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The aims of this study were to apply decision tree to classify uterine activities (contractions
and non-contractions) using the waveform characteristics derived from different channels
of electrohysterogram (EHG) signals and then rank the importance of these characteristics.
Both the tocodynamometer (TOCO) and 8-channel EHG signals were simultaneously
recorded from 34 healthy pregnant women within 24 h before delivery. After preprocessing
of EHG signals, EHG segments corresponding to the uterine contractions and non-contrac-
tions were manually extracted from both original and normalized EHG signals according to
the TOCO signals and the human marks. 24 waveform characteristics of the EHG segments
were derived separately from each channel to train the decision tree and classify the uterine
activities. The results showed the Power and sample entropy (SamEn) extracted from the un-
normalized EHG segments played the most important roles in recognizing uterine activities.
In addition, the EHG signal characteristics from channel 1 produced better classification
results (AUC = 0.75, Sensitivity = 0.84, Specificity = 0.78, Accuracy = 0.81) than the others. In
conclusion, decision tree could be used to classify the uterine activities, and the Power and
SamEn of un-normalized EHG segments were the most important characteristics in uterine
contraction classification.
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access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Uterine contraction provides physiological information of the
uterine activity and plays an important role in monitoring
the health of mother and fetus during pregnancy. It also helps
clinicians to distinguish the normal contraction from the
contraction that may lead to preterm labor. The process of
labor and delivery can be monitored by regular uterine
contraction and cervical dilation [1]. At the preparatory phase,
uterine contraction evolves from an inactive to active state
[2,3]. When the delivery approaches, uterine contraction
becomes more and more synchronized, which finally leads
to the expulsion of fetus [4].

Tocodynamometer (TOCO) and internal uterine pressure
(IUP) catheter are conventionally used to monitor the uterine
contraction during pregnancy and labor. However, the TOCO
measurement largely depends on the subjective experience of
the examiners as well as the sensor position [3]. Since TOCO
mainly provides the frequency information of uterine con-
tractions, it is therefore often used as a counter of uterine
contractions and fails to provide sufficient clinical information
to differentiate the abnormal uterine activities from the
normal ones. In terms of IUP measurement, it not only
monitors the IUP changes during uterine activities [5,6], but
also provides reliable information about the uterine dynamics
[7]. However, the rupture of membranes is required during IUP
measurement. Therefore, it cannot be routinely used to
monitor the uterine contraction.

Published studies have shown that electrohysterogram
(EHG) signals recorded noninvasively from the maternal
abdomen can provide information about electrical activity of
myometrial cells that leads to uterine contractions [8]. EHG
measurement has been considered as an alternative of TOCO
and an effective tool to monitor the uterine contractions [3,9-
11]. It has been reported that EHG signal characteristics (e.g.
the root mean square (RMS) value) in association with uterine
contraction had high correlation with the outcome from the
TOCO measurement [12]. Previous studies have also demon-
strated that various EHG signal characteristics (e.g. RMS,
median frequency, peak frequency, log detector, etc.) and their
combinations could be used to recognize contractions during
pregnancy [13-15] and detect preterm labor [16-18]. However,
there were few studies with the primary aim to distinguish
contraction signals and non-contraction signals using the
characteristics extracted from the EHG.

Previous studies have mainly employed neural network to
detect preterm/term labor [16,19,20] or support vector machine
to discriminate uterine contractions between pregnancy and
labor [14,21] and detect preterm labor [13]. The decision tree is
another technique for predicting and mining data which can
be applied in classification, clustering and prediction tasks,
especially in classification problems. It has been successfully
applied on electrocardiograph (ECG) signals to detect myocar-
dial infarction [22] and arrhythmia [23], but has not been
widely used in EHG recognition. Only one study was found,
where the decision tree was used to distinguish preterm and
term labor [24]. More importantly, with the application of
decision tree, the characteristics importance could be ranked,
and then the important characteristics could be selected.

The aims of this study were to apply decision tree to classify
uterine activities (contractions and non-contractions) using
the waveform characteristics derived from different channels
of EHG signals and then rank the characteristics importance.

2. Materials and methods
2.1. EHG recording

8-Channel EHG signals were recorded from 34 healthy
pregnant women (aged 30 + 4 years old) within 24 h before
delivery at Beijing Union Medical College Hospital in China.
Their gestation age ranged between 38 and 41 weeks. All the
pregnant women had no history of diseases, such as diabetes,
hypertension and other known diseases in their medical
records. The study was approved by the Local Ethics Com-
mittee of Beijing Union Medical College Hospital, and was
conducted strictly according to the Declaration of Helsinki
(1989) of the World Medical Association. The pregnant women
were asked to sign consent after being informed of the aims,
potential benefits and risks of the study.

TOCO and 8-channel EHG signals were recorded by the
device designed in our lab. The technical parameters of this
device were as follows: bandwidth of the EHG channels is 0-
70 Hz, gain of amplifiers is 24, sampling rate is 250 Hz. And
analog-to-digital converter (ADC) applied in this device is
ADS1299 which is a 24-bit delta-sigma ADC. The uterine
contractions were marked by the pregnant women when
the uterine contractions were felt during signal recording. The
arrangement of the eight electrodes is shown in Fig. 1.
Electrode 1 and electrode 4 were placed on the abdomen wall
upon the right and left uterine horns, respectively. Electrode 2
and electrode 3 were evenly placed along the fundus of
the uterus. Electrode 7 and electrode 8 were placed on the
abdomen wall upon the cervix, and electrode 5 and electrode 6
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Fig. 1 - The arrangement of the eight electrodes on the
abdomen.
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were evenly placed upon the uterine body between the fundus
and cervix. This arrangement ensured that the whole uterus
was covered by these electrodes. The reference and ground
electrodes were placed upon the right and left ilium of the
subject respectively.

2.2.  EHG signal preprocessing and segmentation

The recorded EHG signals were firstly preprocessed by a low-
pass filter (0-3 Hz) and a median filter to remove the unwanted
signals, including the baseline drift, power line interference
and maternal electrocardiogram (mECG). It was then normal-
ized in amplitude between —1 and 1, separately for each of the
8-channel EHG signals. The reason for normalizing EHG signal
was that, for the same waveform characteristic being derived
from the EHG signals at the later processing step, different
values would be obtained from normalized or un-normalized
EHG signals.

Next, the uterine contractions were manually determined
and agreed according to the TOCO signal and the marks
made by pregnant women. Fig. 2(a) shows an example of the
recorded TOCO signal and 8-channel EHG signals from
one subject. The EHG segmentation corresponding to the
uterine contractions was then extracted from both the un-
normalized and normalized EHG signals. They were simplified
below as the 'un-normalized and normalized EHG contraction
segments'. The duration of the contraction is about 30-60 s
clinically. And the stationary non-contraction period could
be obtained 10s after contraction. The duration of non-
contraction was selected as 60s to match the contraction
duration. As a result, corresponding non-contraction period
(60 s) was then extracted 10 s after the end of that contraction
as shown in Fig. 2(b). In total, from each channel, 136 segments
of contraction signals and 136 segments of non-contraction
signals were obtained from normalized and un-normalized
EHG signals, respectively. The number of all EHG segments
ranged from 1 to 8 for each individual.
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Fig. 2 - (a) Example waveforms of recorded TOCO signal;
8-channel EHG signals, and (b) the timing reference in the
TOCO signal used to segment contraction and non-
contraction EHG.

2.3. Waveform characteristics derived from each EHG
segment

14 waveform characteristics were chosen to train the decision
tree, including RMS, Standard Deviation (STD), log detector
(LOG), mean absolute value (MAV), simple square integral (SI),
difference absolute standard deviation value (DAS), average
amplitude change (AAC), variance (VAR), median frequency
(MF), peak frequency (PF), Power, time reversibility (TR),
Lyapunov exponents(Ly)and sample entropy (SamEn)
[13,16,25,26]. These characteristics were calculated as follows:

N
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where x(i) is the segmented EHG, i=1, 2, ..., N. N is the length
of the x(i). u = Y-, x(i)/N is the mean of the x(i). P(i) represents
the power spectrum of x(i). fs is the sampling frequency.
T represents the time delay. ||Ax(to)|| and |Ax(t)|| are the
Euclidean distance between two states of x(i), respectively to
an arbitrary time t, and a later time t. In this study t=1.
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When it comes to SamEn, template vectors are defined as
y(m) = (Xi, X1, - Xism-1), 1=1, 2, ..., N—m+ 1, mis the length
of the template.

B™(r) = Nem 1 ; B'(r) (14)

where B"(r) is the number of vectors y(j) withinr of y(i), j ranges
from 1 to N-m, and i#j. Then the length of the template was
defined as m + 1, the process describe above was repeated, and
B™*1(r) was obtained.

SamEn(m,r,N) = —In[B™"(r)/B"(r)] (15)

In this study, m = 8, N = 500, and r is the location where the
first zero-crossing point in the correlation of the two templates
is.

All these 14 waveform characteristics were extracted from
both normalized and non-normalized EHG segments except
for Ly. Ly was only calculated on the un-normalized EHG
segments because that the normalization process changed
the autocorrelation coefficient of the EHG signals and made Ly
inaccurate. Furthermore, the values of MF, PF and SamEn
of normalized EHG segments were the same as those extracted
from un-normalized EHG segments. Therefore, the total
number of characteristics used for classification was 24.

2.4. Classification of uterine contraction

Itis known that the classification results based on the decision
tree are influenced by the number and type of attributes. In
this study, the classification and regression tree (CART) was
trained and tested using 24 waveform characteristics derived
from the EHG segments. This approach was performed
separately on EHG segments from each of the 8 channels.
10-Fold cross validation was employed with all the 272
segments divided into 10 groups. One group was selected to
perform as the testing data, and the remaining 9 groups were
used as the training data each time.

During the decision making process, different EHG signal
characteristics had different degrees of influence on the
decision, which was quantified by the importance index
extracted from the decision tree, allowing the characteristics
importance to be ranked. As a result, the most important and
dominant characteristics were selected.

The decision tree was normally pruned at the best level to
achieve the best classification outcome. The averaged best
level was then calculated from the 10-fold cross validation,
separately for each channel.

2.5.  Classification evaluation

The indices for evaluating the performance of the classifier
include the area under receiver operating characteristic curve
(AUC), sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) and accuracy. Sensitivity,
specificity, PPV, NPV and accuracy were calculated as below:

sensitivity = TPR = TP/(TP + FN) (16)

specificity = 1-FPR = TN/(TN + FP) (17)
PPV = TP/(TP + FP) (18)
NPV = TN/(TN + FN) (19)
Accuracy = (TP + TN)/(TP + TN + FP + FN) (20)

where TP (true positive) and TN (true negative) are the num-
bers of contraction and non-contraction EHG segments respec-
tively that were correctly classified, FP (false positive) and FN
(false negative) are the numbers of contraction and non-con-
traction EHG segments respectively that were falsely classi-
fied. As a result of the 10-fold cross validation, 10 values of
AUC, sensitivity, specificity, PPV, NPV and accuracy values
were obtained, separately for each channel of the EHG signals.
Kruskal-Wallis test was employed using software SPSS 23
(SPSS Inc.) to assess the repeatability between the results of
the 10-fold cross validation. The average of the 10 values was
then calculated to evaluate the classification results, respec-
tively for each channel.

3. Results
3.1.  Characteristics importance in the decision tree

During the process of pruning, the averaged best levels were
2.1, 1.3, 3.3, 25, 2.2, 0.9, 3.4, 2.0 for Channel 1 to Channel 8,
respectively. The importance of EHG signal characteristics
for classifying uterine contraction and non-contraction was
separately plotted for each channel of EHG, as shown in Fig. 3.
It is shown that not all the characteristics of EHG segments
played similar important roles in classification, and the
importance of each characteristic was different for each
channel. The top 4 important characteristics for each channel
are summarized in the Table 1. The Power and sample entropy
(SamEn) extracted from the un-normalized EHG segments
were two of the most important characteristics in recognizing
uterine contractions and non-contractions. This was observed
from every channel of the EHG signals.

3.2.  Classification results

There were no significant differences in the classification
results (AUC, Sensitivity, specificity, PPV, NPV) between the ten
values from the 10-fold cross validations (all p > 0.05),
demonstrating the reliability of the decision tree. Table 2
illustrates their mean values obtained from the 10-fold cross-
validation. It can be seen that Channel 6 produced the highest
sensitivity and NPV. However, it performed poorly in specifici-
ty and PPV. Overall, channel 1 had relatively better classifica-
tion performance in the decision tree (AUC=0.75,
Sensitivity = 0.84, Specificity =0.78, PPV =0.80, NPV =0.83,
Accuracy = 0.81).

4, Discussion

In this study, decision tree has been applied to classify the
uterine contraction and non-contraction segments using 24
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Fig. 3 - Importance of different characteristics in decision tree. The data is shown as mean *+ SD. RMS, MF, PF, LOG, SI, MAV,
DAS, AAC, STD, VAR, SamEn, TR, Power and Ly were extracted from the un-normalized EHG segments. RMS2, LOG2, SI2,
MAV2, DAS2, AAC2, STD2, VAR2, TR2 and Power2 were extracted from the normalized EHG segments. SD was calculated

from the 10-fold cross validation.

Table 1 - Summary of the top 4 important characteristics of EHG segments of each channel.

Channel Power SamEn LOG2 STD Power2 RMS MF TR SI DAS
ch J J J J
Ch2 J N N,

Ch3 J J J J

Cha J J J J

Chs J J J J

Che J J J J

Ch7 J J J J

Ch8 N N J N

EHG characteristics. The classification results differed be-
tween different channels of EHG signals, and the Power and
SamEn of un-normalized EHG segments played the most
important roles in recognizing the contraction and non-
contraction EHG segments.

Several methods have been proposed to detect the uterine
contraction through the reconstruction of IUP-like or TOCO-
like signals. These IUP-like or TOCO-like signals can be
estimated by calculating RMS of EHG signals in sliding window
[27], using FIR Wiener filter [28], or un-normalized first
statistical moment of the frequency spectrum [29]. There

were good correlations between the reconstructed IUP-like
signal and the reference IUP measured by the IUP catheter. The
key difference between the earlier studies and this work is that
the proposed method in this work was based on the analysis of
waveform characteristics of EHG segments instead of the
reconstructed TOCO-like or IUP-like signals. Previous study
obtained Accuracy = 87% in recognizing uterine contraction by
calculating RMS to construct TOCO-like signals [27]. In [28] and
[29], the uterine contraction was recognized by the recon-
structed IUP-like signals. However the method proposed in
this paper distinguished contraction signals and non-contrac-



811

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 39 (2019) 806-813

Table 2 - Classification performance of the decision tree for classifying uterine activities, separately for each of the 8

channels EHG signals.

Channel AUC Sensitivity Specificity PPV NPV Accuracy
Chil 0.75 0.84 0.78 0.80 0.83 0.81
Ch2 0.67 0.70 0.72 0.73 0.72 0.71
Ch3 0.65 0.68 0.74 0.74 0.70 0.71
Ch4 0.62 0.66 0.66 0.66 0.67 0.66
Ch5 0.70 0.74 0.76 0.76 0.75 0.75
Ché 0.69 0.97 0.53 0.68 0.95 0.75
Ch7 0.67 0.65 0.78 0.76 0.69 0.72
Chs8 0.69 0.68 0.76 0.76 0.71 0.72

tion signals using the characteristics extracted from the EHG.
In our paper, the best performance of the decision tree is
AUC=0.75, Sensitivity =0.84, Specificity =0.78, PPV =0.80,
NPV = 0.83, Accuracy = 0.81. Compared to Accuracy =87% in
[27], the Accuracy in our study is lower. This is partly because
that [27] only considered contraction signals, however we took
the non-contraction signals in consideration. The signals
which were misclassified came from not only contraction
signals but also non-contraction ones.

It has been studied that the quality of EHG signals and the
accuracy of classifying contractions during pregnant and labor
varied with the position of EHG electrodes. The uterine median
axis and the lower center-right umbilical region have been
demonstrated to be the optimal position for recording EHG
signal [7]. But other studies reported that the channels located
near the median axis of the uterus provided poorer result in
classifying uterine contraction than those at the extremities
[14]. Our study partially agreed with the results described in [14].
The electrode at the right uterine horn (channel 1) in this
study provided better result in classifying the contraction and
non-contraction activities. The inconsistent results of which
position is better for EHG recording or for classifying uterine
contractions could be explained by the different EHG signals.
The EHG signals used in [7] were recorded during 3741 weeks.
And the EHG signals used in [14] were recorded during preg-
nancy and labor. However in this study, the EHG signals were
recorded from the pregnant women within 24 h before delivery.

More importantly, this study ranked the characteristics
importance in the decision making process. This would allow
further studies to be more specific in selecting characteristics
and reduce the number of characteristics for training a
classifier to recognize contraction signals. In this way, the
classifier with simple structure will be achieved, and less time
is required on training and testing. It has been shown in this
study that the Power and SamEn extracted from un-normal-
ized EHG segments played crucial roles for all channels.
Previous studies reported that, when the delivery is approach-
ing, the Power [9,15] and SamEn [24] of EHG signals changed
significantly with increased frequency of uterine contractions.
This may implicate that the two waveform characteristics
should be more significantly different between contraction
and non-contraction.

The present work has some limitations. Firstly, the EHG
signal characteristics employed in this study were commonly
used to predict preterm birth [16]. It is not sure whether they
are the best ones for classifying the uterine contraction and
non-contraction activities. Other waveform characteristics
could be explored and added in the future. Secondly, it is
noticed that some EHG segments contained noise. Fig. 4
shows a couple of examples of the contraction and non-
contraction EHG segments that were falsely classified. The
source of the noise in the EHG signal has not been fully
understood. New methods need to be developed in the future
studies to remove their effect on classification.

(a) (b)
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Fig. 4 - Examples of EHG segments that were classified falsely: (a) contraction signal that was falsely classified;

(b) non-contraction signal that was falsely classified.



812 BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 39 (2019) 806-813

5. Conclusions

In conclusion, this study has demonstrated that the decision
tree could be used to classify the contraction and non-
contraction activities from EHG signals, and the Power and
SamEn of un-normalized EHG segments have been shown to
be the most important characteristics in the uterine contrac-
tion classification.
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