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Abstract

W Object recognition requires dynamic transformations of
low-level visual inputs to complex semantic representations.
Although this process depends on the ventral visual pathway,
we lack an incremental account from low-level inputs to seman-
tic representations and the mechanistic details of these dy-
namics. Here we combine computational models of vision
with semantics and test the output of the incremental model
against patterns of neural oscillations recorded with magneto-
encephalography in humans. Representational similarity analysis
showed visual information was represented in low-frequency

INTRODUCTION

Visual object recognition requires dynamic transfor-
mations of information from low-level visual inputs to
higher-level visual properties and ultimately complex
semantic representations. These processes rely on the
ventral visual pathway (VVP) from the occipital lobe along
the ventral surface of the temporal lobe (Kravitz, Saleem,
Baker, Ungerleider, & Mishkin, 2013), with the perirhinal
cortex (PRC) sitting at the apex of the pathway (Clarke &
Tyler, 2014; Tyler et al., 2013; Barense et al., 2012; Cowell,
Bussey, & Saksida, 2010; Taylor, Moss, Stamatakis, &
Tyler, 2006; Bussey & Saksida, 2002). Along the VVP,
object representations become increasingly complex
and abstracted from their inputs, such that higher-level
visual properties are coded in lateral occipital cortex
(LOC) and posterior inferior temporal cotex (IT) that
show object invariance (Kravitz et al., 2013; DiCarlo,
Zoccolan, & Rust, 2012), alongside conceptual proper-
ties of objects that are sufficient to distinguish between
different superordinate categories (Tyler et al., 2013). In
contrast, object-specific semantic representations are
seen in the PRC, at the most anterior part of the VVP,
which is hypothesized to form complex conjunctions of
properties from more posterior regions to enable fine-
grained distinctions between conceptually similar objects
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activity throughout the ventral visual pathway, and semantic
information was represented in theta activity. Furthermore, di-
rected connectivity showed visual information travels through
feedforward connections, whereas visual information is trans-
formed into semantic representations through feedforward
and feedback activity, centered on the anterior temporal lobe.
Our research highlights that the complex transformations
between visual and semantic information is driven by feed-
forward and recurrent dynamics resulting in object-specific
semantics. |l

(Clarke & Tyler, 2014; Tyler et al., 2004, 2013; Barense
et al., 2012; Kivisaari, Tyler, Monsch, & Taylor, 2012;
Cowell et al., 2010; Bussey & Saksida, 2002). Yet this view
of recognition—where both activity and the complexity of
object information progresses along the posterior to
anterior axis in the VVP—is fundamentally incomplete as
it does not take into account the temporal dynamics of
feedforward and feedback processes and their interactions.

The brain’s anatomical structure suggests that complex
interactions between bottom—up and top—down processes
must be a key part of object processing, as demonstrated
by the abundance of lateral and feedback anatomical
connections within the VVP and beyond (Bullier, 2001;
Lamme & Roelfsema, 2000). Research using time-resolved
imaging methods have shown that both feedforward and
recurrent dynamics in the VVP underpin object represen-
tations, where visual inputs activate semantic information
within the first 150 msec and object-specific semantic
representations emerge beyond 200 msec supported by
recurrent activity between the anterior temporal lobe
(ATL) and the posterior VVP (Clarke, Devereux, Randall,
& Tyler, 2015; Poch et al., 2015; Clarke, Taylor, Devereux,
Randall, & Tyler, 2013; Chan et al., 2011; Clarke, Taylor, &
Tyler, 2011; Schendan & Maher, 2009).

Although this research provides spatial and temporal
signatures of the fundamental aspects of recognition—
namely visual and semantic processing—two important
limitations remain. First, research tends to focus on three
aspects of objects—low-level visual properties, superordi-
nate category information (e.g., animals, tools, animate/
inanimate), and object-specific semantics (e.g., tiger,
hammer). This paints a compartmentalized picture that
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fails to capture the incremental transitions whereby vision
seamlessly activates meaning. Second, although there is
increasing knowledge of the oscillatory mechanisms under-
pinning basic visual processing (Jensen, Gips, Bergmann,
& Bonnefond, 2014; Tallon-Baudry & Bertrand, 1999),
models of how visual inputs activate meaning lack such
detail. Here, we overcome these limitations by combining
current computational models of vision with a model of
semantics to obtain quantifiable estimates of the incre-
mental representations from low-level visual inputs to
complex semantic representations. This model is then
tested against neural activity using representational simi-
larity analysis (RSA; Nili et al., 2014; Kriegeskorte, Mur, &
Bandettini, 2008) to reveal how oscillatory activity along
the VVP codes for visual and semantic object properties.
Deep neural networks (DNNs) have proved highly
successful for vision, both to provide an engineering solu-
tion to labeling objects (Krizhevsky, Sutskever, & Hinton,
2012) and to map the outputs from the DNN to brain
representations of objects in space and time (Devereux,
Clarke, & Tyler, 2018; Seeliger et al., 2017; Cichy, Khosla,
Pantazis, Torralba, & Oliva, 2016; Gui¢li & van Gerven,
2015; Cichy, Pantazis, & Oliva, 2014). DNNs for vision are
composed of multiple layers, and as the layers progress,
the nodes become sensitive to more complex, higher-
level visual image features in a similar progression to
the human VVP (Devereux et al., 2018; Cichy et al., 2014,
2016; Glcli & van Gerven, 2015). However, current DNNs
tell us little about an object’s semantic representation.
Although visual DNNs can provide accurate labels for
images, the output layers do not capture how different
objects are related in meaning. This is revealed by recent
fMRI research, showing that, although DNNs explain
visual processes in the posterior ventral temporal cortex
(pVTC), additional semantic computational models are
required to capture the semantic information about
object representations in the pVIC and the PRC (Devereux
et al,, 2018). This work used a recurrent attractor network
(AN) for object semantics, as ANs have been shown to
capture how objects semantically relate to one another
(Devereux, Taylor, Randall, Geertzen, & Tyler, 2016; Cree,
McNorgan, & McRae, 2006; Cree, McRae, & McNorgan,
1999). This occurs because the activation across the
nodes in the model captures the activation of different
semantic features (such as “is round,” “has a handle,” “is
thrown,” etc.). Furthermore, the dynamics of how these
nodes become activated mirrors both behavioral re-
sponses and magnetoencephalography (MEG) time
courses during object recognition (Devereux et al., 2016;
Clarke et al., 2013; Randall, Moss, Rodd, Greer, & Tyler,
2004). Together, the DNN and AN provide complementary
aspects of object recognition. As in Devereux et al. (2018),
by using the output of the visual DNN as input into the
semantic AN, we further provide a potential route by
which visual representations can directly activate semantic
knowledge. Most importantly, however, combining the
DNN and AN gives us a quantifiable computational

approach that models the incremental visual and semantic
properties of objects, from low-level vision to high-level
semantics. This approach can be combined with RSA for
dynamic measures of brain activity to show how different
types of visual and semantic information are coded in
dynamic patterns of brain activity along the VVP.

The brain activities we focus on here are neural oscil-
lations. Oscillations are a ubiquitous property of the
brain and are known to be modulated by various aspects
of vision and memory in humans (Helfrich & Knight,
2016; Watrous, Fell, Ekstrom, & Axmacher, 2015; Jensen
et al., 2014; Hanslmayr, Staudigl, & Fellner, 2012; Fell &
Axmacher, 2011). Recent studies have begun to show
how the ongoing phase of an oscillation can be used to de-
code specific stimuli (Michelmann, Bowman, & Hanslmayr,
2016; Staudigl, Vollmar, Noachtar, & Hanslmayr, 2015;
Watrous, Deuker, Fell, & Axmacher, 2015; Lopour, Tavassoli,
Fried, & Ringach, 2013; Ng, Logothetis, & Kayser, 2013;
Kayser, Ince, & Panzeri, 2012; Turesson, Logothetis, &
Hoffman, 2012; Schyns, Thut, & Gross, 2011; Montemurro,
Rasch, Murayama, Logothetis, & Panzeri, 2008). These
studies have shown that frequency-specific activity can be
used to decode the specific features of visual objects or
object categories, suggesting that the oscillatory phase
could provide a mechanism for encoding stimulus infor-
mation within a region. Furthermore, oscillations may
help to coordinate the activity between regions in the
VVP, enabling object information to be transformed over
space and time as meaning is accessed from vision.

Here, we combine RSA with neural oscillations and
computational models that could provide an important
advance in determining the dynamic flow of different
types of object information during recognition—both in
terms of how different regions represent visual and se-
mantic information and how information is transformed
across regions. To achieve this, we recorded MEG while
participants viewed a large set of common objects from
diverse superordinate categories. The combined DNN
and AN models provided predictions for how objects
should be similar to one another, and these predictions
were tested against the MEG data using RSA (Figure 1).
The MEG signals were source-localized, and single-object
oscillatory phase patterns were extracted from five ROIs
in the VVP. Based on these phase patterns across objects,
we could determine how similar objects were to each
other within each ROI and track this over time and fre-
quency. RSA then allows us to test the degree to which
the object similarity, according to the computational
model, is reflected in oscillatory phase signals over space,
time, and frequency. We predict both a spatial and tem-
poral hierarchy in the VVP between visual object informa-
tion and semantics. Crucially, recurrent activity will be
associated with the activation of semantic object informa-
tion that will also depend on the coordinated activity
within the VVP. Although visual object properties are
predicted in theta and alpha (VanRullen, Zoefel, & Ilhan,
2014; Kayser et al., 2012; Montemurro et al., 2008),
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Figure 1. RSA using computational models and oscillations. (A) The combined visual DNN and semantic AN models the low-level visual properties of
the input and higher-level image properties that increase in complexity across Layers c1 to fc7. The visual properties in fc7 then map onto a recurrent
AN that activates the semantic features associated with the input. In our analyses, we combined layers of the DNN into three visual model RDMs
and combined the AN into two semantic model RDMs capturing increasingly specific visual and semantic information. (B) Correlations between the
different visual and semantic model RDMs. (C) RSA analysis of time—frequency data. Spatiotemporal activity patterns are extracted from an ROI for
each object. Time—frequency phase is calculated for each ROI, and RDMs are created for each point in time and for each frequency. Each RDM is
then correlated with each RDM from the computational model to test when and at what frequency different object properties are represented in

oscillatory phase patterns. The procedure is then repeated for all ROIs.

semantic information may be more associated with theta
activity (Halgren et al., 2015) and gamma activity (Mollo,
Cornelissen, Millman, Ellis, & Jefferies, 2017; Supp, Schlogl,
Trujillo-Barreto, Miller, & Gruber, 2007).

METHODS

We reanalyzed MEG data reported in Clarke et al. (2015)
and thus only summarize the main aspects of study de-
sign here.

Participants and Procedure

Fourteen individuals took part in the study. Two partici-
pants were excluded from the analysis because of poor
source reconstruction results (failure to show occipital
activity ~100 msec after onset of object), leaving 12 par-
ticipants in the analysis. Participants performed a basic-
level naming task (e.g., “tiger”), with 302 common objects
from a diverse range of superordinate categories
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including animals, clothing, food, musical instruments,
tools, and vehicles. All objects were presented in color as
single objects on a white background. Each trial began with
a black fixation cross on a white background for 500 msec
before the object was shown for 500 msec, followed by a
blank screen lasting between 2400 and 2700 msec. The
order of stimuli was pseudorandomized.

MEG/MRI Recording

Continuous MEG data were recorded using a whole-head
306 channel (102 magnetometers, 204 planar gradiom-
eters) Vectorview system (Elekta Neuromag) located at
the MRC Cognition and Brain Sciences Unit, Cambridge,
UK. Eye movements and blinks were monitored with
EOG electrodes placed around the eyes, and five head
position indicator coils were used to record the head posi-
tion (every 200 msec) within the MEG helmet. The par-
ticipants’ head shape was digitally recorded using a 3-D
digitizer (Fastrak Polhemus, Inc.), along with the positions
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of the EOG electrodes, head position indicator coils,
and fiducial points. MEG signals were recorded at a
sampling rate of 1000 Hz, with a band-pass filter from
0.03 to 125 Hz. To facilitate source reconstruction, 1 mm’®
T1-weighted MPRAGE scans were acquired during a sepa-
rate session with a Siemens 3T Tim Trio scanner (Siemens
Medical Solutions) located at the MRC Cognition and
Brain Sciences Unit, Cambridge, UK.

MEG Preprocessing

Initial processing of the raw data used MaxFilter Version
2.0 (Elektra-Neuromag) to detect bad channels that were
subsequently reconstructed by interpolating neighboring
channels. The temporal extension of the signal-space
separation technique was applied to the data every 10 sec
to segregate the signals originating from within the partic-
ipants’ head from those generated by external sources of
noise. A correlation limit of .6 was used as this has been
shown to additionally remove noise from close to the
head, as produced during speech (Medvedovsky, Taulu,
Bikmullina, Ahonen, & Paetau, 2009), and head move-
ment compensation was applied. The resulting MEG data
were low-pass filtered at 200 Hz in forward and reverse
directions using a fifth-order Butterworth digital filter
and high-pass filtered at 0.1 Hz using a fourth-order
Butterworth filter, and residual line noise was removed
with a fifth-order Butterworth stop-band filter between
48 and 52 Hz. Data were epoched from —1.5 to 2 sec
and downsampled to 500 Hz using SPM12 (Wellcome
Institute of Imaging Neuroscience).

Independent components analysis (ICA) was used to
remove artifactual signals, using runica implemented in
EEGLab (Delorme & Makeig, 2004) and SASICA (Chaumon,
Bishop, & Busch, 2015). ICA was performed separately for
magnetometers and gradiometers with 60 components
for each. Components of the data that showed a Pearson’s
correlation greater .4 with either EOG channel were re-
moved from the data, as were components correlated
with the ECG recording. SASICA and FASTER were addi-
tionally used to identify components related to muscle
and high-frequency artifacts, and components that showed
a rising profile of evoked activity between 200 msec and
1 sec were removed (these characterize speech artifacts;
mean naming latency 991 msec, SD = 109 msec). All
components were visually inspected to confirm removal,
as recommended (Chaumon et al., 2015). After ICA, a
baseline correction was applied to all trials using data
from —500 to 0 msec. Items that were incorrectly named
were excluded, where an incorrect name was defined as
a response that did not match the correct concept.

Source Localization

Source localization of MEG signals used a minimum-
norm procedure applied in SPM12. First, the participants’
MRI images were segmented and spatially normalized to

a Montreal Neurological Institute (MNI) template brain. A
template cortical mesh with 8196 vertices was inverse-
normalized to the individual’s specific MRI space. MEG
sensor locations were coregistered to MRI space using
the fiducial points and digitized head points obtained
during acquisition. The forward model was created using
the single shell option to calculate the lead fields for the
sources oriented normal to the cortical surface (including
a lead field correction following ICA; Hipp & Siegel,
2015). The data from both magnetometers and gradiom-
eters were inverted together using the group inversion
approach to estimate activity at each cortical vertex using
a minimum norm solution (IID). A frequency window of
0-150 Hz was specified, and no hanning window was
applied.

Representational Similarity Analysis

RSA was used to compare the similarity/distances be-
tween objects based on computational models and the
similarity derived from oscillatory patterns. This requires
that we calculate representational dissimilarity matrices
(RDMs) from both the computational model layers and
from source-localized MEG signals.

RDMs from Computational Models

The computational models used here are those that have
been successfully used to describe the gradient of visual
to semantic object representations along the VVP in fMRI
(Devereux et al., 2018).

Visual DNN. We used the DNN model of Krizhevsky
et al. (2012), as implemented in the Caffe deep learning
framework (Jia et al., 2014), and trained on the ILSVRC12
classification data set from ImageNet. We used the first
seven layers of the DNN, consisting of five convolutional
layers (convl-conv5) followed by two fully connected
layers (fc6 and fc7). The convolutional kernels learned
in each convolutional layer correspond to filters receptive
to particular kinds of visual input. In the first convolu-
tional layer, the filters reflect low-level properties of stim-
uli and include one sensitive to edges of particular spatial
frequency and orientation, as well as filters selective for
particular color patches and color gradients (Zeiler &
Fergus, 2014; Krizhevsky et al., 2012). Later DNN layers
are sensitive to more complex visual information, such
as the presence of specific visual objects or object parts
(e.g., faces of dogs, legs of dogs, eyes of birds, and rep-
tiles; see Zeiler & Fergus, 2014), irrespective of spatial
scale, angle of view, and so forth. We presented 627 im-
ages to the pretrained network (including the 302 images
presented to participants), where each image represented
a concept listed in a large property norm corpus (Devereux,
Tyler, Geertzen, & Randall, 2014). This produced activa-
tion values for all nodes in each layer of the network for
each image.
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To create RDMs for each layer of the DNN, we first
applied PCA to reduce the dimensionality of each layer
while keeping the components that explained 100% of
the variance. For example, fc6 has 4096 nodes, and after
PCA each of the 627 object images was represented by
a 626 length vector. This was found to dramatically im-
prove the relationship between MEG signals and the
DNN, which may be because the white space surround-
ing images was reduced from being represented across a
large number of nodes to a few components, meaning
the similarity between objects was focused on the areas
of the images where the objects appeared. Although the
PCA improved the relationship between MEG signals and
the DNN for objects isolated from backgrounds, this
would not be expected for naturalistic images. Following
PCA, we excluded all object activations that were not in
this study, leaving 302.

As many of the layers were highly correlated and to
reduce the number of RDMs tested, subsets of the seven
layers were combined. The object activation matrices
were concatenated across layers, and the dissimilarity
between network activity for different object images
was calculated as 1 — Pearson’s correlation. This was
applied to convl, concatenated activations from conv2
to conv5, and concatenated activations from fc6 to fc7,
which are referred to as visual Layers 1, 2, and 3, respec-
tively. A model RDM was also created based on con-
catenated data from all layers of the DNN.

Semantic AN. DNNs have proven effective in labeling
object images in complex contexts. However visual
DNNs do not capture object semantics because, although
they can find the correct labels for images, they do not
capture how different objects are semantically related
to one another (e.g., that a dog and a cat are related in
meaning) and only takes into account the similarity of
their visual properties, rather than also taking into ac-
count nonvisual and functional information (Devereux
et al., 2018). To provide one potential route for the rela-
tionship between higher-level visual properties and se-
mantic properties, we use the output from the DNN as
input to an AN model of semantics.

Our semantic knowledge of concrete concepts can be
captured by distributed semantic feature models (Taylor,
Devereux, & Tyler, 2011; Rogers & McClelland, 2004;
Cree & McRae, 2003; Tyler & Moss, 2001), where each
concept is represented by a set of features—for example,
is shiny, has a bandle, used for chopping are features of
a knife from the property norming corpus of Devereux
et al. (2014). Based on semantic features, the similarity
between concepts is accounted for on the basis of the
features they share, whereas distinctive features allow
for differentiation between items (Taylor et al., 2011).
The semantics of the 627 object concepts from the prop-
erty norms can be represented across 2469 semantic fea-
tures, and in the AN, these correspond to the 2469
nodes. The AN was based on Cree et al. (2006) and
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was trained to activate the correct pattern of semantic
features from the inputs from the DNN (full details in
Devereux et al., 2018). The network was trained using
continuous recurrent back-propagation through time
over 20 processing time-ticks. As input to the AN, we took
the activation over the 4096 nodes of fc7 and reduced
this to 60 dimensions using singular-value decompos-
ition (SVD) (note that RDMs calculated on the full-
dimensional fc7 and the SVD-reduced layer were highly
correlated, Spearman’s rho = 0.98, indicating no sub-
stantial information loss). After training, over the 20 time-
ticks, the semantic features associated with the concept
are gradually activated, with the speed of activation de-
pending on the relationship to the visual features and the
statistical regularities between features (i.e., whether a
certain combination of features predicts the occurrence
of another feature). Thus, early features to activate are
shared features and visual features, followed by nonvisual
and distinctive features. For further implementation de-
tails, see Cree et al. (2006) and Devereux et al. (2018).

Like with the visual DNN, many of the 19 layers of the
AN (discounting the input layer) are highly correlated
and so were combined. Using k-means clustering, the
19 layers could be described well by two principal groups,
as shown by positive silhouette values. Clustering solu-
tions with one, three, four, or five groups all contained
negative silhouette values showing that two provided
the most optimal number of clusters. After PCA, Layers
1-5 were concatenated, and Layers 6-19 were concate-
nated. The dissimilarity between AN activity for different
object images was calculated as 1 — Pearson’s correlation,
giving an early semantic RDM and a late semantic RDM.
An additional semantic RDM was created based on the
concatenation of all 19 layers.

RDMs from Time—Frequency Signals

Object dissimilarity from MEG signals was based on oscil-
latory phase patterns from source-localized data. Five
ROIs were specified covering locations known to be
sensitive to visual and semantic object properties; each
ROI was specified by a coordinate and radius of 20 mm:
occipital pole (MNL: —10, —94, —16), left pVTC (MNI:
—50, —52, —20), right pVTC (52, —56, —16), left ATL
(MNIL: —30, —6, —40), and right ATL (MNI: 30, —4, —42).
Coordinates were defined based on local maxima of
source-localized activity to all objects. Within each ROI
(defined by the center coordinate and radius), single
trial activity was extracted for each vertex. Instantaneous
phase was calculated for each trial and for every vertex
using Morlet wavelets using the timefreq function in
EEGLAB. Phase was extracted between —700 and 1000 msec
in 20-msec time steps and between 4 and 95 Hz in 50 loga-
rhythmically spaced frequency steps. A five-cycle wavelet
was used at the lowest frequency, increasing to a 15-cycle
wavelet at the highest. This produced a time—frequency
representation (TFR) for every trial at every vertex location
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in the ROL RDMs between object TFRs were calculated at
each time—frequency point using the circular distance
(Berens, 2009) between vectors of phase information
over space (vertices) and over 60 msec.

For analyses at distinct frequency bands rather than at
every frequency, the oscillatory RDMs were averaged
across frequencies. The frequencies within each band
were defined using hierarchical clustering in sensor
space, with the aim of allowing the data to define the
boundaries between different bands (also see Crivelli-
Decker, Hsieh, Clarke, & Ranganath, 2018). TFRs were
computed for each MEG sensor, which were averaged
across all trials and participants to produce a grand
average for each sensor. A vector was created for each
frequency that included all time points and sensors
concatenated before hierarchical clustering of frequen-
cies using correlation as the distance measure. The
resulting distances were visualized as a dendrogram to
define the boundaries of the different bands. This re-
sulted in theta (4-9 Hz), alpha (9-15 Hz), beta (16-30 Hz),
and gamma (30-95 Hz).

RSA Statistics

Each RDM based on oscillatory phase signals was corre-
lated with the RDMs from the computational models
using Spearman’s correlation (Spearman’s correlation
was used to be consistent with prior publications using
similar data and model RDMs; Devereux et al., 2018;
Clarke & Tyler, 2014). This resulted in TFRs that captured
the relationship between phase information and the
visual and semantic network models. RSA TFRs were
calculated for each layer, ROI, and participant. Random
effects analysis testing for positive RSA effects was con-
ducted for each time—frequency point using one-sample
¢ tests against zero (alpha = .01). Only positive RSA effects
were tested as we are interested in when the similarity
structure in neural signals relate to the similarity structure
predicted by visual and semantic RDMs.

Cluster mass permutation testing was used to assign
p values to clusters of significant tests (Maris & Oostenveld,
2007), and a maximum cluster approach was used to
control for multiple comparisons across time, frequency,
ROI, and model RDM (Nichols & Holmes, 2002). For each
permutation, the sign of the TFR correlations was ran-
domly flipped for each participant before one-sample
t tests of the permuted data at each time and frequency
point. To construct the null distribution for the maxi-
mum cluster approach, the same permutation scheme
was applied to all ROIs and model RDMs, and the largest
cluster (sum of above-threshold ¢ values) from any ROI
and models was retained for the null distribution and
repeated 10,000 times. The cluster p value for each of
the observed cluster in the original data was defined as
the proportion of the 10,000 permutation cluster masses
(plus the observed cluster mass) that is greater than or
equal to the observed cluster mass. Using this approach,

we correct for the total number of statistical comparisons
performed over all time points, frequencies, each ROI,
and all model RDMs tested.

Peak RSA Effects

To determine when different kinds of information were
present relative to one another, we determined when
the peak effects occurred across different regions for
different visual and semantic RDMs. This analysis was
performed for RSA effects within each frequency band,
in addition to peak effects collapsing across frequencies.
The latency of the peak was defined as the maximum
Spearman’s correlation value between 50 and 500 msec.
A latency was found for each frequency band, model
RDM, and ROIL. Linear mixed effects (LME) models were
used to test the relationship between the peak latency,
and ROI and computational model layer. The peak fre-
quency analysis was based on RSA effects determined
across the full frequency spectrum. The peak was defined
as the frequency of the maximal RSA effect between 50
and 500 msec. In both latency and frequency analyses,
LME models (using fitlme) were used to test the relation-
ship between the peaks, and ROI and computational
model layer. For visualization, peaks are plotted as prob-
ability density functions and using gramm (https://doi.
org/10.5281/zenodo.59786). Finally, we did not control
for the number of LME models performed (2 = 3 for
temporal peaks, n = 4 for frequency peaks).

Granger Causality

Finally, we tested the causal relationships between RSA
effects seen for visual and semantic properties and across
different ROIs. Specifically, we used Granger causality
(GC) analysis to test if RSA time courses in one region
have a subsequent impact on RSA time courses in other
regions. To aid interpretability, GC analysis was applied
to the RSA time courses averaged across frequency bands
and for the concatenated visual and concatenated seman-
tic model RDMs. GC was calculated between the five
ROIs and the two RSA time courses (10 time series in
total). Each time series was the RSA effect between 50
and 500 msec concatenated across participants. Time
domain GC used the multivariate GC toolbox (Barnett &
Seth, 2014), with a model order of 2 (40 msec) as indicated
by the Akaike information criterion (AIC) for model order
estimation. To remove bias in the resulting GC values,
surrogate data were used to estimate the bias and remove
it from the GC values. The data were divided into time win-
dows (of length model order) and randomly rearranged
creating 5000 surrogate data sets. The mean GC across
the surrogate data was used as an estimate of the bias
and subtracted from the original GC values. This approach
is considered to debias the GC values (Barnett & Seth,
2014; Barrett et al., 2012). Granger F tests were applied to
the unbiased pairwise conditional GC values, and multiple
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comparisons correction used false discovery rate (FDR)
and an alpha of .05 for a total of 90 pairwise connections.

RESULTS

Our primary goal was to test how the VVP represents in-
creasingly complex visual and semantic information over
time. To achieve this, we used RSA to test if the visual
and semantic information, extracted from the computa-
tional models, was represented in spatiotemporal pat-
terns of oscillatory phase from source-localized MEG
signals. We analyzed data from five ROIs covering occip-
ital, pVTC, and the ATL, which are known to be primarily
implicated in the processing of visual and semantic ob-
ject properties.

Time—frequency RSA (TF RSA) showed that neural pat-
terns based on oscillatory phase had a significant relation-
ship to both the visual and semantic models. The effects
were concentrated in the first 500 msec and seen across
theta, alpha, and beta frequencies (Table 1). We first
present a brief overview of visual and semantic effects

Table 1. TF RSA Results

before a more detailed follow-up analysis of the timing
and frequencies of the effects.

Visual Models

TF RSA effects were seen for all three visual models in
each ROI across theta, alpha, and beta frequencies and
strongest in the occipital ROI (Figure 2). It is predicted
that early or intermediate visual layers will be the best
predictors of occipital responses, and more anterior re-
gions will be best captured by the last visual layer.
Planned contrasts showed the effects were significantly
greater for visual-layer 2 compared with visual-layer 1
= 4.56, p < .001) with no difference between visual
Layers 2 and 3 (¢ = 0.27). In higher regions along the
ventral stream, visual Layer 3 had a significantly greater
fit than both Layer 2 (left pVTC [LpVTIC]: ¢t = 4.05, p =
.002; right pVTC [RpVIC]: ¢ = 4.30, p = .001; left ATL
[LATL]: £ = 3.35, p = .006; right ATL [RATL]: z = 3.64,
p = .004) and Layer 1 (LpVTC: t = 4.90, p < .001; RpVTC:
1 =7.00,p < .0001; RATL: £ = 7.35, p < .0001), except in

Models ROI Fregs Times Mass Cluster p
Visual Layer 1 Occip 4-50 Hz 0-730 msec 4857 .0002
Visual Layer 1 LpVTC 4-15 Hz 0-610 msec 1392 .0073
Visual Layer 1 RpVTC 4-15 Hz 0-350 msec 1364 .0077
Visual Layer 1 LATL 4-14 Hz 0-410 msec 1379 .0077
Visual Layer 1 RATL 7-15 Hz 10-370 msec 369 .0365
Visual Layer 1 RATL 4-6 Hz 70-350 msec 233 .1001
Visual Layer 2 Occip 4-34 Hz 0-750 msec 5343 .0002
Visual Layer 2 LpVIC 4-16 Hz 0-630 msec 1522 .0051
Visual Layer 2 RpVTC 4-21 Hz 0-770 msec 2093 .0035
Visual Layer 2 LATL 4-14 Hz 0-390 msec 1378 .0077
Visual Layer 2 RATL 4-15 Hz 0-750 msec 1298 .0079
Visual Layer 3 Occip 4-32 Hz 0-910 msec 5599 .0001
Visual Layer 3 LpVIC 4-23 Hz 0-690 msec 2301 .0030
Visual Layer 3 RpVTC 4-23 Hz 0-730 msec 3033 .0018
Visual Layer 3 LATL 4-18 Hz 0-590 msec 1955 .0036
Visual layer 3 RATL 4-17 Hz 0-690 msec 1943 .0036
Early semantic Occip 5-14 Hz 0-690 msec 701 .0145
Early semantic LpVTC 4-6 Hz 170-450 msec 251 .0843
Early semantic RpVTC 12-21 Hz 110-390 msec 231 1014
Early semantic LATL 4-8 Hz 0-450 msec 584 .0181
Late semantic LpVTC 4-8 Hz 0-630 msec 585 .0181
Late semantic LATL 4-7 Hz 0-390 msec 447 .0262

Boldface indicates p < .05.
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Figure 2. TF RSA effects of the visual DNN. Each plot shows the Spearman’s correlation values between an RDM from the visual DNN and each ROL.
Significant clusters are shown outlined in black, using a threshold of p < .01 at the pixel level and p < .05 at the cluster level (corrected for all
ROIs and model RDMs tested). Nonsignificant time—frequency points are displayed in the background. Black line shows 0 msec.

the LATL (¢ = 2.01, p = .07). These results are in line with
predictions that later regions along the ventral stream
represent more complex visual object information that is,
in turn, better captured by later layers of the visual DNN.

Semantic Models

TF RSA analysis of phase showed significant effects for
both semantic models (Figure 3). Both the early-semantic
and late-semantic models were significantly related to
spatiotemporal phase patterns in the LATL in theta fre-
quencies during the first 400 msec. Furthermore, the

early-semantic model had a significantly better fit com-
pared with the late-semantic model in LATL (¢ = 2.96,
p = .013). The early-semantic model was also signifi-
cantly related to occipital phase patterns in theta and
alpha frequencies. Finally, the late-semantic model was
significantly related to the LpVTC in theta frequencies.
These results show that semantic information about
objects is captured through oscillatory phase patterns
in the ventral stream, with the most prominent effects
in theta in the pVIC and the ATL—key regions support-
ing object semantic information over time (Clarke et al.,
2011, 2015; Clarke & Tyler, 2014).
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Figure 3. TF RSA effects of the semantic AN. Plots show the Spearman’s correlation values between a semantic AN RDM and each ROL. Significant
clusters are shown outlined in black, using a threshold of p < .01 at the pixel level and p < .05 at the cluster level (corrected for all ROIs and
model RDMs tested). Nonsignificant time—frequency points are displayed in the background. Black line shows 0 msec.
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Representational Changes over Time

Our analysis so far shows that the combined visual DNN
and semantic AN models are capturing neural processes
along the VVP. We next sought to determine the relative
changes in object information over time and region.
However, it is difficult to establish when different forms
of information are present based on the onsets of signif-
icant effects because of the temporal smearing wavelet
convolution creates—especially at lower frequencies—
and the use of a spatiotemporal sliding window that
further contributes to a smoother pattern. Furthermore,
onsets cannot be easily compared across different fre-
quencies as the temporal smearing is greater at lower
compared with higher frequencies. Therefore, to deter-
mine when different kinds of information are present
relative to one another, we analyzed when the peak
effects occurred across different regions for different
visual and semantic models. We used LME models to test
the relationship between the peak time of RSA effects
and the layer of the computational model (modeled from
visual Layer 1, Layer 2, Layer 3, early semantics, late
semantics) and hierarchical cortical level of the VVP
(occipital, pVTC, ATL; where left and right hemispheres
are combined).

We found a significant effect of cortical level, in that
later levels of the VVP had later peak RSA effects (Beta
coefficient: 26 msec, SE = 6.7 msec, t = 3.90, p =
.0001; Figure 4A) and a significant effect of computational
model layer in that later layers had significantly later
peaks (Beta coefficient: 30 msec, SE = 3.6 msec, ¢ =
8.34, p < .0001; Figure 4B). Furthermore, as shown in
Figure 4B, there was a prominent separation in the tim-
ing of visual and semantic peak effects. A subsequent
LME model combined the data within visual and semantic
models and showed that semantic effects lagged visual
effects by an estimated 88 msec (¢ = 8.12, p < .0001).

After establishing this broad pattern where effects are
later in time for higher regions of the VVP and for later
layers of the visual-to-semantic model, we next tested for
region-specific changes in the latency of peak RSA effects
within three frequency bands that showed significant
effects—theta, alpha, and beta. Separate LME models
were run for each cortical level of the VVP for each fre-
quency band. Significant positive effects of model layer
were seen in the occipital and pVTC for theta, alpha,
and beta, whereas the ATL showed significant positive
effects in theta and alpha (Figure 4C-E). This estab-
lishes that later layers of the combined computational
model showed later peak RSA effects in theta, alpha,
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Figure 4. Temporal peaks for the visual DNN and semantic AN RSA effects. (A) Probability density plot showing that the latencies of the peak
RSA effects follow the hierarchical levels of the VVP (data combined across hemispheres and model RDMs). (B) Probability density plot showing that
the latencies of the peak RSA effects for different model RDMs have a clear distinction between visual DNN and semantic AN latencies whereas
later model layers tend to have later peaks. (C-E) Mean peak latencies for different model RDMs at each hierarchical level for three frequency bands
where significant RSA effects were present. Plots show a general increase in latency across the models from visual to semantic (colors match those
in B). Horizontal lines indicate a significant linear relationship between latency and model layer.
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and beta frequencies across all levels of the VVP, sup-
porting our broad results of a temporal transition from
visual to semantics over time in accordance with the
changes seen over the successive layers of the compu-
tational model.

Representational Changes over Frequency

We next tested how the peak frequency of the RSA effects
changed. Using an LME model, we found a marginal effect
of hierarchical cortical level (Beta coefficient = 2.2 Hz,
SE = 11,1 = 1.89, p = .06), but not of model layer (p =
.21). The interaction between level and model was trend-
ing toward significance (¢ = 1.95, p = .053). To explore
the interaction, separate LME models were run for each
hierarchical level testing for an effect of model layer.
Only the ATL showed a significant effect of model layer,
where later layers of the visual-to-semantic model had
lower peak frequencies (Beta coefficient: —0.74 Hz, ¢ =
2.02, p = .046; Figure 5). As shown in Figure 5, plotting
the probability density across frequencies suggests seman-
tic models have median peak frequency around 5-6 Hz
whereas visual models have peaks closer to 10 Hz, sug-
gesting an alpha-theta distinction between vision and
semantics.

Direction of Information Flow

The results presented so far show a visual to semantic
trajectory through time and space, where effects are later
in time for higher regions of the VVP and for later layers
of the visual-to-semantic model. However, focusing solely
on peak effects will not fully capture the ongoing dynam-
ics and critically does not tell us about the connectivity
relationships between regions or information types. To
address this, we used GC analysis to test if representations

Visual Layer 1
Visual Layer 2

Early semantic

pdf

) Nosa

5 10 20 730
Frequency (Hz)

Figure 5. Spectral peaks for the visual DNN and semantic AN RSA
effects in the ATL. Probability density plot showing that the peak
frequency of RSA effects shows a clear distinction between visual and
semantic model RDMs, where visual effects peak near 10 Hz and
semantic effects peak near 5 Hz.

in one region have a subsequent impact on representa-
tions in other regions. For example, GC with RSA time
courses allows us to test if visual information in one region
has a Granger causal impact on subsequent visual repre-
sentations in a different region or whether visual repre-
sentations have a Granger causal impact on subsequent
semantic representations. GC analysis was applied to the
RSA time courses averaged across theta and alpha bands
(this was because the effects were concentrated in these
low frequencies and therefore reflects the dominant visual
and semantic effects) to test for GC relationships between
visual representations across regions, semantic represe-
ntations across regions, and critically between visual and
semantic representations both within and across regions.
For this analysis, we focus on RSA effects from the com-
bined visual and combined semantic RDMs (Figure 6).
We first tested how visual RSA effects impact visual
effects in other regions (Figure 6C). Significant feed-
forward GC was seen between the occipital region and
all other regions. This suggests that visual representa-
tions in the occipital lobe have an impact on subsequent
visual representations further along the VVP in accor-
dance with feedforward models of visual processing.
Semantic RSA effects (Figure 6D) showed significant
feedforward, cross-hemispheric, and feedback connec-
tivity, with both the left and right ATL playing prominent
roles. Semantic effects in the LATL significantly influ-
enced later semantic effects in more posterior regions,
whereas the RATL showed significant connectivity from
bilateral pVTC. In addition, bidirectional connectivity
was seen between the ATL regions. This shows that, in
contrast to visual RSA connectivity, the spread of seman-
tic effects were associated with more complex feed-
forward, feedback, and cross-hemispheric connectivity.
Crucially, we tested the relationships between visual
and semantic RSA effects (Figure 6E) by testing if visual
RSA effects in one region influenced later semantic effects
in other regions (or the same region) and vice versa. Visual
RSA effects emanating from the occipital and RpVTC sig-
nificantly influenced semantic effects through feedforward
connectivity with the ATL, whereas visual RSA effects from
the occipital region also influenced later semantic effects
in the RpVTC. The occipital visual RSA effects influenced
later semantics in the occipital, whereas visual effects in
the LpVTC also influenced later semantic effects in the
LpVTC. Finally, visual RSA effects in the ATL influenced
later semantic effects in the pVIC through feedback con-
nectivity, an effect that was present in both hemispheres.
This shows a pattern where feedforward visual-to-semantic
transformations occur from the occipital to LATL and
along the right VVP. Feedback visual-to-semantic trans-
formations occurred from the ATL to pVTC bilaterally, in
addition to a shifting visual-to-semantic representation
within LpVTC. Lastly, semantic RSA effects had a significant
effect on visual representations (Figure 6F) in the RpVIC
and from RpVTC to LpVTC. Overall, the GC results show that
feedforward processing in the VVP supports the dynamic
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processing of visual information whereas combination of
feedforward and feedback is more central for semantics.
We also highlight that visual to semantic information tran-
sitions engage feedforward and feedback connectivity,
with the ATL appearing as a vital region.

DISCUSSION

In this study, we successfully combined RSA for time—
frequency phase information with a computational ar-
chitecture for visual to semantic processing. Utilizing a
combined visual DNN and semantic AN, we were able
to demonstrate how the incremental aspects of visual
to semantic processes occur in the ventral stream over
time and the underlying dynamics supporting this tran-
sition. We report several novel additions. First, that TF
RSA revealed visual and semantic object properties were
reflected in low-frequency phase activity in the VVP. As
would be expected, spatial and temporal hierarchies
were apparent, where later layers of the computational
model showed peak effects later in time and in later
regions along the posterior to anterior axis. Second, we
also revealed that more subtle dynamics underlie recog-
nition, where feedforward connectivity supported the

1600  Journal of Cognitive Neuroscience

transfer of visual information in the VVP and combined
feedforward, feedback, and intraregion dynamics sup-
ported the transition between visual and semantic infor-
mation processing states. This was revealed through a
novel application of GC to RSA time courses. And third,
our analysis suggests a novel hypothesis that the ATL
codes visual and semantic properties through a multi-
plexed code. These results present the first detailed
account of how oscillatory dynamics can support the
emergence of meaning from visual inputs.

Here we used TF RSA with oscillatory phase informa-
tion, showing that low-frequency phase carries stimulus-
specific information related to visual and semantic object
properties. The analysis was based on phase patterns
from MEG source-localized data, with our results showing
that objects with more similar properties have more
similar spatiotemporal phase patterns in the mass signals
recorded through MEG. It is believed that the phase of
low-frequency activity is suited for decoding stimulus
properties for MEG, EEG, and electrocorticography (ECOG)
(Panzeri, Macke, Gross, & Kayser, 2015; Watrous, Fell, et al.,
2015), supported by a number of studies showing that os-
cillatory phase carries more information about the stimulus
than power (Staudigl et al., 2015; Lopour et al., 2013; Ng
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et al., 2013; Schyns et al.,, 2011). Although not presented
here, we also see a similar pattern with our data. Although
neural mass activity can be difficult to relate to the under-
lying neural activity, there is some suggestion that low-
frequency phase of mass signals might index the timing
of the underlying neural activity and its firing (Panzeri
et al., 2015; Watrous, Fell, et al., 2015; Montemurro et al.,
2008). As such, our effects based on spatiotemporal phase
patterns may be driven by spatiotemporal activity patterns
of the mass neural populations and further suggest that
cognitively relevant properties are coded in distributed
neural activity patterns in space and time. However, the
relative importance of a spatial or temporal activity pat-
terns for object properties was not be determined in this
study.

Previous studies in both humans and nonhuman pri-
mates have identified category-specific phase coding of
objects, where different object categories have different
preferred phases associated with neural activity (Watrous,
Deuker, et al., 2015; Turesson et al., 2012). Here, we go
beyond phase dissociations between different categories
by showing that the variability in phase information re-
lates to variability in the stimulus properties and is the
case for both visual and semantic properties. We see that
low-frequency phase patterns, peaking in alpha, most
strongly relate to visual properties from the DNN, and
phase patterns peaking in theta relate to semantics.
Low-frequency activity over posterior regions is linked
to perceptual cycles that structure visual processing
of objects (Jensen et al., 2014; VanRullen et al., 2014;
Kayser et al., 2012), and such low-frequency phase pat-
terns have been shown to relate to content-specific visual
information in the occipital lobe (Michelmann et al.,
2016). Alpha activity is claimed to reflect a pulsed inhibi-
tion of cortical activity, where increases in alpha power
result in the inhibition of a region and decreased alpha
power relates to the active engagement of a region
(Jensen & Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr,
2007). Research using combined EEG and fMRI has further
shown that occipital alpha power reductions correlated
with increased BOLD in downstream object processing
regions (Zumer, Scheeringa, Schoffelen, Norris, & Jensen,
2014), and so alpha activity could organize the flow of
information through the VVP, as supported through our
connectivity analysis (see below). However, it is also
worth noting that effects of the DNN, although peaking
in alpha, were seen across theta, alpha, and beta fre-
quencies, which may instead highlight the important role
of low-frequency oscillations for perceptual processing
rather than only relating to alpha activity.

Some of the RSA effects we observed temporally over-
lap with typically reported event-related components
seen in EEG and MEG. This might suggest that our
analysis is picking up on the phase-locked aspects of the
signal (that will contribute to the event-related compo-
nent); however, given that our analysis depends on a sta-
tistical correspondence between phase variability and the

variability produced by the computational models, our
results cannot be driven solely by the phase-locked aspects
of the signal. To illustrate, a phase-locked evoked response
in all trials (whether produced through phase resetting or
an additive model) would result in little variability in phase
over trials, and as our RSA analysis depends on variability in
phase angle over trials, our analysis must also be picking up
non-phase-locked aspects of the signal. Overall, our phase-
based RSA analysis is likely driven by variability in the tim-
ing of the underlying neural activity that we see through
variability in phase patterns generated by the stimulus
(Panzeri et al., 2015; Watrous, Fell, et al., 2015; Montemurro
et al., 2008).

Both alpha and theta activities are sometimes consid-
ered to have similar roles in organizing neural activity
(Jensen et al., 2014; Lisman & Jensen, 2013). Both alpha
and theta activities are modulated by memory, but often
with opposing effects (Hanslmayr et al., 2012), and our
clustering of frequencies to generate the different bands
revealed separate clusters for theta and alpha. Together,
this suggests a functional dissociation between theta and
alpha in cortex. Theta activity in the hippocampus and
medial-temporal lobes is tightly linked to long-term
memory (Halgren et al., 2015; Staresina, Fell, Do Lam,
Axmacher, & Henson, 2012; Fell & Axmacher, 2011;
Sederberg, Kahana, Howard, Donner, & Madsen, 2003;
Fell et al., 2001). Our theta effects for semantic object
properties in the pVTC and the ATL are consistent with
intracranial recordings in humans from anterior IT and
the PRC, which show a modulation of theta activity ac-
cording to the semantic category of words (Halgren
et al., 2015), where it is further hypothesized that ATL
structures aid the encoding of attributes in coordination
with theta in the hippocampus (Halgren et al., 2015;
Staresina et al., 2012; Fell et al., 2001).

One novel hypothesis from our study is that different
primary rhythms may encode visual and semantic prop-
erties in the ATL. The concept that different frequencies
code complementary aspects of a stimulus is known as
multiplexing. Using EEG, Schyns et al. (2011) showed
that posterior electrodes coded for the eyes of a face in
the beta band and the mouth in theta, showing that dif-
ferent features of a face are coded in different frequen-
cies. In our study, different object features relating to
vision and semantics peaked at different frequencies in
the ATL—alpha and theta. Recently, the PRC within the
ATL was shown to represent both high-level visual prop-
erties and conceptual properties of objects (Martin,
Douglas, Newsome, Man, & Barense, 2018). Our evi-
dence of visual and semantic effects in the ATL may indi-
cate that the conjoint coding of visual and conceptual
properties in the PRC could be aided through a multi-
plexed coding scheme, which may also be useful for in-
tegrating distinct visual information within a forming
semantic representation. We can speculate that given
that we find visual effects in low frequencies, peaking
at alpha, the slower theta dynamics for semantics could
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be useful to integrate semantic information from the
environment over multiple alpha cycles. However, the
currently study, while finding significant differences in
the peak frequencies for visual and semantic models,
would require addition support for this hypothesis.
Further ECOG investigations will be important to high-
light the specific spatiotemporal-spectral signatures for
vision and semantics in the ATL and how complementary
aspects of low-frequency activity relate to specific proper-
ties of objects. These studies would also offer the oppor-
tunity to test how low-frequency phase information and
high-frequency activity (>100 Hz) might jointly represent
object information through phase—amplitude coupling
(Jensen et al., 2014; Canolty & Knight, 2010; Jensen &
Mazaheri, 2010). This is supported by recent work show-
ing that high-frequency activity to different object cate-
gories occurs at different phases of a low-frequency
oscillation, showing how phase—amplitude coupling
could relate to phase coding (Watrous, Deuker, et al.,
2015).

One clear step forward provided by our study is deter-
mining how object information across different brain
areas was related (also see Goddard, Carlson, Dermody,
& Woolgar, 2016; Ince et al., 2015, for related ap-
proaches). This is an important step because, although
our main analyses highlight parallel hierarchies of vision
to semantics and posterior to anterior regions, this is
likely an oversimplification of the underlying activity
dynamics. By combining the RSA time courses with GC, we
were able to show how information in one region changes
the state of information in another region, characterizing
how information flows in the VVP.

As predicted by most models of visual processing, our
analysis showed visual object information was associated
with feedforward connectivity, in that visual representa-
tions coded in occipital low-frequency phase predicted
future visual representations in more anterior regions
in the VVP. In contrast, the flow of semantic representa-
tion effects was feedback and cross-hemispheric, similar
to previous reports of feedback activity in the VVP sup-
porting semantic processing (Poch et al., 2015; Campo
et al., 2013; Schendan & Ganis, 2012; Chan et al., 2011,
Clarke et al., 2011). Crucially, this analysis enabled us to
test the novel question of how visual representations
impact future semantic representations. This analysis
showed two prominent motifs: (1) visual effects in the
occipital region related to subsequent semantic effects
in the ATL and pVTC (feedforward) and (2) visual effects
in the ATL related to subsequent semantic effects in the
pVTC (feedback). This analysis revealed more complex
dynamics than suggested when only looking at peak ef-
fects while also emphasizing the importance of the ATL
through receiving feedforward inputs and sending top—
down signals to posterior regions.

The ATL plays a central role in many theories of seman-
tics, with differential emphasis of lateral, polar, and medial
aspects of the region, which may depend on stimulus
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modality or task (Mehta et al., 2016; Clarke & Tyler,
2015; Ralph, 2014; Patterson, Nestor, & Rogers, 2007;
Damasio, Tranel, Grabowski, Adolphs, & Damasio, 2004;
Grabowski et al., 2001). Given the spatial specificity of
MEG source localization, we did not look to test between
these positions and focus on the general role of the ex-
tended region. However, recent fMRI work using the
same DNN and semantic AN approach shows that semantic
effects for visual objects are represented in the PRC
(Devereux et al., 2018), which is consistent with a variety of
other neuroimaging and neuropsychology studies show-
ing the semantics of visual objects is dependent on the
PRC (Wright, Randall, Clarke, & Tyler, 2015; Clarke &
Tyler, 2014; Tyler et al., 2013; Kivisaari et al., 2012; Taylor
et al., 2006). Although we do not make claims about
exact localization of ATL effects from this study, our results
do provide critical new evidence of spectral and connec-
tivity profiles that can further refine these accounts. One
speculative prediction we can make regarding the ATL role
is that it initially integrates visual signals during a feed-
forward alpha drive while activating semantic object prop-
erties. The properties, represented by theta activity, then
communicated through feedback activity to the pVTC
(Clarke, 2015; Chan et al., 2011), with coherent activity be-
tween the posterior and anterior regions in the VVP sup-
porting the object-specific semantics (Clarke et al., 2011)
based on top—down semantic and bottom—up visual sig-
nals. Theta activity may further structure alternating modes
of feedforward and feedback activity (Halgren et al., 2015),
with increased recurrent activity necessary under ambigu-
ous perceptual conditions (Schendan & Ganis, 2012).
Future studies utilizing ECOG or depth electrodes could
begin to test these predictions.

Although research with time-sensitive approaches con-
verge toward a model where the initial feedforward activa-
tion activates the visual aspects of objects before recurrent
dynamics process the specific semantics (Clarke, 2015;
Clarke & Tyler, 2015; Halgren et al., 2015; Poch et al.,
2015; Schendan & Ganis, 2012; Chan et al., 2011), we lack
an understanding of the neurocomputational principles of
how vision activates meaning. Here, we tested whether
oscillatory activity could represent stimulus-specific visual
and semantic object properties and showed that visual
properties were most associated with low-frequency phase
and semantic properties were associated with theta phase
information. Furthermore, distinct modes of connectivity
underpinned the flow of information, where visual infor-
mation flowed in a feedforward direction, semantics in
feedback whereas the transfer between vision and seman-
tics relied on feedforward, feedback, and intraregional
flow. Our results highlight the ATL as an important region,
both in representing visual and semantic information
through a multiplexed code and for the transformation of
information from visual to semantic. By combining oscilla-
tions, connectivity, RSA, and computational models, we
show how visual signals activate meaning, taking us toward
a more detailed model of object recognition.
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