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Uterine contraction (UC) activity is commonly used to monitor the approach of labour and delivery.
Electrohysterograms (EHGs) have recently been used to monitor UC and distinguish between efficient and in-
efficient contractions. In this study, we aimed to identify UC in EHG signals using a convolutional neural net-
work (CNN). An open-access database (Icelandic 16-electrode EHG database from 45 pregnant women with 122
recordings, DB1) was used to develop a CNN model, and 14000 segments with a length of 45s (7000 from UCs
and 7000 from non-UCs, which were determined with reference to the simultaneously recorded tocography
signals) were manually extracted from the 122 EHG recordings. Five-fold cross-validation was applied to
evaluate the ability of the CNN to identify UC based on its sensitivity (SE), specificity (SP), accuracy (ACC), and
area under the receiver operating characteristic curve (AUC). The CNN model developed using DB1 was then
applied to an independent clinical database (DB2) to further test its generalisation for recognizing UCs. The EHG
signals in DB2 were recorded from 20 pregnant women using our multi-channel system, and 308 segments (154
from UCs and 154 from non-UCs) were extracted. The CNN model from five-fold cross-validation achieved
average SE, SP, ACC, and AUC of 0.87, 0.98, 0.93, and 0.92 for DB1, and 0.88, 0.97, 0.93, and 0.87 for DB2,
respectively. In summary, we demonstrated that CNN could effectively identify UCs using EHG signals and could
be used as a tool for monitoring maternal and foetal health.

1. Introduction

Uterine contractions (UCs) are the result of uterine activity in the
form of an action potential and are an important clinical indicator in
the processes of labour and delivery [1]. UC monitoring is indis-
pensable in the evaluation of the health of both the mother and foetus
by obstetricians [2]. Current methods for measuring UCs include the
use of intrauterine pressure catheters (IUPCs) and external tocography
(TOCO). IUPCs directly measure the intrauterine pressure changes
created by UCs [3], but are limited by their invasiveness and can cause
ruptured membranes and infection. TOCO is a non-invasive method of
monitoring UC, in which a strain gauge transducer is placed on the
mother's abdomen. However, TOCO depends on the subjective criteria
of the operator, leading to high between-operator variability [4,5].
Eletrohysterogram (EHG) signals are non-invasive recordings of uterine
electrical activity obtained at the abdominal surfaces of pregnant
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women [5]; they measure the myometrial bioelectrical activity that
triggers the mechanical contraction of the uterus [6]. Therefore, EHGs
have been used as an alternative for analysing UC.

Various EHG features have been investigated to differentiate UCs
and non-UCs between preterm and term labour. It has been reported
that several linear features, including the root-mean-square (RMS),
median frequency (MDF), and peak frequency (PF), are highly corre-
lated with UCs [6-8]. Combining the dynamic cumulative sum (DCS)
with multiscale decomposition is efficient for detecting both frequency
and energy changes in EHG signals [9]. Non-linear features, including
the correlation dimension (CorrDim), sample entropy (SampEn), Lya-
punov exponent (LE), and correlation coefficient H? [10] are also useful
for EHG analysis [8,11,12]. The propagation velocity and direction of
EHG signals have also recently been proposed as potential dis-
criminators between pregnancy and labour UCs [13,14]. Extracting
numerous features from EHG signals provides comprehensive
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information regarding uterine activity, but it also increases the com-
putational complexity. Therefore, feature selection methods have been
applied to eliminate the redundant or irrelevant features when de-
tecting labour [6]. However, previous papers have recognised different
features for recognising UCs as being the most important [3,4]. This is
partly due to the combination of different feature selection algorithms
with different classifiers [6]. Therefore, it is necessary to investigate
alternative approaches for recognising UCs, independent of feature
extraction and selection algorithms.

Different types of classifiers, including the k-nearest neighbours (k-
NN), linear and quadratic discriminant analysis (LDA and QDA), sup-
port vector machine (SVM) [15], random forest (RF), and artificial
neural network (ANN) [16], have been developed to identify UCs using
TOCO, cardiotocograph [17], and EHG signals. However, these classi-
fiers are limited by the K value, sample distribution, or input features. It
is often difficult to select the best features or combinational subsets of
features for differentiating UCs and non-UCs.

The competitive neural network, recurrent neural network (RNN),
and convolutional neural network (CNN) [18,19] have been tested in
image recognition and segmentation without additional feature ex-
traction and selection. In particular, CNNs have been used in the re-
cognition of physiological signals, including electromyograms [21,22],
electrocardiograms (ECGs), and electroencephalography [23,24]. The
advantage of this network is that it can automatically acquire optimal
features from training data [25]. Considering the high accuracy of
CNNs in detecting ventricular ectopic beats with ECG signals [21,23],
their ability to identify UCs using EHG signals should be explored.

The aim of this work was to develop a CNN model for recognising
UCs using EHG signals. The performance of the CNN will be evaluated
with an open-access EHG database and independent EHG data recorded
using our measurement system.

2. Materials and methods

Two EHG databases, i.e., an open-access database (Icelandic 16-
electrode EHG database, DB1) [26] and our EHG database (bespoke
eight-electrode system, DB2), were used to train, validate, and test the
CNN model for identifying UCs. As shown in Fig. 1, five-fold cross-
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validation was applied to DB1, and then to DB2 to further evaluate the
generalisation of the CNN. The details of each step are presented in
Fig. 1.

2.1. Training and testing using the Icelandic 16-electrode EHG database

2.1.1. Icelandic 16-electrode EHG database

DB1 contained 122 recordings of 16-channel EHG signals from 45
pregnant women, and multiple signals had been recorded for some of
these women. The average recording durations for pregnancy and la-
bour were 61 and 36 min. The participants had normal singleton
pregnancies without any known preterm birth risk factors. The 16-
channel EHG signals were collected from a 4 X 4 electrode grid placed
on the woman's abdomen, with the black ground and reference elec-
trodes on each side of the body (not standardised), as shown in
Fig. 2(a).

2.1.2. EHG signal pre-processing and segmentation

The EHG signals from DB1 were first pre-processed by a band-pass
filter (0.08-4 Hz) [27] to remove the DC components and power line
interference. Each EHG signal was then manually separated into UC and
non-UC segments based on the UC and TOCO signals. In our previous
study, we observed that the UC duration in DB1 was 40-60s, with an
average duration of approximately 45s. Our clinical experts also con-
firmed that the UC duration in DB2 was 40-50s. Therefore, the EHG
signal was separated into 45-s segments. If a UC lasted longer than 455,
only 45s of the UC was extracted, with its peak corresponding to the
TOCO peak. If a UC lasted less than 45 s, it was not used for training and
testing CNN. As shown in Fig. 2(b), a 45s non-UC was extracted be-
tween two UCs. In total, 7008 UC and 7008 non-UC EHG segments were
extracted from DB1. Fig. 3 shows the number of UC and non-UC seg-
ments from each pregnant woman.

Finally, all EHG segments were saved as images, and normalised to
482 x 482 pixels by resizing.

2.2. UC classification using the convolutional neural network

As shown in Fig. 4, the CNN used for UC classification consisted of

DB1 (7000 UCs+7000 non-UCs)  DB2 (154 UCs+154 non-UCs)

Testing
(20%, 1400

UCs+1400 non-UCs) (80%, 5600

Training
UCs+5600 non-UCs)

,—I—\ Testing
(100%)

Validation Training
5-fold cross (20%, 1120 (80%, 4480 UCs
validation UCs+1120 non-UCs)|  +4480 non-UCs)

—

Applied
CNN model i

Validation result
(SE,SP,ACC,AUC)

Fig. 1. Flow chart of the development of our method
Note: DBI - Icelandic 16-electrode EHG database, DB2 - our EHG database, SE
characteristic (ROC) curve.

Test result
(SE,SP ACC,AUC)

- sensitivity, SP - specificity, ACC - accuracy, AUC - area under the receiver operating
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Fig. 2. (a) Configuration of the EHG electrodes. (b) Example of 16-channel EHG and TOCO signals from the Icelandic 16-electrode EHG database.

convolutional (Conv), max-pooling, fully-connected (FC), local re-
sponse normalisation (LRN), dropout, and soft-max layers, and a rec-
tified linear unit (ReLU). As the max-pooling layer is in front of the local
response normalisation layer [22,24], using the CNN can reduce the
computational complexity and memory size without affecting the re-
cognition capability. The details of the CNN are listed in Table 1.

The main component of the CNN is the Conv layer. The effective
features of an input image can be extracted by setting appropriate
parameters in the Conv layer, including the image size (I, length; w,
width) and the number of filters (m), denoted by 1 X w@m. Given a
convolutional kernel, the output of the Conv layer was calculated ac-
cording to the following formula [22]:

J-1
Yn = f[z
j=0
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1
xm+,-,,+jwij+b], O<m<M, 0<n<N)
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where xis the two-dimensional (2-D) input vector; w is the convolu-
tional kernel with a size of I, J; b is the bias; y represents the output
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with a size of M, N; and f is the activation function.

The Conv layer extracted features from the input image, the pooling
layer down-sampled the feature map and reduced the computational
complexity [28,29], and the FC layer exported a 2-D vector to classify
UCs and non-UCs.

Every Conv and FC layer was followed by a ReLU function, which
was activated by a threshold value without complicated exponential
operation [30] and used to quicken the training process [28,29]. The
LRN function detected high-frequency features and assigned them with
large weights [28].

The filter, weight, and bias of each layer were initialised by
searching and manual tuning to achieve an appropriate training time
and stability. During the training step, the weight and biases were
updated following Eqgs (2) and (3) [25].

@

mContraction
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Pregnant women number

Fig. 3. Number of UC and non-UC segments for each of the 45 pregnant women in the Icelandic 16-electrode EHG database.
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Fig. 4. CNN architecture with eleven layers, which are mainly the convolution, max-pooling, and fully connected layers.
Table 1
Detailed parameters used for all layers in the CNN model.
Layer Type Kernel size Other layer parameters
1 Conv + ReLU 27 Strides = 5, num_output = 96
2 Max-pooling 2 Strides = 3
3 Conv + LRN + ReLU 2 Strides = 1, num_output = 256, local size = 5, a = 0.0001, = 0.75
4 Max-pooling 2 Strides = 2
5 Conv + LRN + ReLU 3 Strides = 1, num_output = 384, local_size = 5,a = 0.0001, B = 0.75
6 Conv + ReLU 3 Strides = 1, num_output = 384, pad = 2
7 Conv + ReLU 3 Strides = 1, num_output = 256, pad = 2
8 Max-pooling 3 Strides = 2
9 FC + ReLU Dropout_ratio = 0.5, num_output = 4096
+ Dropout
10 FC + ReLU Dropout_ratio = 0.5, num_output = 4096
+ Dropout
11 FC + Softmax num_output = 2, Activation = Softmax
*Pad is the padding number to zero padding.
b = by Ir oc System and an NVIDIA 1080Ti GPU. The development environment was
17 T . .
bs dw 3 the CAFFE-net framework. MATLAB was used for image segmentation,

where w is the weight, b is the bias, 1 is the layer number, Ir is the
learning rate, s is the total number of training samples, bs is the batch
size, and c is the cost function.

Stride refers to the number of samples that the filter slides over the
input signal. A larger stride will result in smaller feature maps, and
vice-versa [25]. The parameters in the LRN layer, including the lo-
cal_size value of 5, a value of 0.0001, and 3 value of 0.75, were the
optimal choices. The kernel size and size of the output neuron (nu-
m_output) were set based on generic networks, such as Alex-net [22].

. In the first Conv layer, the size of the input image changed from
482 X 482 to 92 X 92@96 when the kernel was set to 27 and stride was
set to 5. The image size then decreased from 92 X 92@96 to 31 x 31@
96 after the max-pooling layer. The image was subsequently processed
with a stride of 1, kernel of 2, and max-pooling layer to reduce its size
from 30 X 30@256 to 15 x 15@256. After the third Conv layer, the
image size was further reduced to 13 x 13@384. More features could
be obtained from the scanned image when the size of the stride was 1.
The Conv and max-pooling layers were designed with output neurons of
13 x 13@256 and 6 X 6@256, respectively. These were followed by
FC layers with 4096 neurons. The final FC layer consisted of two neu-
rons, based on Alex-net.

The training algorithm utilised batch normalisation, a loss function,
and an activation function, and the stochastic gradient algorithm was
used to optimise the weight and achieve better accuracy [31]. The CNN
was run using a workstation with a Linux Ubuntu 18.04 LTS Operating

and Python was used for training and testing the CNN.
The main advantages of the CAFFE-net framework and Alex-net
structure are as follows [22]:

i. The ReLU has been successfully used as the CNN activation func-
tion, and its performance exceeds that of sigmoid function in the
deep network;

ii. Dropout is used to randomly ignore some neurons during training to
avoid overfitting;

iii. Overlapping max-pooling is used to avoid the blurring effect of
average pooling;

iv. LRN is proposed to normalise the local input area and create a
competition mechanism for the activities of local neurons, among
which the neurons with large responses are activated and those with
small feedback are inhibited, thus enhancing the generalisation
ability of the model.

2.2.1. Selection of hyper-parameters

In this study, the following key parameters were used for the CNN
model: mini-batch size = 108, weight decay = 0.0005, learning rate
drop factor = 0.1, learning rate drop period =10, and mo-
mentum = 0.9. Their definitions were reported by Kim et al. and
Acharya et al. [24,25]. These values were selected as they achieved the
lowest loss value and highest accuracy of recognising UCs in a pre-
liminary test that used randomly selected segments (half of the UCs and
non-UCs from DB1). The accuracy and loss curves with increasing
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Fig. 5. Result of the selection of hyper-parameters for the CNN. (a) Comparison of the accuracies with different learning rates (Ir). (b) Comparison of the loss values

with different learning rates.

Note: The vertical dashed line represents the stabilisation of both the accuracy and loss values at iteration 20000.

iterations at different learning rates (Ir = 0.01, 0.001, and 0.0001) are
shown in Fig. 5. The curves with Ir of 0.001 and 0.0001 had lower loss
values and higher accuracies than those with a Ir of 0.01. Although the
accuracies with achieved at Ir of 0.0001 and 0.001 were similar, the
curve with the Ir of 0.001 stabilised earlier than that with the Ir of
0.0001. Furthermore, all curves tended to stabilise after 20000 itera-
tions. Based on the results of the preliminary test, fine-tuning was
conducted with the Ir of 0.001 and maximum number of iterations of
20000 in the subsequent training and testing steps.

2.2.2. CNN evaluation using the Icelandic EHG database

Five-fold cross-validation was utilised to evaluate the performance
of the proposed CNN. From the 14016 images in DB1, 14000 were
equally divided into five subsets, four of which were used to train the
CNN model, and the other was used to test the model. This process was
repeated five times. Furthermore, the training set included training
(4480 UCs and 4480 non-UCs) and validation (1120 UCs and 1120 non-
UCs) data, in which the validation data were used to tune the hyper-
parameters of the CNN. The training process ceased at iteration 20000,
based on the preliminary test.

ROC and AUC are conventionally used to evaluate the classification
performance. Here, the ACC, SE, and SP were calculated as follows [3]:

Sensitivity = _IP
" TP+ FN 4
TN
Specificity = ———
pecificily FP + TN %)
Accuracy = TP + TN
YT EP+ IN+ TP+ FN 6)

where TP (true positive) and TN (true negative) are the numbers of UC
and non-UC EHG segments that were correctly classified, and FP (false
positive) and FN (false negative) are the numbers of UC and non-UC
EHG segments that were falsely classified. The results of AUC, ACC, SE,
and SP from the five-fold cross-validation were calculated and averaged
to evaluate the CNN.

2.2.3. Evaluation of the CNN using the independent EHG database
Twenty women with singleton pregnancies were recruited at the
Department of Gynecology and Obstetrics, Peking Union Medical
College Hospital, Beijing. All were in term labour with regular UC
(37-40 weeks of gestation). The measurements were collected under

the Code of Ethics of the World Medical Association (Declaration of
Helsinki) and approved by the Research Ethics Committee of Peking
Union Medical College Hospital.

Eight-channel EHG signals and a TOCO signal were recorded si-
multaneously using a multi-channel system developed in our lab. The
configuration of the eight electrodes is shown in Fig. 6 (a). Electrodes 1
to 4 electrodes were placed on the fundus, electrodes 5 and 6 symme-
trically placed below the navel, electrodes 7 and 8 were placed on the
uterine cervix, and the reference and ground electrodes were placed on
each side of the iliac crests. Disposable EHG electrodes (L-00-S AMBU
Denmark) with a size of 68.2 X 55 mm were used. A TOCO transducer
was also attached to the surface of the pregnant woman's abdomen. The
EHG and TOCO signals were sampled at 250 Hz for 35 minas. The
pregnant women marked UCs when they felt contractions during re-
cording.

The EHG signals of DB2 were pre-processed and segmented in a
similar manner to those of DB1. Fig. 6(b) provides one example of UC
and non-UC segments in DB2. In total, 154 UC and 154 non-UC EHG
segments were obtained to further test the CNN developed using DB1.

3. Results
3.1. Evaluation of the CNN model using DB1

Fig. 7 shows the accuracy and loss ratios that were evaluated using
the validation data (1120 UCs and 1120 non-UCs). At iteration 20000,
the accuracies of the five validations were 98.54%, 99.14%, 99.40%,
98.75%, and 98.56%, and the loss ratios were 0.11%, 0.89%, 0.12%,
0.09%, and 0.11% respectively.

Table 2 provides the separate test results from folds 1-5 of DB1. The
result of each fold was similar, indicating the reliability of the CNN
model. Overall, the CNN model achieved an SE of 0.87, SP of 0.98, ACC
of 0.93, and AUC of 0.92 from DB1 (Table 2 & Fig. 8).

3.2. Evaluation of CNN model using DB2

As the results of the five folds were similar, the CNN model devel-
oped from fold1 was tested using DB2, which achieved an SE of 0.88, SP
of 0.97, ACC of 0.93, and AUC of 0.87, with corresponding FP, FN, TP,
and TN of 5, 18,136, and 149, respectively.
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Fig. 6. (a) Configuration of the EHG electrodes. (b) Example of eight-channel EHG signals and a TOCO signal from the independent EHG database.

Note: Ref - reference electrode, Ground - ground electrode.
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Fig. 7. (a) Changes in accuracy with the number of iterations. (b) Changes in the loss ratio with the number of iterations (step of 2000). The mean and standard

deviations from the five-fold cross-validation are also provided.

Table 2
Testing result from folds one to five of DB1.
Database Resulting values Calculated parameters
FP FN TP TN SE SP ACC
DB1 Foldl 20 169 1222 1360 0.88 0.99 0.93

Fold2 23 176 1205 1357 0.87 0.98 0.93
Fold3 26 180 1211 1354 0.87 0.98 0.93
Fold4 30 190 1201 1350 0.86 0.98 0.92
Fold5 22 188 1203 1358 0.86 0.98 0.92
Overall 121 903 6042 6779 0.87 0.98 0.93

4. Discussion

Monitoring UC with EHG signals is non-invasive, low-cost, and
simple, and provides a great opportunity for developing long-term,
wearable UC-monitoring systems both at clinics and at home. In this
study, we developed and evaluated a CNN model for identifying UCs
from EHG signals. To the best of our knowledge, the CNN was first
developed for classifying EHGs, and the parameters of all layers of the

3.
©
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=
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o
o
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2
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00 T T v T
0.0 02 04 0.6 0.8 1.0
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Fig. 8. ROC curve for recognising UCs in DB1 from five-fold cross-validation.

CNN model were specifically investigated to identify UCs using EHGs.

CNNs were originally designed for evaluating images. Therefore,
many of their properties are specific for image representations, and
there is a mature platform for tuning CNN parameters for 2-D image
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Table 3
Summary of the classification results achieved by different studies.
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Ref. Data source Feature/method Classifier Result (Highest value)
SE SP ACC AUC
[9] Independent database with 32 recordings DCS algorithm 0.93
[10] Independent database with 51 recordings Nonlinear correlation coefficient H* 0.96
Current study Icelandic 16-electrode EHG database CNN 0.87 0.98 0.93 0.92
Independent database from 20 pregnant women CNN 0.88 0.97 0.93 0.87

classification. Though one-dimensional (1-D) CNNs have been recently
applied for classifying time-series (such as ECG signals) [23], the 2-D
CNN method is more suitable for small datasets than 1-D CNNs [32,33].
Therefore, in our first test, the EHG signal time series was segmented
and converted into an image to input into the CNN. We validated and
initially tested the CNN model using DB1, and achieved an SE of 0.87,
SP of 0.98, ACC of 0.93, and AUC of 0.92, and the corresponding values
were 0.88, 0.97, 0.93 0.87 for DB2, respectively. As shown in Table 3,
Khalil [9] achieved an ACC of 0.93 when monitoring UCs, and Mus-
zynski [10] obtained an ACC of 0.96 when employed the nonlinear
features of EHG signals. However, the main goal of their studies [9,10]
was to differentiate UCs between different types of pregnancies or at-
risk pregnancy, while our study aimed to differentiate between UCs and
non-UCs. Our proposed method may be improved by introducing DCS,
H2 correlation coefficient, fusion, and elimination steps [10]. The CNN
does not require additional steps for EHG signal feature extraction and
selection, thus, signal processing is simpler than that of conventional
machine learning algorithms. This is because the feature extraction,
selection, and classification procedures are merged into a single CNN
structure [34]. From the results of our study, it can be concluded that
CNNs can be used to identify UCs using EHG signals.

Cross-validation has been widely used to test and evaluate the
generalisation of CNN models [25,28,35]. In previous work, the gen-
eralisation of classifiers was evaluated using the same data source.
However, in this study, the CNN model was evaluated using both an
independent database (DB2) and the original database (DB1). DB2 was
collected from different races in a different hospital with a different
recording protocol to DB1. Merging two databases could increase the
sample size, which would be better for training the CNN model. How-
ever, DB1 is an open-access database with 14000 segments from 122
recordings, while DB2 only provided 308 EHG segments from 20 re-
cordings. The impact of the small size of DB2 can be neglected due to
the large difference in the sample sizes of DB1 and DB2. However, if the
data from DB2 are treated as an independent test set, they can be used
to evaluate the generalisation of the CNN model. Additionally, EHG
signals from different recording systems may generate different signal
features, depending on the technical specifications of the system.
Moreover, the electrode position of our EHG system was different to
that of the Icelandic 16-electrode system. Finally, the results from DB2
could be used to guide our future research for developing a specific
CNN model for our system.

With the increasing demand for healthcare during pregnancy [36],
CNN models for identifying UCs have prospective clinical applications.
If the CNN model is further improved, the EHG segments corresponding
to UCs could be recognised more accurately. Therefore, in clinical
practice, an automatic identification system could be utilised for long-
term wearable UC monitoring. Further, the UCs leading to labour could
be distinguished from non-labour UCs, which will improve the diag-
nosis of preterm labour. Our clinical experts agree that our proposed
method is very promising for clinical practice.

In future studies, the effect of UC duration on the CNN classification
results will be investigated [34,35], and the performance of 1-D and 2-D
CNNs will be compared for this specific clinical application. More EHG
signals will be recorded to improve the recognition ability of the CNNs.

5. Conclusions

This study demonstrated that the CNN could be used to recognise
UCs efficiently from EHG signals. With this method, UCs can be de-
tected reliably and accurately, providing a novel approach for mon-
itoring labour progress, and maternal and foetal health.
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