
for the design, operation and management of infrastructure systems however, does not give much practical guidance 
on how to achieve these and to assess whether the achieved level of resilience is sufficient and acceptable. In [14] 
the many challenges associated with assessing and ensuring the resilience of systems are addressed and it is 
suggested that present practices of risk based approaches for ensuring resilience are not adequate why there is a need 
for the development of a new paradigm.  

In the present paper we briefly introduce a decision analysis framework for design and management of systems 
and with this setting the probabilistic representation of system characteristics is addressed with special emphasis on 
the modeling and quantification of robustness and resilience. Robustness and resilience of systems are introduced as 
random and causally dependent system characteristics with significant impact on both the short and long term 
performance of a system. A principal example considering an interlinked system comprised of an infrastructure 
system, a regulatory system, a governance system and a geo-hazard system is then provided for the purpose of 
illustrating the proposed framework and modeling concepts. Finally, the results from the principal example are 
discussed and directions for further research are suggested.    

2. Decision analysis for systems 

2.1. Basis for decision support 

It is fundamental, that decision alternatives which are considered for the purpose of optimizing the design and/or 
management of systems subject to uncertainty and incomplete knowledge in a normative decision context shall be 
ranked in accordance with their expected value of utility (or benefit) in accordance with the Bayesian decision 
analysis and the axioms of utility theory, see e.g. [12]-[19]. To benefit fully from this theoretical and methodical 
basis for decision optimization it is necessary to formulate probabilistic models for the performances of the systems 
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as well as the preferences of the decision maker with respect to the possible outcomes of the decisions. Crucial 
issues obviously concern the probabilistic modeling of the considered systems and also the identification of 
strategies and options for their design, operation and management.  

2.2. Probabilistic system modeling 

Here it is proposed to utilize and extend the framework for risk informed decision making for systems suggested 
by the Joint Committee on Structural Safety ([13]) as basis for the modeling of interlinked systems. Necessary 
modifications must however be introduced in order to account for the representation of benefits and accumulated 
benefits of the interlinked systems over time, see Figure 1.  

 

 

Figure 1 Generic framework for decision analysis of systems ([9]) 

In Figure 1 it is shown that the interlinked system is represented in terms of its undisturbed configuration with 
associated benefits together with the ensemble of possible scenarios of system failure events imposing losses to the 
system over time. In the following it is assumed that a probabilistic system model represents all relevant physical 
processes, environmental systems, geo-hazard systems, engineered objects and facilities, organizational processes, 
human activities as well as all decision alternatives envisaged for designing and managing the performance of the 
system. The system model is comprised by an ensemble of cn constituents interacting jointly to provide the desired 
functionalities of the system. Some of the constituents may be designed while others are given by nature. The 
system modelling approach suggested by the JCSS ([13])  is utilized to subdivide the scenarios of events leading to 
consequences for the system into two parts, namely the direct consequences and the indirect consequences. The 
direct consequences comprise all losses caused by failure states of the constituents of the system except functionality 
related losses. On the other hand the indirect consequences are assumed caused by functionality losses alone. 
Besides the differentiated consequence modelling, two phases are introduced in the modelling of the progression of 
failure of the system; the initiation phase and the propagation phase, see also Figure 2.  
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Figure 2 Illustration of the two phase scenario based failure propagation model. 

In the initiation phase  constituent failures are assumed generated by the hazard event  . In the propagation 
phase further   constituent failures are generated by the joint effect of internal redistribution of system demands 
and hazard events. The two-phase failure propagation model facilitates the representation of cascading failure 
scenarios.         

For the purpose of simplification of notation and without loss of generality it is assumed that all possible 
 different scenarios of hazard events with their occurrence probabilities , direct consequences 

associated with constituent failure events during the initiation phase  and propagation phases, respectively 
 and the indirect consequences   have been identified and assessed.  The probabilistic system 

representation S  can then be written as: 
 

, ,( , ( ), ( ), ( ), ( )))D I D P IDi p i c i c i c iS
 with 1,2,.., si n                (3) 

 
A probabilistic system representation in this form is generally less than trivial and computationally expensive to 

establish for most systems of practical relevance. However interesting, the challenges associated with the efficient 
probabilistic analysis of systems are treated elsewhere and in the analyses presented in Chapter 3 of the present 
paper crude Monte Carlo simulation is utilized to establish the information contained in Equation (3).    

2.3. Robustness modeling and quantification 

Based on the system representation provided by Equation (3) it is possible to assess the performances of the 
system with respect to possible hazard events which may occur over time. The robustness of systems is one of the 
system characteristics that have attracted the most attention in this respect. The objective being to establish a means 
for assessing the degree to which a system is able to contain or limit the immediate consequences of hazards and 
thereby ensure that systems are designed and managed with an appropriate degree of robustness. Risk based 
formulations for the quantification of systems robustness are first provided in Baker et al. ([3])and JCSS ([13]). In 
Faber ([8])these formulations are revisited and a more general and consistent scenario based approach to the 
quantification of robustness is proposed. The underlying idea is, along the same lines of reasoning proposed in 
Baker et al. ([3]), to relate the robustness of a system to the ratio between direct consequences and total 
consequences. Fundamentally this ratio is random and in Baker et al. ([3])it is suggested to assess it through the 
expected values of the two terms individually (or equivalently through the direct and total risks). In Faber ([8])this 
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ratio is taken scenario wise and in this manner an index of the robustness of a system with respect to a given 
scenario i , i.e. ( )RI i

 
may be assessed as: 

 
( )
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The direct and total consequences ( )Dc i  and ( )Tc i  entering Equation (4) may be interpreted with some 
flexibility depending on the focus of the system assessment. If the focus of the system assessment is directed on the 
representation and analysis of cascading failure event scenarios Equation (4) may be rewritten as: 
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where  , , represent the direct consequences associated with the initiation phase and the propagation 

phase of the failure scenario of the system, respectively.  
If on the other hand the emphasis is directed on the ability of the system to contain the development of 

consequences Equation (4) may be written as: 
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As the scenarios i  are random in nature, as reflected by their occurrence probabilities ( )p i , it is realized that the 

robustness index ( )RI i  itself is a random variable which may be analysed further by categorization and ordering of 
the different scenarios in accordance with the hazard, damage, failure and consequence events they are composed of. 
In this manner robustness indexes for a given system can, as illustrated in Chapter 3 be assessed probabilistically 
conditional on e.g. the type and/or intensity of the hazard event as well as the magnitude of direct, indirect or total 
consequences. Moreover, the scenario based approach allows for tracking which constituent damages and failures 
contribute the most to e.g. poor robustness performance as well as to the total consequences.  

It should be noted that robustness is not desirable per se. As already underlined in Chapter 2 systems shall 
fundamentally be designed and managed based on a holistic modelling and assessment of service life benefits. The 
robustness of a system can often be increased but generally only in a trade-off with efficiency. However, as will also 
be apparent in Chapter 3, robustness and resilience are strongly interdependent and the optimal design and 
management of systems depends on a thorough understanding of this dependency.           

2.4. Resilience modeling and quantification 

A relatively large variety of propositions for the modelling and quantification of systems resilience are available 
in the literature, see e.g.  [5]- [14] Most often the suggested models are directed on the short term representation of 
the ability of the system to sustain and recover from disturbances, fast, without substantial loss of functionality and 
without the support from the outside. Hazard and disturbance events are generally specified in terms of type and 
intensity and the ability to sustain and recover from disturbances is modelled through the social, organisational and 
adaptive capacities together with traditional characteristics of technical systems such as strength, ductility, 
brittleness, redundancy, segmentation and diversity, see e.g. [7] and [18].      

Following the life-cycle benefit considerations in the resilience model presented Faber ([8]), however, systems 
resilience models and assessments should ultimately account for not only the loss of functionality, but also for the 
generation of the capacity which is critically important for the fast and successful reorganisation, adaptation and 
rehabilitation following disturbances and hazard events. Therefore a life-cycle model of systems resilience is 
proposed here in which scenarios of benefit generation and losses are modelled and analysed and where insufficient 
resilience or systems resilience failure is defined as exhaustion of system capacity (social, financial and/or 
environmental). Resilience, in the same manner as robustness is thereby a system characteristic of a random nature 
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and requirements to resilience may only meaningfully be specified probabilistically; e.g. in terms of an acceptable 
annual probability of resilience failure.  

In Figure 3 this idea is illustrated for the simple case of a system for which the only explicitly considered 
capacity is a financial reserve collected as a fixed percentage of the annual benefit generated by the system over 
time. The general shape of the benefit loss curves in the aftermath of disturbances reflects that in general a certain 
time is required before the functionality can be re-established, and in the first instance only up to a certain level, 
reflecting that interim solutions are foreseen, implemented and operated while waiting for the preparation and 
implementation of full and possibly even improved system rehabilitation. In Figure 3 two pairs of time histories of 
benefit generation and accumulated economic reserves are illustrated. It is seen how disturbance events both reduce 
the benefit generation as well as the reserves. In the time history illustrated with a green line it is seen that a 
disturbance event exhausts the accumulated reserves and causes a resilience failure. 

As for the case of robustness, conditional resilience may be modelled and assessed utilizing the scenario based 
life-cycle oriented approach. Conditioning on hazard events of given characteristics, the resilience can be defined as 
recovery within a given time horizon without exceeding available reserves.  

 

Figure 3 Illustration of the resilience model in terms of time histories of benefit generation and corresponding time histories of accumulated 
economic reserves. 

Examination of Figure 3 reveals that the first immediate drop in the benefit rate (or functionality) after a 
disturbance event relates directly to the systems robustness. Even with moderate assumptions concerning the 
contribution of indirect consequences to total consequences it is apparent that cascading failures and loss of 
functionality plays a significant role for the resilience of the system. Moreover, it is seen in Figure 3 that a starting 
capital or reserve is assumed available at time 0t . In a normative perspective such a reserve is indeed possible, 
provided that the portfolio of assets in the considered system is sufficiently large. In the design and management of 
systems, however, sufficient resilience critically depends on the maintenance of this reserve as illustrated in the 
example presented in Chapter 3.  

3. Principal example – interlinked infrastructure system 

In the following example the probabilistic performance of an interlinked system over time is addressed and 
analyzed in accordance with the framework and approaches outlined in Chapter 2. The considered interlinked 
system is assumed to be comprised by the following subsystems:  

 Infrastructure system 
 Governance system 
 Geo-hazards system 
 Regulatory system 

 
The temporal performance of the interlinked system is represented by the time-slice model illustrated in Figure 4: 
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Figure 4 Illustration of interlinked system with time slicing over time ( [9]) 

It is assumed that decision optimization is performed from a regulatory normative perspective – why the 
available decision alternatives are identified and ranked by the regulatory system. In the present example human 
health and safety as well as local and global effects to the environment are excluded for purposes of simplification – 
however, these can be included by constraints to the decision optimization. Finally, the systems performance is 
assessed for a life-cycle equal to 100 years. In the following an outline is provided on the modeling of each of the 
sub-systems illustrated in Figure 4. 

3.1. Infrastructure system 

For simplicity the infrastructure system is represented through a Daniels system comprised of Cn constituents, see 
Figure 5. Each constituent has a resistance with respect to operational loading L , i.e. R  and a resistance with 
respect to geo-hazard disturbances H , i.e.  (see also Figure 6). 

 
 

 

Figure 5 Illustration of probabilistic model for the operational loads and resistances of the infrastructure system with respect to operational loads 
as well as geo-hazard disturbances. 

The resistances of the infrastructure system R  and  are modeled by Log-normal random variables and the 
operational annual maximum loading L  is modeled by a Gumbel distributed random variable. The daily maximum 
operational load is modeled by a Weibull distribution (to ensure non-negative realizations) which is fitted such that 
it provides the same 98% upper fractile value as the Gumbel distribution for the annual maximum. The daily 
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maximum operational load is relevant in the case where a natural hazard disturbance has damaged the system and 
the further progression of system damage is assessed subject to redistribution of internal system demands. The 
natural hazard disturbances are defined in the description of the geo-hazard system. 

The random variables representing the resistances and operational loading are assigned the following moments:  

     Table 1   Probabilistic model for component resistances and operational load disturbances 

Variable Expected value Coefficient of 
Variation 

R  1E R  0.2COV R  

 1E  0.3COV  

L  1E L  0.3COV L  

 
The resistances with respect to operational failures and natural hazard disturbance failures, R  and  are 

assumed correlated with correlation coefficient , 0.8R . 
The limit state functions representing failure of the individual constituents of the infrastructure system with 

respect to operational annual maximum operational loads and natural hazard disturbances are given as: 
 

1

2

( )

( )
O

H H

g z r l

g z i

x

x                   (7) 
where 1z  and  2z  are design parameters which may be chosen to comply with the requirements of the regulatory 

system with respect to target probabilities of constituent failure (see Section 3.4).  
Failure of the system takes place either due to annual maximum operational loads exceeding the capacities of the 

constituents with possible subsequent cascading failure scenarios, or by constituent failures due to natural hazard 
events which then due daily maximum operational loads may lead to cascading constituent failure scenarios for the 
system.  

The infrastructure system is assumed to provide benefit (here for simplicity of notation but without loss of 
generality assumed net of ordinary maintenance costs) to society and thereby support the governance system. In case 
the infrastructure is not disrupted by failure events caused by disturbances the annual rate of benefit is assumed to be 
constant in time and equal to 1( ) 1( )b t y . The benefit generation may, however, be disrupted and reduced by 

disturbance events as outlined later in the description of the governance system (see Section 3.3). 
In case of failure of constituents of the infrastructure system the constituents are replaced. The costs of the 

replacement of all constituents of the infrastructure i.e. to build a new infrastructure system is assumed to 
correspond to the benefit generated over a period of 10 years (return of investment period). Thus it is assumed that 
the replacement costs in a given event scenario of infrastructure system constituent failures is assumed directly 

proportional to the number of failed constituents in that event scenario, i.e. 
10 f

F
C

n
C

n
 .  

3.2.  Geo-hazard system 

The natural hazard disturbance events are assumed to follow a Poisson counting process with annual occurrence 
rate 0.01H . The intensity of disturbance events acting on each of the Cn  constituents of the infrastructure system 

is modelled by a random vector HI with components assumed to be log-normal distributed. The realizations of HI  
are assumed independent from time to time but the disturbances acting on the constituents at a given time are 
assumed correlated with correlation coefficient IH

. In Figure 6 Probabilistic modeling of geo-hazard disturbance 

events acting on one constituent of  
the infrastructure system and their inter arrival times T . the probabilistic modelling of the geo-hazard disturbances 
acting on one constituent of the infrastructure system is illustrated.   



1078   M.H. Faber et al.  /  Procedia Engineering   198  ( 2017 )  1070 – 1083 

 

Figure 6 Probabilistic modeling of geo-hazard disturbance events acting on one constituent of  
the infrastructure system and their inter arrival times T . 

The expected value and the coefficient of variation of the intensity HI
 
i.e. HE I and HCOV I  are equal to 1 

and 0.4 respectively.   

3.3. Governance system 

The main function of the governance system is simplified to be the response to failures of the infrastructure 
caused by disturbances and operational loads. Strongly simplified it is assumed that the governance system can be 
represented by the functionality disturbance and recovery curve illustrated in Figure 7.  

 
 

 

Figure 7  Illustration of the representation of the performance of the governance system with respect to  
reorganization and recovery of infrastructure functionality after disturbances. 

The time variation of functionality illustrated in Figure 7 shows how the functionality is reduced by 1B  at the 

time of disturbance. 1T  represents the time till the governance system has established an overview of the situation 

and initiates commissioning of temporary measures to re-establish functionality. The temporary measures are 
assumed to be fully functional after a period 2T  with a resulting functionality gain equal to 2B . In parallel to and 
after commissioning temporary measures it is assumed that permanent measures for re-establishing functionality are 
being planned and prepared. These are assumed commissioned after a period 3T .  

The loss of functionality of the system 1B
 
in a given scenario of failed constituents is for simplicity assumed to 

be proportional to the number of failed constituents Fn , i.e. 1
F
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n
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n
. The periods , 1, 2,3iT i describing the 

principal functionality loss and recovery curve are modeled by log-normal distributed random variables. In order to 
model the preparedness performance of the governance system two levels of preparedness are considered namely 
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low and high. The expected values E and coefficients of variation COV  for the random variables are given in 

Table 2. To account for the dependency between the loss of functionality and the preparedness and capacity to 
rehabilitate the expected values of the duration 1T  2T  and 3T

 
are assumed proportional to 1B . The integral off 

the losses (shown as the red striped area in Figure 7) constitutes the loss function A . Based on this assumption, both 
total recovery time T and losses A are log-normal distributed with parameters proportional to 1B  and level of 
preparedness. 

Table 2  Definition of the probabilistic model of the governance system with respect to preparedness and capacity. 

Variable Distribution model Low preparedness High preparedness 

  Expected value (y) COV Expected value (y) COV 

1T  Log-normal 
1 1E T B  0.2 

1
1 2

B
E T  

0.1 

2T  Log-normal 
2 15E T B  0.2 

2 1E T B  0.1 

3T  Log-normal 
3 120E T B   0.2 

3 110E T B

 

0.1 

1B  Deterministic 
F

C

n

n
 

 
F

C

n

n
 

 

2B  Deterministic 
10.5 B   

10.8 B   

 
 
It is assumed that the governance system maintains a reserve capital to be available over the life-cycle of the 
infrastructure system for covering the cost of replacement of system constituents which may fail over time due to 
disturbance events.  At time 0t  the starting capital reserve is modelled as a percentage % of the expected value 

of the accumulated benefits over the life-cycle of the infrastructure system.  

3.4. Regulatory system 

The regulatory system is assumed to manage the performance of the infrastructure system on behalf of the 
governance system in the context of the operational hazards and the geo-hazard system. It is thus assumed that the 
management is undertaken by setting requirements to the following parameters of the model: 
 The annual probability of individual constituent failure with respect to operational load disturbances is set to 

3
, 10f Op  , and incorporated into the model through calibration of 1z  (see Equation (7)) 

 The annual probability of individual constituent failure conditional on the event of a geo-hazard disturbance 

is set to 210f Hp  and incorporated into the model through calibration of 2z .  

 The percentage of annual benefit  which is saved for financing of repair and replacement of infrastructure 

constituents after future disturbance events and thereby to ensure a certain level of resilience. 
 

3.5. Analysis results 

Following the introduction of the principal example together with the proposed framework (see also [8], [9]) and 
models, the robustness and resilience of the interlinked system are investigated. The constituents of the 
infrastructure system are assumed to behave brittle at failure, implying that they lose their carrying capacity 
completely after their capacity limit is reached.  
The robustness is studied with the robustness index conditional on the scenarios disturbance from the geo-hazard 
and operational hazard load in dependency of the number of infrastructure constituents. The direct consequences are 
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calculated as the replacement costs associated with constituents failed due to the disturbance (before internal load 
redistribution) and the indirect consequences are associated with replacement due to failures caused by internal load 
redistribution (see Equation 5). The CDF (cumulative distribution function) representing the non-exceedance 
probability of the conditional robustness index is depicted in Figure 8 for the number Cn  = 2,4,6,8 and 10 of 
infrastructure system constituents. It is observed that the probability of a robustness index lower than x is larger for 
operational hazard events than for geo-hazard events. The reason for this is that when constituents fail due to 
extreme (annual) operational loads, then the internal loads which must be redistributed subsequently also correspond 
to annual maximum operational loads. When on the other hand constituents of the system fail due to geo-hazard 
events then the internal loads which must be redistributed subsequently correspond only to daily maximum 
operational loads. It is thus more likely that cascading failure scenarios develop in the former case. Already for 
systems with six or more constituents, the probability of a robustness index smaller than 1, conditional on a geo-
hazard event tends to be very close to zero why cascading failure scenarios in these cases are very unlikely.   
 

 

Figure 8 llustration of conditional probability distribution functions for the robustness  
index of the interlinked system in the cases of operational and geo-hazard type disturbances and for different numbers of infrastructure system 

constituents nc 

The resilience of the interlinked system as described in Section 2.4 depends on a number of factors such as the 
frequency and types of disturbances, the capacity and robustness of the infrastructure system and the capacity of the 
governance system. Important characteristics of the governance system are comprised by the total recovery time T 
and the total loss of benefit A given a disturbance. For / 0.5f cn n  the probability distribution function of T 

conditional on different quantiles of loss of benefit AQ , for the cases of governance systems with low and high 
preparedness, are shown in Figure 9. Not surprisingly shorter recovery times are significantly more probable for 
governance systems with a high level of preparedness. This is expected as the expected value of the recovery time is 
directly proportional to the factors by which the individual recovery times are defined, in dependency of the benefit 
(see Table 2).  
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Figure 9 The CDFs of the total recovery time T with different quantiles of the area A for the system  
with low or high preparedness given that /f Cn n =0.50 

The probability of resilience failure, i.e. the annual probability of exhaustion of the accumulated financial reserve by 
disturbance events as a function of the decision parameter χ are illustrated for the cases of low and high 
preparedness of the governance system, respectively (note that for the study of the resilience the infrastructure 
system is comprised by 5, 10, 15 and 20 constituents respectively). By comparison of Figure 10 and Figure 11 it 
may be observed that the difference between the curves representing different numbers of constituents are more 
pronounced for the case of high preparedness. This might indicate that in Figure 10 the (lack of) resilience is 
dominated by a poor capacity of the governance system rather than the performance of the infrastructure system, 
whereas in Figure 11 the performance of the infrastructure system plays a stronger role. Moreover it is seen that for 
the case of low preparedness (Figure 10) the curves are relatively flat up until χ=16% where after it decreases rather 
rapidly. For the case of high preparedness (Figure 11) a similar behavior is exhibited already for  χ= 8%. 
 

 

Figure 10 Annual probability of resilience failure for low preparedness as a function of the decision parameter χ with nc=5 (blue/continuous), 
nc=10 (green/dashed), nc=15 (red/dash-dot), nc=20 (cyan/crosses) 

 in % 

5cn   

20cn

10cn  
15cn  



1082   M.H. Faber et al.  /  Procedia Engineering   198  ( 2017 )  1070 – 1083 

 

 

Figure 11 Annual probability of resilience failure for high preparedness as a function of the decision parameter χ with nc=5 (blue/continuous), 
nc=10 (green/dashed), nc=15 (red/dash-dot), nc=20 (cyan/crosses) 

 

4. Discussion and conclusions 

In the present paper a novel probabilistic framework for the representation and assessment of interlinked systems is 
presented. The framework aims to address optimal design and management of infrastructure systems and the built 
environment in general in the context of societal governance, regulation as well as operational and natural hazards 
and to facilitate that the interactions of these subsystems are accounted for. Based on the presented framework a 
principal example is presented in which the robustness and the resilience of system is quantified and analyzed as a 
function of the characteristics of the infrastructure system which may be influenced by decisions regarding the 
design (number of constituents acting in parallel), the governance system through its preparedness with respect to 
disturbances and the regulatory system for what concerns the decision on how much of the generated benefit from 
the infrastructure systems shall be kept in as a reserve for reconstructions and repairs following future major 
disturbances.  The proposed framework facilitates that the robustness of the considered interlinked system may be 
analyzed in detail with respect to which scenarios contribute the most to potential inappropriate robustness and 
thereby also points to efficient means of improvements. Finally it is shown how the proposed framework allows for 
assessing the probability of resilience failure as a function of the parameters describing the various subsystems of 
which the interlinked system is comprised in addition to the more traditional assessments of functionality losses and 
time till recovery. 

The presented framework and corresponding approaches for the modeling and assessment of the robustness and 
resilience of interlinked systems is still rather new and several features need to be explored in more detail. However, 
the framework appears to be relatively flexible and accommodates for a number of more detailed assessments that 
usually considered and thereby could add significant value as a platform for decision support on the design and 
management of interlinked systems.  
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