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INTRODUCTION 
 
Despite a growing number of studies on survival into 
old (≥ 85 years) and advanced (≥ 90 years) age, factors 
influencing longevity (or lifespan) are still poorly 
understood. Human twin studies estimated that 20–30% 
of variation in survival into old and advanced age, 
besides maintaining a healthy life style, is determined 
by heritable genetic factors [1, 2].  
 
In order to determine these genetic factors, several 
genome-wide scans for linkage, genome-wide association 
studies (GWAS) and genome-wide association meta-
analyses have been carried out on panels of long-lived 
individuals. Variations in many loci, e.g. near the 
D4S1564 [3], MINPP1 [4], HLA-DQA1/DRB1 and LPA 
[5] genes, have been identified as contributing to survival  

 

into old age, but only single nucleotide polymorphisms 
(SNPs) in TOMM40/APOE and FOXO3 loci were found 
to robustly associate with longevity [6–11]. In a whole-
genome scan for genetic linkage performed by Kerber et 
al. [12] on individuals from the Utah Population 
Database, in which high levels of both familial longevity 
and individual longevity were exhibited, the strongest 
signal was observed in marker D3S3547 on chromosome 
3p24.1. In addition, a locus on chromosome 3p24-22, 
previously identified in [13], was found to link to 
exceptional longevity [12], strengthening the case that 
genes found in these regions play a role in the regulation 
of human lifespan. Boyden and Kunkel [13] have 
identified several additional loci as having significant 
association with longevity, e.g. on chromosomes 9q31-
34, 12q24 and 4q22-25. Recently, GWAS of parental 
longevity was performed on participants of European 
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ABSTRACT 
 
Despite a growing number of studies on longevity in Drosophila, genetic factors influencing lifespan are still poorly 
understood. In this paper we propose a conceptually new approach for the identification of novel longevity-
associated genes and potential target genes for SNPs in non-coding regions by utilizing the knowledge of co-
location of various loci, governed by the three-dimensional architecture of the Drosophila genome. Firstly, we 
created networks between genes/genomic regions harboring SNPs deemed to be significant in two longevity 
GWAS summary statistics datasets using intra- and inter-chromosomal interaction frequencies (Hi-C data) as a 
measure of co-location. These networks were further extended to include regions strongly interacting with 
previously selected regions. Using various network measures, literature search and additional bioinformatics 
resources, we investigated the plausibility of genes found to have genuine association with longevity. Several of 
the newly identified genes were common between the two GWAS datasets and these possessed human 
orthologs. We also found that the proportion of non-coding SNPs in borders between topologically associated 
domains is significantly higher than expected by chance. Assuming co-location, we investigated potential target 
genes for non-coding SNPs. This approach therefore offers a stepping stone to identification of novel genes and 
SNP targets linked to human longevity.   
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descent available via the UK Biobank [14]. Several 
previously known variants have been confirmed in this 
study. In addition, other common variants previously 
found by disease-specific GWAS to associate with e.g. 
cellular senescence, inflammation, lipid metabolism and 
cardiovascular conditions were also found to associate 
with parental longevity [14]. Their results suggest that 
human longevity is a highly polygenic trait influenced by 
many variants with a small effect size [14].  
 
Progress in studies of human longevity is being 
exacerbated by small sample sizes making model 
organisms, such as Drosophila melanogaster, 
increasingly important for studying and understanding 
genetic factors affecting longevity. The lifespan of 
Drosophila is affected by several factors including 
genetics, differences in environmental conditions, diet 
and overcrowding. In laboratory conditions under 
controlled environment the average lifespan is found to 
be 26 and 33 days for female and male Drosophila, 
respectively [15]. Mutations in several genes have been 
found to increase the lifespan of Drosophila. For 
example, a mutation in the mth (Methuselah) G protein-
coupled receptor gene, which leads to the partial loss-
of-function, has been found to extend the average 
lifespan by 35% [16]. Mutant versions of the Indy gene, 
which encodes an amino acid transporter, has been 
shown to double the average lifespan [17]. It was also 
shown that single gene mutations in the target of 
rapamycin (TOR) and the insulin/insulin-like growth 
factor (IIS) signaling pathways can slow down the aging 
process in model organisms including flies [18]. 
 
Up to date, Drosophila GWAS have identified millions 
of naturally occurring SNPs that potentially influence 
longevity. Burke et al. [19] compared allele frequencies 
in the oldest surviving Drosophila with the randomly 
selected individuals from the same “synthetic” 
populations, derived from eight inbred founders. Eight 
significantly divergent regions have been identified. A 
small proportion of genes, found in these regions, were 
enriched in Genome Ontology (GO) biological process 
terms ‘defense response’ and ‘glutathione metabolic 
process’ [19]. Ivanov et al. [20] used lines from the 
Drosophila melanogaster Genetic Reference Panel 
(DGRP) to perform GWAS and identified ~2 M 
common SNPs. However, none of the SNPs found 
reached genome-wide significance level prompting the 
hypothesis of a possible combined effect of common 
SNPs on longevity. Gene-based analysis with either 
gene regions or gene regions extended into ±5 Kb of 
flanking sequences had identified several top-ranked 
genes including the CG11523 and Neprilysin 1. The 
former was found to have a GSK3β interaction domain 
that is a crucial component of the TOR pathway in 
human cell lines [20]; the latter could be essential for 

female fitness [20]. Among the top-ranked 100 genes (p 
< 4.79×10-6) found in this study were Chrb, slif, mipp2, 
dredd, RpS9 and dm genes enriched in the ’TOR 
pathway’ GO term [20]. Several of the longevity 
associated genes found are involved in processes which 
are known to impact aging (e.g. carbohydrate 
metabolism), however the function of others (although 
not known) provided opportunity for further, promising 
experimental examination. Polygenic score analysis was 
also used to find the additive effects of common SNPs 
[20]. In the absence of the second dataset, cross 
validation was performed. It was found that a small 
proportion of the observed lifespan variation (~4.7%) is 
explained by the additive effect of common SNPs. 
Despite the success in identification of variants, associated 
with longevity, the functional role of the majority of them 
– especially the variants residing outside the gene coding 
regions – remains to be determined.  
 
In this paper we hypothesize that co-location of known 
longevity-associated genes with genes, not previously 
implicated in longevity, and their enrichment in the 
same biological function or pathway as known genes, 
make them novel candidate genes, potentially linked to 
longevity. We further hypothesize that both non-coding 
SNPs and their potential target genes also reside within 
co-located loci. To identify these novel genes/genomic 
regions we devised a computational approach based on 
analysis of networks of co-located loci, harboring both 
GWAS-identified variants and novel genes. Two 
datasets of SNPs generated by GWA studies [19–20] 
were used, comprising respectively ~1 million and ~2 
million SNPs and sharing 2139 SNPs residing within 
1515 (possibly overlapping) genes and 1044 non-coding 
SNPs. 
 
As a measure of co-location (or proximity) of two 
distinct loci, not necessarily on the same chromosome, 
we used inter- and intra-chromosomal contacts generated 
by chromosome conformation capture Hi-C technique for 
the Drosophila melanogaster genome [21]. Studies of 
chromosome conformations have revealed that three-
dimensional architecture of chromatin dictates the co-
location of specific genes within the nucleus, thereby 
prompting the hypothesis of existence of common 
mechanisms controlling their transcription in a tissue-
specific manner [22–23]. Recently, Won et al. [24] have 
demonstrated the advantages of using 3D chromatin 
maps for identifying target genes for schizophrenia-
associated SNPs, residing within non-coding reasons of 
the genome. The findings have shown that for many non-
coding SNPs their target genes were neither adjacent to 
SNPs nor in linkage disequilibrium, proving the point 
that many regulatory interactions are not captured by 
linear chromosomal organization. Analysis of intra-
chromosomal interactions showed more frequent and 
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stronger interactions within continuous genomic regions, 
called topologically associated domains (TADs), than 
with regions residing in other TADs [22–23]. TADs have 
been proven to play important roles in 3D organization of 
genomes and gene regulation and, when mutated, may 
lead to disease through disruption of gene regulatory 
pattern (reviewed in [25]).  
 
A network of interactions was created from the inter- 
and intra-chromosomal contacts with nodes 
representing genomic regions, connected by edges, 
weighted by interaction frequencies. We calculated 
various network measures (e.g. degree [26]) and 
identified communities (i.e. densely connected 
subnetworks) existing within the network with the aim 
of revealing influential nodes/regions and densely 
connected communities (clusters) within networks. 
Candidate regions and communities were further 
explored using FlyBase (http://flybase.org/) and 
FlyMine (http://www.flymine.org/) resources, and 
GeneAge database (http://genomics.senescence.info/ 
genes/models.html) to provide a body of evidence for 
genomic regions having genuine and/or previously 
unknown association with longevity.  
 
To explore the role that SNPs occurring in TAD borders 
play in longevity, we analyzed genes residing in close 
proximity to TAD borders and sharing both ‘long-lived’ 
and ‘short-lived’ phenotypes. We hypothesized that a 
SNP(s) in nearby TAD borders may lead to a disruption 
of a regulatory pattern of a gene resulting in one of the 
phenotypes, ‘long-lived’ or ‘short-lived’, whereas the 
opposite phenotype could be a consequence of SNPs 
residing within genes themselves.   
 
RESULTS AND DISCUSSION 
 
Choice of interaction frequency thresholds and 
genome-wide significance level 
 
To assess the strength of interactions between intra- and 
inter-chromosomal genomic regions, distributions of 
interacting frequencies were analyzed individually for 
each chromosome and between chromosomes. Only 1% 
of the strongest intra-chromosomal interactions 
corresponding to the tails of these distributions and 
resulting in frequencies greater than 247, 215, 1308 and 
342 for chromosomes 2, 3, 4 and X, respectively, were 
considered. The threshold for inter-chromosomal 
interaction frequencies, corresponding to 1% of strongest 
interactions, was 10. We refer to interactions with 
frequencies exceeding these thresholds as “strong” 
interactions.  
 
The genome-wide significance level, required for 
finding association between ~106 SNPs, is usually set to 

p < 5×10-8. This value corresponds to 0.05 level of 
significance after correction for multiple testing. In our 
case, each SNP was binned into a 80 Kb region. There 
are 1503 distinct 80 Kb regions recorded in the 
Drosophila Hi-C data. Taking this into account, we 
corrected the required significance level to 3.33×10-5. In 
the analysis of SNPs in non-coding regions the Hi-C 
data with finer resolution, 10 Kb, was used where 
interaction frequencies between 11,839 10 Kb bins were 
available [21]; in this case the genome-wide level of 
significance was set to 0.05/11839=4.22×10-6. 
Following [19], SNPs with D-values exceeding 7.9 
were deemed to be significant. 
 
Original networks of interaction based on Synthetic 
and DGRP GWAS data 
 
The original network of interaction based on the 
Synthetic GWAS data consists of 279 nodes each 
representing a 80 Kb region harboring at least one SNP 
with D > 7.9. In turn, the original network of interaction 
based on the DGRP GWAS data consists of 80 nodes 
corresponding to regions harboring SNPs with p-values < 
3.33×10-5. The original networks share 14 common nodes 
covering 1.12 Mb of the Drosophila genome and 
harboring 168 genes. Only five genes ‒ Rim2 (replication 
in mitochondria 2), GlyP (glycogen phosphorylase), aop 
(anterior open), HDAC1 (histone deacetylase 1) and Tpi 
(triose phosphate isomerase) ‒ were found in FlyBase 
database as having “long-lived” phenotype. The number 
of SNPs residing within these common regions and 
satisfying chosen thresholds was 91 and 19 for Synthetic 
and DGRP GWAS-based data, respectively. Among the 
genes with the highest number of SNPs recorded in both 
GWAS datasets were nmo, sima, axo, CG9967, eys, 
chinmo and dpr3 (for the full list of genes see 
Supplementary Table 1).   
 
Extended networks of interactions 
 
Original networks were further expanded to create 
extended networks by adding extra nodes, 
corresponding to 80 Kb fragments that interact with 
frequencies meeting interaction frequency thresholds 
with the nodes, already present in the original networks. 
Together with regions that harbor SNPs recorded in the 
corresponding GWAS datasets, the extended networks 
contain novel regions that may not be covered by 
techniques used for SNP identification. We refer to 
these networks as Synthetic and DGRP GWAS-based 
(extended) networks.  
 
The Synthetic GWAS-based extended network is fully 
connected and consists of 1099 nodes harboring ~75% 
(69,951) of SNPs recorded in the Synthetic GWAS 
dataset with 2,409 SNPs residing within genes. Among 
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13,838 genes residing within the network nodes 217 
genes were found to have “long-lived” phenotype as 
recorded in the FlyBase database. The node labelled 
547 (corresponding to region Chr2R: 20800000-
20880000) has the highest degree, 150.  
 
The DGRP GWAS-based extended network has six 
disconnected components and consists of 671 nodes 
harboring ~50% (1,093,533) of SNPs recorded in the 
DGRP GWAS dataset with 114 SNPs residing within 
genes. Among 8,929 genes residing within the network 
nodes 145 genes were found to have “long-lived” 
phenotype according to the FlyBase database. The node 
labelled 1183 (region Chr3R: 25920000-26000000) has 
the highest degree of 68.  
 
The extended networks share 527 common nodes 
covering 42.16 Mb of the Drosophila genome and 
harboring 7,413 genes among which 121 have “long-
lived” phenotype. Fifteen common regions do not 
harbor any genes. For approximately 30% and 3% of 
genes residing within common regions no SNPs were 
recorded in the Synthetic and DGRP GWAS datasets, 
respectively. Among the genes with the highest number 
of SNPs recorded in both GWAS datasets were Ptp61F, 
CG45186, kirre, Ptp99A and CG44153. Only a small 
proportion of genes found in regions common for both 
datasets were harboring SNPs meeting our significance 
threshold – 717 and 57 in the Synthetic and DGRP 
GWAS-based networks, respectively.  
 
Several novel regions with the highest degree were 
selected for further analysis and each of the 
subnetworks centered around these novel regions (i.e. 
together with all connected regions) were considered 
(Supplementary Table 2). Genes residing within these 
subnetworks were sought for enrichment in longevity-
associated GO terms. The results are summarized in 
Table 1.  
 
Genes residing within a subnetwork centered around 
node 928 (chr3R:5520000-5600000) in the extended 
Synthetic GWAS-based network were enriched in two 
GO terms, ‘apoptotic process’ and ‘nervous system 
development’ (Table 1). Among them the trbd and 
CG8412 genes that have ‘short-lived’ phenotype 
according to in FlyBase resources. The loss of the trbd 
gene, a negative regulator of the Drosophila immune-
deficiency pathway, has previously been observed to 
reduce lifespan [27]. A number of genes in this 
subnetwork, including dmt, hyd, CG16908 and CG9471, 
were found to have phenotypes ‘increased mortality’ 
and ‘lethal’. The MED6 gene was found to have a 
phenotype of ‘cell lethal’ and is known to be required 
for elevated expression of a distinct set of 
developmentally regulated genes. This gene is essential 

for viability and/or proliferation of most cells and 
mutants of this gene have previously been observed to 
fail to pupate, dying in the third larval instar with severe 
proliferation defects in imaginal discs and other larval 
mitotic cells [28]. Finally, this subnetwork also contains 
the FoxP gene, a protein that encodes a transcription 
factor expressed in the nervous system. This gene has 
recently been shown to be important for regulating 
several neurodevelopmental processes and behaviors 
that are also related to human disease [29].  
 
Many of the newly found genes (see Table 1) share the 
same biological function and co-locate with genes that 
have previously been reported to associate with 
longevity and/or aging, thus acting as a proof of 
concept. For example, the sidpn, hook and CG12935 
genes residing in subnetwork centered around bin 928 
(chr3R:5520000-5600000) were reported to have a 
‘short-lived’ phenotype. Loss-of-function mutation in 
the hook gene has been found to reduce maximum 
lifespan by up to 30% [30]. Mutant flies lacking 
mitochondrial Top3alpha gene have also been found to 
have decreased maximum lifespan by up to 25%, in 
which a premature aging phenotype was demonstrated 
and mobility defects were observed [31]. Several genes, 
e.g. RpL30, Eps-15, Nipped-B and RPA2, listed in Table 
1 were also found to have an ‘increased mortality’ 
phenotype according to the FlyBase resources.  
 
Five genes residing in a subnetwork centered around bin 
1220, were enriched in the ‘DNA repair’ GO term. 
Interestingly, this novel region is located on chr4: 960000-
1040000, a chromosome seen as an anomaly because of 
its small size in comparison to other chromosomes and its 
chromatin structure. Due to its size, this chromosome is 
often ignored, however it is known to harbor at least 16 
genes where many of them are thought to have male-
related functions [32]. Using a comprehensive database of 
Drosophila regulatory sequences available via RedFly 
database (http://redfly.ccr.buffalo.edu), several enhancers 
were found in this region that target lncRNA sphinx and 
the transcription factor toy residing within this novel 
region although for some enhancers their target genes are 
not known. One can speculate that these enhancers could 
target genes co-located in 3D, i.e. residing within the 
same subnetwork centered around bin 1220.  
 
In the extended DGRP network two novel bins, 2 and 
28, were found to have the highest degree. Seven and 17 
genes residing in subnetworks centered around bin 28 
(chr2L: 2160000-2240000) and bin 2 (chr2L:80000-
160000) were enriched in the ‘immune system process’ 
and ‘cellular response to stress’ GO terms, respectively. 
Some of these genes have previously been implicated in 
aging or have phenotypes which could be linked to 
longevity. For example, flies heterozygous for the 

http://redfly.ccr.buffalo.edu/
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Table 1. Novel nodes with the highest degree in the Synthetic and DGRP GWAS-based networks harboring genes 
enriched in longevity-associated GO terms. 

Novel 
node 

Network GO term P-value Genes enriched in GO term Number of nodes 
harboring genes 

enriched in GO term/ 
total number of nodes 

928 Synthetic Apoptotic 
process 

 

2.27E-04 E2f2, lola*, egr, Ret, Vps25, TER94, ptc, 
eEF5(CG3186), snama, ninaA, yki, 

sigmar, l(2)tid, Mcm10 

7/16 

928 
 

Synthetic Nervous system 
development 

4.37E-04 CG10339, amos, CG10431, Sidpn**, 
RpL30, hook, Dap160, enok, lola, dgo, 

egr, CG12935, Ret, Pka-R2, Eps-15, 
Galphao 

9/16 

1220 Synthetic DNA repair 0.0294 Top3alpha, PCNA2(CG10262), Nipped-
B, CG9272, RPA2 

4/21 

28 DGRP immune system 
process 

0.021515 Vps16B, Cad99C, aop, 
DPCoAC(CG4241), Stat92E, Mtl, GlyP 

4/8 

2 DGRP cellular response 
to stress 

0.006104 CG11498, Clbn, CG13473, CG14130, 
Sld5, mu2, Atg16, kay, CG3448, Rad9, 

Mtl, Grx1(CG6852), Cat, HipHop, BI-1, 
Wdr24(CG7609), Drice 

13/15 

* Genes residing within original nodes, i.e. harboring SNPs with D > 7.9 are underlined. 
**Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
 

mutation in the Stat92E gene have been found to have 
maximum lifespan up to 30% shorter than those of 
wild-type control flies [33]. The mean lifespan of 
Drosophila was found to be increased through post 
developmental RNA interference of GlyP by up to 
17.1% [34]. Another gene listed in Table 1 found to 
have a positive effect on lifespan is Cat, where an 
overexpression of this gene results in an increase in 
lifespan by up to a third [35]. Searches in the FlyBase 
database show that several other genes have 
phenotypes associated with aging, e.g. Clbn and Atg16 
genes have a ‘short-lived’ phenotype, the BI-1 gene 
has both a ‘short-lived’ and ‘long-lived’ phenotype 
and genes kay and HipHop have phenotypes for 
increased mortality.  
 
Using the RedFly database, we found that the novel 
region on chr2L:2160000-2240000 (bin 28), which was 
added to the original nodes of the DGRL GWAS-based 
network on the basis of its strong interactions with the 
original nodes, harbors several enhancers. Some of 
these enhancers target CG34172, Uch and the 
transcriptional-repressor protein aop genes. The latter 
strongly associates with longevity and is found to be 
central to lifespan extension caused by reduced IIS or 
Ras attenuation [36]. For some enhancers their target 
genes were not specified. One can speculate that these 
enhancers could target other co-located genes residing 
within the subnetwork centered around bin 28.   

Clusters in the extended GWAS-based networks 
 
Community detection algorithm implemented in GEPHI 
which uses the Louvain modularity method [37] was 
performed to identify clusters in the Synthetic and 
DGRP GWAS-based networks. Selected clusters are 
shown in Figure 1. Complete sets of clusters for each 
network are shown in Supplementary Tables 3–4. A 
‘resolution’ parameter was set to 0.1, enabling us to 
identify more communities/clusters as compared with 
the smaller number of communities that could be 
obtained by using a greater value for this parameter 
[38]. These clusters were further explored with the aim 
of identifying novel genes that co-locate with known 
longevity-associated genes and are enriched in the same 
biological function as known genes. 
 
Clusters in the extended Synthetic GWAS-based 
network 
The Synthetic GWAS-based network was found to have 
81 communities/clusters with the smallest consisting of 
three nodes and the largest of 72 nodes (see 
Supplementary Table 3). Selected clusters with the most 
significant enrichment in longevity-associated GO 
terms are summarized in Table 2. Nodes constituting 
these clusters are listed in Supplementary Table 5. 
 
Six genes residing within five nodes of cluster 11 were 
enriched in the ‘DNA repair’ GO term (p-value = 0.022). 
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Figure 1. Selected clusters in the Synthetic (A) and DGRP (B) GWAS-based extended networks of interactions. 
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Table 2. Number of nodes in the selected clusters in the Synthetic GWAS-base network and genes enriched in 
longevity-associated GO terms.   

Cluster  GO term P-value Genes enriched in GO term Number of nodes harboring 
genes enriched in GO term/ 

total number of nodes 
4  cellular response to 

stimulus 
0.004503 Rab39, Tom40, santa-maria, Mnn1*, sem1, 

Pvf2, Gr28b, Pvf3, Ziz, RapGAP1, Wnt4, 
wg, Wnt6, Wnt10**, ninaC, CG5160, 

CG5181, mir-305 

6/9 

4  localization 0.007119 Rab39, Tom40, Sem1, Pvf2, CG13793, 
CG13794, CG13795, CG13796, CG31904, 
CG31907, CG33296, Pvf3, Ndae1, Wnt4, 

ninaC, Ntl, ATPsynGL, Nuf2 

5/9 

4  cell communication  0.023993 Rab39, santa-maria, Mnn1, Pvf2, Gr28b, 
Pvf3, Ziz, RapGAP, Wnt4, wg, Wnt6, Wnt10, 

ninaC, CG5160, mir-305 

7/9 

5  macromolecule 
modification  

0.003413 Atg1, Ptp69D, Cnot4, RluA-1, CG32847, 
CG33303, CG34183, CG42366, Fkbp59, 

CG4839, Ror, CG4968, Sps2, gny, STUB1, 
Sp27A, LManI, Bug22, Cdk1, Cand1, 

Usp14, CYLD, Utx, Pten, bsk, Dref, RluA-
2, LMannII, FBXO11 

9/11 

5  cellular catabolic 
process 

0.020971 Atg1, lft, CG32847, CG4592, CG4594, 
CG4598, yip2, Prosalpha6, RpS27A, 

CG5367, Usp14, Utx, Pten, CG5676, bsk, 
chico, CG5731, CG8526, FBXO11 

9/11 

11 DNA repair 0.021953 CG17329, ku80, CG31807, CG33552, 
EndoGI, CG5316 

5/21 

11  developmental 
process 

0.010492 cact, Cas, chif, cni, crp, dac, foxo, fzy, glu, 
goe, grp, heix, her, mdy, mir-9b, mir-9c, 

sing, squ, twe, wek, yellow-b, BicC, BuGZ, 
CG17328, CG32572, CG4793, CG5953, 

Ca-alpha1D, Cyp303a1, Cyt-c-d, EndoGI, 
GMF, Idgf1, Idgf2, Idgf3, Mhc, Npc2b, 
Syx5, TwdIX, TwdIY, TwdIZ, TwdIaplha, 

VhaSFD, beat-Ia, beat-Ib, beat-Ic 

14/21 

23  apoptotic process 0.033954 azot, tor, cathD, Cul1, fwe, mir-263b 4/9 
23  positive regulation 

of gene expression 
0.028920 CG12769, Rpt1, Kdm4A, udd, Nup50, nito, 

CG6244, Lpin, lig 
6/9 

29  negative regulation 
of transcription, 
DNA-templated 

0.024472 CG10038, spt4, wuc, Iz, seq, Kdm4B, sug, 
Psc, Su(z)2, Iswi 

7/14 

60  gene expression 5.6 × 10-4 CG10474, Rpb8, sa, CG11906, mip40, Pc, 
croc, barc, CRIF, Hr78, wbl, rib, Tsr1, eg, 
CycH, CG7414, Nopp140, mub, RpLPO, 

Cdk12, TfAP-2, rho-7 

9/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
**Genes residing within original nodes, i.e. harboring SNPs with D > 7.9 are underlined. 
 

DNA integrity and stability depend upon the ability  
of DNA repair mechanisms to detect and repair damaged 
DNA. A DNA repair gene ku80 is involved in repair of 
double-stranded DNA breaks [39] and was found to have 

a ‘short-lived’ phenotype. The EndoGI gene is involved in 
positive regulation of the Notch signaling pathway and 
associated with an ‘increased mortality’ phenotype. Notch 
signaling is important for cell-cell communication and 
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plays an important role in processes such as neuronal 
function and development (reviewed in [40]). The other 
four genes residing within this cluster, CG17329, 
CG31807, CG33552 and CG5316, are currently not fully 
characterized. One can speculate that close proximity of 
these genes within the cell nucleus and shared biological 
function with the ku80 and EndoGI genes, make them 
potential candidate genes, linked to longevity. In fact, the 
human ortholog of the CG5316 gene identified via the 
Integrative Ortholog Prediction Tool available at 
https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl, the 
APTX gene, which encodes the DNA strand-break repair 
protein aprataxin was found to have a broader role in 
DNA single-strand break repair in neurodegenerative 
disease (reviewed in [41]) that shortens lifespan. In a 
longitudinal study with 11 years of follow-up on survival 
in the oldest-old Danes, Soerensen et al. [42] have shown 
that rs705649 SNP in DNA repair protein XRCC5, which 
is the human ortholog of the ku80 gene, is associated with 
mortality in late life.  
 
Six genes, azot, tor, cathD, Cul1, fwe and mir-263b, 
residing in cluster 23 were enriched in the ‘apoptotic 
process’ GO term (p-value = 0.034). The apoptotic 
process has almost an opposite role to the previously 
discussed GO term ‘DNA repair’, whereby when DNA is 
damaged, the checkpoint protein p53 is activated and the 
decision is made as to whether replication should be 
stopped and the DNA repaired, or the cell made to die by 
apoptosis (reviewed in [43]). Studies have found that in 
mammals, at least in part, apoptosis plays an important 
role in the process of aging and tumorigenesis and that 
age-enhanced apoptosis may work as a protective 
mechanism against age-associated tumorigenesis [44]. 
The ahuizotl gene, azot, which encodes a calcium 
dependent protein responsible for the elimination of less 
fit cells, is known to play a role in delaying aging and 
extending lifespan. This gene has the ‘long-lived’ 
phenotype and was previously found to increase lifespan 
[45]. Another gene in this group, cathD, a gene with 
phenotypes that include those that associate with 
apoptosis such as ‘increased cell death’ as well as 
longevity associated phenotype ‘short-lived’. The human 
ortholog of this gene, CTSD, encoding cathepsin D was 
found to associate with cognitive abilities in both 
demented and non-demented individuals [46] and was 
also implicated in increasing the risk of developing 
Alzheimer's disease [47]. Another gene in this group, 
Cul1, belongs to the cullin family and has phenotypes of 
‘increased mortality’ and ‘neuroanatomy defective’. The 
fwe gene encodes a transmembrane protein that mediates 
win/lose decisions in cell competition and neuronal 
culling during development and aging; this gene has 
longevity related phenotypes - ‘increased mortality’ and 
‘lethal’. Given the longevity association that these genes 
in this cluster have, through both phenotypes and 

biological functions, one can speculate that other genes 
that are found to reside within this cluster 23 may also 
influence longevity in the same way as the genes 
discussed above, due to their close proximity and strong 
interaction in the genome.  
 
Four out of 19 genes enriched in the ‘cellular catabolic 
process’ GO term (cluster 5; Table 2) have been 
previously shown to have association with longevity or 
display phenotypes which associate with aging and, in 
most cases, with increased lifespan. This includes chico, a 
gene encoding an insulin receptor substrate that belongs to 
an insulin/insulin-like growth factor (IGF) signaling 
pathway and found to increase lifespan by up to 48% [48]. 
Koohy et al. [49] have identified transcriptional 
downregulation of components of the insulin-like growth 
factor signaling pathway in mouse, in particular 
downregulation of the mouse homolog of chico gene, 
IRS1, as a signature of aging in developing B cells. The 
overexpression of the Pten gene was found to delay the 
process of proteostasis and therefore resulted in a decrease 
in the loss of muscle strength during muscle aging, 
increasing maximum lifespan in Drosophila by up to 
7.7% in comparison with matched controls [50]. 
Interestingly, the human PTEN (phosphatase and tensin 
homolog) gene was found to encode upstream regulators 
for the FOXO3 gene [51], one of the few loci robustly 
associated with longevity in humans [10], stressing that 
longevity-associated SNPs may reside in regulatory 
regions as well as in protein-coding genes [52]. The 
Drosophila ortholog of the FOXO3 gene, foxo, a 
transcription factor involved in the regulation of the 
insulin signaling pathway, is a commonly known 
longevity gene [53–56]. The 80 Kb region harboring this 
gene interacts with the Pten region although the 
interaction frequency is below the threshold chosen in this 
study. The neuronal-specific upregulation of the Atg1 
gene was found to result in increased median lifespan of 
Drosophila by up to 25% [57]. The human ortholog of 
this gene, ULK1, involved in longevity-regulating 
pathways identified by the KEGG database [58]. Salas-
Pérez et al. [59] have shown that methylation level of the 
CpG region residing within this gene strongly associates 
with age-related obesity and metabolic syndrome traits, 
suggesting a role for DNA methylation in aging-related 
metabolic alterations. Another gene found to be enriched 
in the ‘cellular catabolic process’ GO term was the bsk 
gene which is involved in RNA interference. Such 
interference in intestinal stem cells results in short life due 
to impaired intestinal homeostasis and tissue regeneration 
and has been found to reduce mean lifespan by 16.4% and 
10.2% in males and females, respectively [60].  
 
Several genes residing within other clusters and enriched 
in longevity-related GO terms have been previously 
implicated in longevity. The overexpression of the 

https://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl
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VhaSFD gene that encodes a regulatory subunit of the 
vacuolar ATPase proton pump (H+-ATPase) and Sugar 
baby (Sug) gene related to a maltose permease from 
Bacillus result in an increase in mean life span by 5–10% 
[61]. The mushroom–body expressed (mub) gene has 
previously been found to have an association with 
longevity when mutated; the insertion of a p-element in 
the gene resulted in an increased lifespan up to 21.4% 
[62]. On the contrary, the rho-7 gene was found to 
decrease lifespan; the knocked-out study showed that 
flies develop severe neurological defects as well as a 
greatly reduced lifespan [63]. Several genes in Table 1 
were found to display the phenotype ‘increased 
mortality’ according to FlyBase resources. These 
includes the CYLD gene, a cancer consensus gene 
responsible for tightly limiting the immune response 
duration [64]. A mutant of this gene, dCYLD, was proven 
to be essential for JNK (Jun-N-terminal Kinase)-
dependent oxidative stress resistance and normal lifespan 
and has also been indicated to play a critical role in 
modulating TNF-JNK-mediated cell death [65]. The 
Mnn1 gene that also play a role in the regulation of stress 
response in Drosophila [66] displays this phenotype. The 
association between stress and lifespan has often been 
made, and previous studies have observed differences in 
gene expression when comparing normal and stress 
conditions which has resulted in the identification of 
aging genes in Drosophila. The genes found to reside in 
the same clusters as the genes previously shown to play 
roles in biological processes associated with longevity 
were found to harbor a number of SNPs. Although not all 
SNPs residing within genes enriched in the same GO 
term had a significant D-value (D > 7.9), one can 
speculate that SNPs in one or several functionally-related 
gene(s) co-located within the cell nucleus may contribute 
collectively to the longevity phenotype.  
 
Clusters in the DGRP GWAS-based network 
The DGRP GWAS-based network comprised 61 
communities, where the smallest consisted of three 
nodes and the largest of 42 nodes (see Supplementary 
Table 4). Selected clusters with the most significant 
enrichment in longevity-associated GO terms are 
summarized in Table 3. Nodes constituting these 
clusters are listed in Supplementary Table 6. 
 
Thirteen genes in cluster 20 and eight genes in cluster 26 
were enriched in the ‘immune system process’ (p-value = 
0.036) and ‘regulation of immune system process’ (p-
value = 0.0195), respectively. Immune senescence is the 
deterioration of immune function with age. As well as 
resistance to infection, immunosenescence may also 
reduce resistance to cancer and chronic activation of the 
immune system, usually as a result of autoimmune 
diseases, cancer, HIV infection and other chronic 
infections. The changes in immune response were found 

to be very similar to the changes that occur in elderly 
individuals [67]. In response to aging most physiological 
functions are altered, e.g. the declination in cellular and 
humoral immunity. The most sensitive immune cells to 
aging appeared to be T cells, and the most critical 
component of immunological aging is known to be 
changes in the T lymphocyte compartment, concluded by 
studies on aging in humans [68], documenting significant 
changes in the functional and phenotypic profiles of T 
cells. Further analysis of literature has also suggested that 
the inability of the innate immune system to work 
efficiently is a contributing factor to the development of 
many diseases observed in the elderly [69].  
 
Several genes shown in Table 3 have been found 
previously to have association with longevity, with 
many of them being associated with a decrease in life 
span. It has been found that Drosophila, heterozygous 
for the tumor suppressor gene ft, had a shorter lifespan, 
where it was suggested that this mortality effect was 
associated with the interaction between this ft tumour 
suppressor and signal transduction pathways mediated 
by the Hippo pathway [70]. Phenotype searches for 
genes in this table found grim, Btk29A and tko to 
express the phenotype ‘increased mortality’ whereas 
Chmp1 was found to express the phenotype ‘short-
lived’. An increase in the proapoptotic protein grim has 
been shown to significantly reduce lifespan in female 
drosophila by up to 34% in median lifespan and 25% in 
maximum lifespan [71]. The Btk29A and Traf6 genes 
are FOXO targets in the JNK signaling pathway. This 
signaling pathway is stress-activated and involved in 
developmental and metabolic regulation, immune 
responses and lifespan extension [72–73].  
 
The Sod2 gene has been observed, in separate studies, 
to have both a positive and negative effect on lifespan in 
Drosophila. When overexpressed, the gene was found 
to result in a 20% increase in both mean and maximum 
lifespan [74] whereas RNA interference-mediated 
silencing of the Sod2 gene caused an increase in 
oxidative stress leading to early-onset mortality in 
young adults [75]. The PGRP-SA gene has also been 
observed as one of few genes to show age-related 
changes in expression without being affected by diet, 
allowing this gene to be considered a candidate marker 
of aging [76].  
 
SNPs in non-coding regions 
 
Total of 26,499 and 653,030 non-coding SNPs were 
recorded in the Synthetic and DGRP GWAS datasets, 
respectively. First, we explored whether these SNPs 
tend to occur within border regions separating adjacent 
topologically associated domains (TADs). Second, 
using intra-chromosomal Hi-C data with finer resolution
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Table 3. Number of nodes in the selected clusters in the DGRP GWAS-base network and genes enriched in longevity-
associated GO terms.   

Cluster GO term P-value Genes enriched in GO term Number of nodes 
harboring genes enriched 
in GO term/ total number 

of nodes 
4  development growth 0.030823 Elp3, ine, bdl, ft*, CASK, tsl 4/12 
18  nervous system 

process 
0.033071 Or59c, bw**, Gr59c, Gr59a, Gr59b, 

Gr59d, Gr59e, Gr59f, Or59b, Or59a, tko 
4/11 

20  organelle assembly  0.016230 Oseg2, Pp2A-29B, Rcd4, sls, Oseg4, 
CG42787, hts, Cnb, RpL11, Ar16, mtsh, 

RpL23A 

9/14 

20 immune system 
process 

0.035555 CG10764, asrij, HBS1, sls, Rap1, ac, ecd, 
cnk, Ostgamma, Bgb, Bro, Btk29A, par-1 

9/14 

26 regulation of immune 
system process 

0.019532 Traf6, PGRP-SA, CG1572, Cyt-b5, 
GNBP3, GstO2, Sod2, Spn42Dd 

8/14 

34  response to stimulus 0.031506 geko, skl, AstC-R2, Adf1, Dic4, Trap1, 
geminin, Bap170, Debcl, Chmp1, GNBP2, 

not, CG4306, rpr, grim, hid, CG6893, 
GNBP1 

8/11 

40  open tracheal system 
development  

0.001555 stumps, Cad88C, cv-c, grh, btsz, thr, put, 
scb 

5/14 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
**Genes residing within original nodes, i.e. harboring SNPs with p<3.33×10-5 are underlined. 
 

we explore potential target genes for SNPs residing in 
non-coding regions utilizing co-location of SNP- and 
gene-harboring loci.  
 
SNPs in Topologically Associated Domain (TAD) 
boundary regions 
Approximately 2% (11,982) of all SNPs recorded in non-
coding regions in the DGRP GWAS dataset were found 
in TAD boundary regions as compared to 9,321 SNPs in 
controls. Fisher’s exact test shows that TAD boundary 
regions are enriched in SNPs (p=1.0376×10-75). These 
SNPs were found in 998 (~35%) of all TAD boundary 
regions. On the contrary, just a small proportion of SNPs 
from the Synthetic GWAS dataset were found within 
TAD boundary regions.  
 
In the absence of individual genotype data, it is 
extremely difficult to assess the effect that SNPs in 
TAD borders may have on the genes residing within a 
given TAD. We assumed that one of the observed 
manifestations of latent changes in patterns of 
interactions between genomic regions could be in 
longevity-associated genes known to share both ‘long-
lived’ and ‘short-lived’ phenotypes. We hypothesized 
that a SNP(s) in nearby TAD borders may lead to a 
disruption of a regulatory pattern of these genes 
resulting in one of the phenotypes, either ‘long-lived’ or 

‘short-lived’, whereas the opposite phenotype could be 
caused by SNPs residing within genes themselves. 
Genomic positions were available for 124 out of 131 
genes recorded in FlyBase resources as sharing both 
‘long-lived’ and ‘short-lived’ phenotypes. We found 
that the majority of these genes, 106, were residing 
within 30 Kb regions spanning bins harboring a TAD 
border and including ±10 Kb of flanking regions (i.e. 
two adjacent bins). From these genes, 43 were found to 
reside in the vicinity of 51 TAD borders that harbor 
SNPs; 89 genes were found to reside in the vicinity of 
120 TAD borders that don’t harbor SNPs. Thirty of 
these genes were found in the vicinity of both mutated 
and non-mutated TAD borders. (Note that the length of 
the topologically associated domains in our dataset for 
Drosophila varies between ~2 and 436 Kb that leads to 
the same gene being in the vicinity of two or more 
borders depending upon its length). Seventeen genes 
including Charon, foxo, Jafrac1, mei-9 and sun 
occurred exclusively in the vicinity of mutated TAD 
borders (see Supplementary Table 7). Based on these 
observations one can speculate that SNPs residing in 
border regions of TADs may disrupt regulatory pattern 
of longevity related genes in the corresponding TADs 
by forming looping interactions with regulatory 
elements residing in the adjacent TADs potentially 
leading to the change of function, e.g. phenotype.   
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Target genes for SNPs in non-coding regions 
It is often assumed that a SNP residing in non-coding 
regions could potentially occur within a regulatory 
region(s) for a nearby gene(s).  In many cases, if this 
nearby gene carries out biological functions which are 
related to the disease being studied, the SNPs found are 
automatically become a subject of further investigations. 
However, various looping interactions could happen 
between seemingly remote DNA fragments. For 
example, Sahlén et al. [77] have observed looping 
interactions between different promoters and postulated 
that promoters can also have enhancer activity 
influencing the expression of other genes not necessarily 
the nearest ones [78].  
 
Analysis of the intra-chromosomal Hi-C data at 10 Kb 
resolution shows that in most cases interactions between 
adjacent bins are the strongest. This observation 
justifies the extension of gene boundaries to include 
SNPs residing within ±10 Kb of flanking non-coding 
regions as it is often done in analyses of GWAS data. 
However, there are regions harboring non-coding SNPs 
recorded in the Synthetic GWAS dataset and DGRP 
GWAS datasets for which the strongest interacting 
regions were as distant as 50 Kb and 100 Kb, 
respectively. Thirty of these top long-range interacting 
pairs in both datasets were selected for further 
investigation. The summary of these regions is given in 
Supplementary Tables 8–9.  
 
The calculated D-value for only one non-coding SNPs 
from the Synthetic GWAS dataset in the selected 
regions residing in bin 2006 (chr2L:20170000-
20180000; Supplementary Table 8) exceeded the 
significance level (D=12.009 >7.9). The strongest 
interacting region for this bin was found 30 Kb 
upstream of the SNP. Not a single SNP chosen from the 
DGRP GWAS dataset residing within the selected 
regions meets the genome-wide significance level 
which in this case was set to 4.22×10-6.   
 
A total of 73 and 59 genes were found in the top 30 
regions selected for SNPs from the Synthetic and 
DGRP GWAS datasets, respectively. Several bins, 
1165, 4366, 7816 and 7887, which correspond to 
regions chr2L:11,680,000-11,690,000, chr3L:380,000-
390,000, chr3R:10,760,000-10,770,000 and 
chr3R:11,470,000-11,480,000, respectively, were 
gene-less. Further analysis of potential target genes 
residing within long-range interacting regions using 
FlyBase resources have found many genes that share 
phenotypes that could be associated with longevity, 
e.g. ‘increased mortality’, ‘lethal’ and ‘immune 
response defective’ (Tables 4 and 5). Only one gene, 
AttC, encoding an immune inducible peptide 
homologous to antibacterial peptides having activity 

against Gram-negative bacteria was previously 
considered to be a candidate marker of aging [76]. For 
the interacting bins containing more than one gene 
with longevity related phenotypes, we can speculate 
that non-coding SNPs could reside in an enhancer and 
this single enhancer may target all these genes, 
influencing their expressions and phenotypes. 
Phenotypes of potential target genes and their human 
orthologs are summarized in Tables 4–5.  
 
Several genes with longevity-associated phenotypes 
were common between two datasets: CG45186, 
CG4611, jing, Ca-alpha1D, Hml, CG32298, SNCF, 
CG14107, AttC, CG4597 and CG43335. The first three 
genes in this list have matched human orthologs SVIL, 
PTCD1 and AEBP2, respectively. The Ca-alpha1D 
gene was found to match two human genes, CACNA1D 
and CACNA1S, whereas the Hml gene has four human 
orthologs: SSPO, VWF, OTOG and MUC5B. The 
human SSPO gene is involved in the modulation of 
neuronal aggregation and was suggested to be involved 
in developmental events during the formation of the 
central nervous system (https://www.uniprot.org/ 
uniprot/A2VEC9). Dysregulation of the CACNA1D 
gene and loss-of-function mutations in the SSPO gene 
were found to associate with age-related diseases such 
as Alzheimer’s [79] and Parkinson’s [80]. Although no 
other human orthologs have been previously implicated 
in longevity, one can speculate that SNPs in non-coding 
regions may target these genes remotely in a similar 
way as was found in Drosophila and play a role in 
longevity.  
 
CONCLUSIONS 
 
In this study we applied a conceptually new approach 
for identification of novel genes associated with 
longevity in Drosophila and provided the evidence for 
using co-location of genes/genomic regions governed 
by the 3D architecture of the Drosophila genome for 
predicting these novel genes. First, we created networks 
of interactions between genes and genomic regions 
harboring SNPs that meet a predefined level of 
significance for each GWAS dataset by using intra- and 
inter-chromosomal interaction frequencies (Hi-C data) 
as a measure of co-location. Then each of these 
networks was extended by adding regions that co-locate 
with the existing regions. We identified several genes 
residing within these newly added regions both known 
to associate with longevity and the novel ones that were 
not originally included in the analysis. Community 
detection algorithm identified several tightly-knit 
clusters in both networks. Genes residing within the 
same clusters were found to be enriched in longevity-
related GO terms including ‘DNA repair’, ‘apoptotic 
process’, ‘nervous system process’ and ‘immune system  

https://www.uniprot.org/uniprot/A2VEC9
https://www.uniprot.org/uniprot/A2VEC9
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Table 4. Phenotypes of genes, found in regions most strongly interacting with regions containing non-coding SNPs 
from the Synthetic GWAS dataset, and their human orthologs.  

SNP- 
harbouring bin 

Possible target 
gene 

Longevity related phenotypes Human ortholog 

4566 CG45186 lethal; increased mortality during development; increased 
mortality 

SVIL 

CG32298  partially lethal - majority die; flightless  

5660 SNCF  lethal - all die during P-stage  
CG14107  partially lethal - majority die; some die during pupal stage; 

lethal - all die during P-stage 
 

1608 Ca-alpha1D* increased mortality during development; lethal - all die 
before end of P-stage 

CACNA1D, 
CACNA1S 

2464 jing 16  locomotor behavior defective; cell death defective AEBP2 
3149 AttC 3  partially lethal; some die during pupal stage; neuroanatomy 

defective 
 

4840 CG4597  some die during pupal stage; partially lethal - majority die  
CG4611  lethal - all die during P-stage PTCD1 

5705 Hml  immune response defective SSPO, VWF, OTOG, 
MUC5B 

7886 CG43335 partially lethal - majority die; some die during pupal stage; 
partially lethal 

 

554 GluRIIA  locomotor behavior defective; neurophysiology defective; 
neuroanatomy defective; lethal 

 

554 GluRIIB  neuroanatomy defective; neurophysiology defective  

943 numb decreased cell number; some die during embryonic stage; 
increased mortality; increased cell number; lethal - all die 
before end of prepupal stage; flight defective; tumorigenic 

NUMBL 

996 bib  lethal - all die before end of pupal stage  

1176 crol  locomotor behavior defective; increased occurrence of cell 
division; increased mortality; cell death defective 

ZNF569, ZNF99, 
ZNF841,  
ZNF814 

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
 

process’. Using literature search and additional 
bioinformatics resources we investigated the plausibility 
of genes found to have genuine association with 
longevity. Our network approach identified several novel 
genes (see Tables 1–3) with no prior known associations 
with longevity as well as genes with prior reported 
associations with longevity, acting as a proof of concept. 
Among these genes are the Vps16B, Cad99C, DPCoAC 
(CG4241) and Mtl genes residing within important nodes 
in the DGRP GWAS-based network and, together  
with the known longevity-associated genes aop, Stat92E, 
GlyP, being enriched in ‘immune system process’ GO 
term. The Cad99C gene, which encodes a member of the 
cadherin superfamily of transmembrane proteins, harbors 
an SNP (chr3R:25674492) which is present in both 
GWAS datasets. Another novel gene, CG5316, co-located 
with genes CG17329, CG31807, CG33552, EndoGI and 
the longevity-associated gene ku80 in the Synthetic 

GWAS-based network, was found to be enriched in 
‘DNA repair’ GO term. Although the function of this 
gene is unknown, its human ortholog ‒ the APTX gene ‒ 
was implicated in longevity [41]. A group of genes ‒ 
CG1572, Cyt-b5, GNBP3, GstO2 and Spn42Dd ‒ residing 
within the cluster 26 in the DGRP GWAS-based network 
together with the known longevity associated genes Traf6, 
PGRP-SA and Sod2 are also strong candidates for novel 
longevity genes. None of these genes harbor SNPs that 
reach genome-wide significance level in the DGRP 
GWAS dataset. One gene, the glutathione S transferase 
O2 gene GstO2, harbors one SNP with genome-wide 
significant D-value 8.38 in the Synthetic GWAS dataset. 
Interestingly, all these genes reside in close proximity (i.e. 
within 30 Kb region) to TAD borders. Three of the 
nearest TAD border regions harbor SNPs prompting 
speculations that these SNPs could influence longevity 
either separately or together with SNPs residing within the  
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Table 5. Phenotypes of genes, found in regions most strongly interacting with regions containing non-coding SNPs 
from the DGRP GWAS dataset, and their human orthologs.  

SNP- 
harbouring bin 

Possible 
target gene 

Longevity related phenotypes  Human 
ortholog 

2962 en lethal - all die during embryonic stage; size defective; planar polarity 
defective; increased cell death; some die during pupal stage; partially 

lethal - majority die 

 

2453 Pld developmental rate defective; partially lethal - majority die; some die 
during embryonic stage; neurophysiology defective; lethal - all die 

before end of embryonic stage 

PLD2 

2463-2464 jing  locomotor behavior defective; cell death defective AEBP2 

4366 trh  neuroanatomy defective; partially lethal - majority die; lethal; some die 
during embryonic stage; lethal - all die before end of embryonic stage 

NPAS1 

4566 CG45186 lethal; increased mortality during development; increased mortality SVIL 
CG32298  some die during pupal stage; partially lethal - majority die; flightless  

5660 SNCF lethal - all die during P-stage  
CG14107 partially lethal - majority die; some die during pupal stage; lethal - all 

die during P-stage 
 

1608 Ca-alpha1D* increased mortality during development; lethal - all die before end of 
P-stage 

CACNA1D, 
CACNA1S 

2286 RpL38 increased mortality; increased mortality during development; 
developmental rate defective 

RPL38 

2375 laccase2 lethal; partially lethal; lethal - all die during embryonic stage; HEPHL1, 
CP, HEPH 

3149 AttC partially lethal; some die during pupal stage; neuroanatomy defective  

4840 CG4597  some die during pupal stage; partially lethal - majority die  
CG4611  lethal - all die during P-stage PTCD1 

5705 Hml  immune response defective SSPO, VWF, 
OTOG, 
MUC5B 

7636 timeout 1  increased mortality; lethal - all die before end of P-stage; some die 
during P-stage 

TIMELESS 

7886 CG43335 partially lethal - majority die; some die during pupal stage; partially 
lethal 

 

8955 CG33970  lethal; sleep defective; flightless  

* Genes previously found to have association with longevity as recorded in FlyBase or GeneAge resources are shown in bold. 
 

genes. This observation could explain the enrichment of 
TAD borders in SNPs. Many of these newly found genes 
harbor SNPs that do not reach a predefined genome-wide 
significance level, leading to speculation that SNPs 
residing within genes enriched in the same GO term may 
influence longevity collectively (when one or several 
SNPs in these functionally-related genes occur in the 
same fly to cause a phenotype) rather than individually 
when a single SNP in one of these genes could cause a 

phenotype. Further, we explored potential target genes 
for SNPs in non-coding regions also assuming co-
location of SNP-harboring loci and target genes within 
cell nucleus. Several novel target genes for non-coding 
SNPs have been identified using our network approach 
(see Tables 4–5) including genes such as CG45186, 
CG4611, Ca-alpha1D, Hml, and AttC that are common 
between two datasets and have human orthologs 
associated with age-related diseases.  
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Further experimental validation is required in order to 
establish the functional significance of the genes and 
SNP-target gene pairs found. This computational 
approach promises to be a stepping stone to 
identification of novel genes and SNP targets linked to 
longevity in humans and further understanding of 
genetic factors associated with this phenotype. 
 
MATERIALS AND METHODS 
 
Drosophila GWAS data used in this study 
 
Two datasets of SNPs summary statistics generated by 
GWA studies reported in Burke et al. [19] and Ivanov 
et al. [20], containing respectively ~1 million and ~2 
million SNPs, were used in this study. The first 
dataset was obtained from a “synthetic” population of 
Drosophila derived from a small number of inbred 
founders. Two independent sets of seven inbred 
Drosophila lines with another founding line added to 
both sets, were crossed to initiate two synthetic 
recombinant populations, A and B. Populations A and 
B were then maintained as four independent large 
populations (A1/A2, B1/B2). Next-generation 
sequencing was used to identify allele frequencies in 
the ‘young’ control group, comprising 120 14-day-old 
females, and the last surviving ~2% of females from 
the remaining cohort (an ‘old’ group). The occurrence 
of SNP in each of the eight ‘old’ populations and 
eight ‘young’ control populations was recorded, 
resulting in ~1.2M SNPs in the A populations and 
~1.1M SNPs in the B populations (see [19] for 
details). The SNPs for both populations were 
combined; duplicated SNPs were recorded only once 
with haplotype allele frequencies combined. 
Henceforth, we will refer to this data set as the 
Synthetic GWAS data. 
 
The second dataset was obtained by GWAS performed 
on The Drosophila Genetic Reference Panel (DRGP), 
Freeze 2.0 [20], which comprises 205 D. melanogaster 
lines derived from 20 generations of full-sib mating 
from inseminated wild-type caught females from 
Raleigh, North Carolina. Lifespan data was available 
for virgin females for 197 DGRP lines, with ~25 
females per line. A total of 2,193,745 SNPs was 
recorded together with the corresponding p-values, 
quantifying association with lifespan. P-values were 
calculated using linear regression under an additive 
model with four first principal components and the 
presence of Wolbachia pipientis included as a covariate 
(see [20] for details). Henceforth, we will refer to this 
data set as the DRGP GWAS data. 
 
SNPs were considered to be in coding regions of certain 
genes if they resided between gene start and gene end 

positions as defined by BDGP Release 6/dm6 assembly 
[81] and recorded in FlyBase database (http://flybase. 
org/). All other SNPs were considered to reside within 
non-coding regions.  
 
Intra- and inter-chromosomal interaction (Hi-C) 
data  
 
A dataset of intra- and inter-chromosomal normalized 
contacts (interaction frequencies) between 1503 80 Kb 
regions (bins) obtained by Sexton et al. [21] was 
downloaded from GEO database (accession number 
GSM849422). In this dataset bins 1-287 correspond to 
Chromosome 2L, bins 288-551 to Chromosome 2R, bins 
552-858 to Chromosome 3L, bins 859-1207 to 
Chromosome 3R, bins 1208-1223 to Chromosome 4 and 
bins 1224-1503 to Chromosome X. In addition, a dataset 
of intra-chromosomal interaction between 11,839 10Kb 
regions was downloaded from the same GEO database.  
 
Dataset of Topologically Associated Domain (TAD) 
boundary regions 
 
For each of 2,847 TAD borders compiled by [82] 100 
bp of flanking sequences were added from both sides 
to create a dataset of TAD border regions. Using SNP 
position data, non-coding SNPs residing in each TAD 
border region in the GWAS datasets were counted. 
Matched control dataset was generated as follows. For 
each TAD border a random border was generated by 
randomly selecting a position on the matching 
chromosome and adding ±100 bp of flanking 
sequences not overlapping with any “real” border 
region. This process was repeated 100 times. The 
number of SNPs residing within generated control 
datasets were counted and averaged across 100 
control datasets. Fisher’s Exact Test was then used to 
assess the overrepresentations of SNPs within TAD 
borders.   
 
Pre-processing of Synthetic GWAS data 
 
To identify positions with divergent haplotype 
frequencies in the young (control) and old groups in this 
dataset, Euclidean distances between the control and old 
groups were calculated for haplotype data for 
populations A1/A2 and B1/B2 combined. All duplicates 
were removed. The distance, D, for a given SNP was 
calculated as suggested in Burke at al. [19]:  
 

( )2h - h ,,=1= 100.

n
Y jO jjD

n

∑
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where ho,j is the haplotype frequency of the jth founder 
in the old samples, hY,j is the haplotype frequency of the 
jth founder in the young control sample, n is the number 
of haplotypes found at that position. For SNP positions 
with combined haplotype frequencies, the n in the 
equation used was altered accordingly. SNP positions 
with the largest calculated D values were those showing 
the largest differences between haplotype frequencies in 
the control and old groups, and it was therefore these 
SNPs that were indicated as most likely to have 
association with longevity. Following Burke et al. [19], 
𝐷𝐷 > 7.9 was considered to correspond to genome-wide 
significance p-value < 0.05.  
 
Identification of candidate longevity genes and 
potential regulatory regions 
 
To align SNP positions with Hi-C data, SNPs were 
binned into 80 Kb regions. Start and end positions of 
each bin and corresponding chromosomes are given in 
Supplementary Table 10.  Each region, harboring 
SNP(s) meeting the D > 7.9 threshold in the Synthetic 
GWAS data or a predefined p-value threshold (see in 
the Results and Discussion section) in the DRGP 
GWAS data, was identified and considered as a node 
of an original network of interactions. Links between 
the nodes were added to create a network of 
interactions when an intra- or inter-chromosomal 
interaction between two nodes was recorded in Hi-C 
data and the frequency of interaction exceeded a 
certain threshold. Further, the resulting network was 
expanded to create an extended network by adding 
extra nodes, corresponding to 80 Kb fragments that 
interact with the nodes, already present in the original 
network, with frequencies exceeding a predefined 
threshold. For each node in networks its degree, i.e. 
the number of connections a given node has with other 
nodes, was calculated with the aim of finding 
influential nodes/regions and novel genes not 
necessarily covered by GWAS SNP array. In addition, 
the Louvain modularity method [33] was used to 
detect communities within the resulting networks, i.e. 
groups of nodes/regions that are densely connected to 
each other within a given community but sparsely 
connected to nodes in other communities of the 
network. All measures were calculated using GEPHI 
software tool available at https://gephi.org/. 
 
Genes residing within important nodes/regions of 
interest were identified using genomic coordinates 
corresponding to the BDGP Release 6/dm6 assembly 
[81] downloaded from the FlyBase database 
(http://flybase.org/). To align the Hi-C data and 
GWAS SNP positions, all gene positions were lifted 
over to BDGP Release 5/dm3. This was done using a 

LiftOver tool (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). 
 
Gene ontology enrichment analysis  
 
The FlyMine software (http://www.flymine.org/) was 
used to analyze the enrichment of the set of genes, 
residing within important nodes/clusters, in Gene 
Ontology (GO) terms for cellular component, biological 
process and molecular function. Each gene was also 
sought in the GeneAge database (http://genomics. 
senescence.info/genes/models.html) of longevity genes 
and FlyBase resources (http://flybase.org/) as having 
longevity-related phenotype.  
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Number of SNPs residing in regions common between the original GWAS-based networks. 
Genes with ‘long-lived’ phenotype are shown in bold.  
 

Supplementary Table 2. Selected subnetworks centered around novel nodes with the highest degree in the extended 
Synthetic and DGRP GWAS-based networks. 

Novel node Network All other nodes in subnetwork Degree Total number of 
genes 

1220 Synthetic 244, 245, 255, 262, 270, 271, 272, 273, 275, 276, 
277, 295, 302, 305, 334, 359, 799, 848, 920, 923 

20 188 

928 Synthetic 11, 233, 234, 238, 265, 343, 360, 361, 366, 370, 
409, 456, 536, 531, 545 

15 290 

28 DGRP 27, 29, 30, 1063, 1124, 1152, 1179 7 114 
2 DGRP 576, 655, 660, 670, 699, 736, 787, 1120, 1131, 

1132, 1152, 1178, 1179, 1183 
14 255 

 

Please browse Full Text version to see the data of Supplementary Tables 3 and 4. 
 
Supplementary Table 3. Nodes and interactions comprising each cluster of the extended Synthetic GWAS-based 
networks. 
 

Supplementary Table 4. Nodes and interactions comprising each cluster of the extended DGRP GWAS-based 
networks. 

 
Supplementary Table 5. List of nodes constituting selected clusters in the Synthetic GWAS-based network. 

Cluste
r Nodes in cluster 

Total number of 

nodes in cluster genes in cluster 

4 89, 90, 91, 92, 93, 94, 95, 97, 1319 9 92 
5 124, 125, 126, 127, 128, 129, 130, 131, 711, 740, 929 11 229 

11 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 
578, 916, 930, 982, 1049, 1431, 1436  21 249 

23 330, 331, 332, 333, 334, 335, 336, 337, 749 9 141 
29 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 961, 1044, 1338 14 222 
60 313, 385, 476, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 1218 14 174 
67 502, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1386 11 150 
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Supplementary Table 6. List of nodes constituting selected clusters in the DGRP GWAS-based network. 

Cluster Nodes in cluster 
Total number of 

nodes in cluster genes in cluster 

4 53, 54, 55, 56, 57, 58, 59, 60, 61, 1078, 1079, 1338 12 125 
18 523, 524, 525, 526, 527, 528, 529, 530, 531, 560, 1253 11 155 
20 105, 478, 521, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 1227 14 256 
26 321, 329, 412, 445, 499, 658, 659, 660, 661, 662, 663, 1324, 1367, 1418 14 223 
28 330, 344, 366, 413, 669, 670, 671, 672, 673, 1419 10 177 
34 318, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785 11 103 
40 103, 426, 458, 983, 985, 986, 987, 988, 989, 990, 991, 992, 1210, 1336 14 156 
44 361, 429, 448, 1089, 1090, 1091, 1092, 1093, 1094, 1095 10 156 
49 63, 457, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155 11 142 

 

Please browse Full Text version to see the data of Supplementary Table 7. 
 
Supplementary Table 7. Genes sharing ‘long-lived’ and ‘short-lived’ phenotypes found in close proximity to mutated 
and non-mutated TAD border regions. 
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Supplementary Table 8. Top 30 long-range interacting regions for non-coding SNPs from the Synthetic GWAS 
dataset.  

Non-coding SNP region Interacting region 

Bin number Number of SNPs 
in bin 

Highest recorded 
SNP’s  D-value 

Strongest 
interacting bin Distance (Kb) Number of 

genes in bin 
2367 3 2.727 2362 50 2 
3982 7 5.421 3987 50 16 
5470 9 5.765 5465 50 13 
2459 4 5.170 2463 40 6 
4370 12 7.189 4366 40 10 
4560 4 3.814 4566 40 10 
5656 9 6.284 5660 40 16 
11643 2 5.029 11647 40 6 
1605 7 7.657 1608 30 9 
2006 3 12.009 2003 30 7 
2461 1 4.592 2464 30 6 
3146 13 3.468 3149 30 13 
3447 1 2.160 3444 30 10 
4837 8 6.213 4840 30 15 
5702 1 3.582 5705 30 8 
6981 6 4.577 6978 30 4 
7819 4 3.189 7816 30 6 
7883 6 5.029 7886 30 11 
7884 4 5.989 7887 30 12 
8958 11 4.396 8995 30 11 
155 14 7.658 153 20 6 
229 7 7.550 227 20 10 
324 3 5.987 326 20 15 
556 11 6.606 554 20 10 
592 1 2.066 590 20 12 
945 6 4.168 943 20 10 
994 5 5.459 996 20 3 
1167 10 6.455 1165 20 13 
1173 7 6.222 1171 20 10 
1174 11 5.694 1176 20 9 
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Supplementary Table 9. Top 30 long-range interacting regions for non-coding SNPs from the DGRP GWAS dataset.  

Non-coding SNP region Interacting region 

Bin number Number of SNPs in Lowest recorded 
SNP P-value Strongest interacting bin Distance (Kb) Number of 

SNPs 
2388 8 0.3858 2378 100 168 
3644 26 0.1303 3637 70 190 
2458 34 0.06431 2464 60 171 
2367 53 0.05865 2362 50 74 
2957 16 0.06397 2962 50 228 
3982 256 0.007077 3987 50 205 
5470 280 0.003503 5465 50 420 
2457 28 0.08089 2453 40 81 
2459 73 0.5731 2463 40 120 
4370 297 0.008632 4366 40 192 
4560 88 0.02264 4566 40 280 
5656 222 0.002052 5660 40 307 
11643 51 0.05711 11647 40 138 
1605 95 0.0236 1608 30 230 
2006 64 0.01037 2003 30 153 
2124 14 0.0354 2121 30 22 
2283 17 0.1617 2286 30 62 
2372 68 0.01846 2375 30 128 
2456 44 0.01432 2453 30 81 
2461 32 0.04341 2464 30 171 
3146 377 0.006937 3149 30 295 
3447 44 0.13 3444 30 285 
4837 181 0.007141 4840 30 359 
5702 27 0.01703 5705 30 322 
6981 87 0.00301 6978 30 83 
7639 11 0.09939 7636 30 126 
7819 238 0.001871 7816 30 203 
7883 108 0.007967 7886 30 234 
7884 120 0.006706 7887 30 255 
8958 222 0.001062 8955 30 197 

 

Please browse Full Text version to see the data of Supplementary Table 10. 
 
Supplementary Table 10. Chromosome, start and end positions for each 80 Kb bin.  

 
 


