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ABSTRACT

Understanding how ecological communities are structured is a major goal in ecology.
Ecological networks representing interaction patterns among species have become
a powerful tool to capture the mechanisms underlying plant-animal assemblages.
However, these networks largely do not account for inter-individual variability and thus
may be limiting our development of a clear mechanistic understanding of community
structure. In this study, we develop a new individual-trait based approach to examine
the importance of individual plant and pollinator functional size traits (pollinator
thorax width and plant nectar holder depth) in mutualistic networks. We performed
hierarchical cluster analyses to group interacting individuals into classes, according
to their similarity in functional size. We then compared the structure of bee-flower
networks where nodes represented either species identity or trait sets. The individual
trait-based network was almost twice as nested as its species-based equivalent and it had
a more symmetric linkage pattern resulting from of a high degree of size-matching.
In conclusion, we show that by constructing individual trait-based networks we can
reveal important patterns otherwise difficult to observe in species-based networks and
thus improve our understanding of community structure. We therefore recommend
using both trait-based and species-based approaches together to develop a clearer
understanding of the properties of ecological networks.

Subjects Ecology, Entomology

Keywords Bee—flower interactions, Cluster analysis, Intertegular distance, Nectar holder depth,
Proboscis length, Pollination

INTRODUCTION

During recent decades, ecological networks have become an increasingly useful tool to
capture the mechanisms underlying plant-animal assemblages (Bascompte ¢ Jordano,
2007; Reiss et al., 2009; Heleno et al., 2014; Ings ¢ Hawes, 2018). The vast majority of
mutualistic networks published to date are composed of nodes representing plant and
animal species that are connected by edges indicating the presence of interactions between
them. This approach provides a holistic picture of the community structure, and allows the
detection of patterns that cannot be inferred from the observations of the nodes (species)
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in isolation (Proulx, Promislow ¢ Phillips, 2005; Bascompte ¢ Jordano, 2014). However, in
such species-based networks, nodes consist of populations of conspecific individuals that
may vary in many biological traits such as phenotype, phenology or behaviour. For instance,
different individuals of a bee species vary in sex, age class, body size and behaviour, which
can positively or negatively affect their efficiency in pollinating certain flowers (Bolnick
et al., 2003; Araiijo, Bolnick & Layman, 2011). Therefore, there is growing recognition
that potentially important information is lost when averaging species data and ignoring
inter-individual variation (Ings et al., 2009; Olesen et al., 2010; Tur et al., 2014; Kuppler et
al., 2016; Ings & Hawes, 2018).

Several recent studies on pollination interactions have stressed the importance of scaling
down from species-based plant-flower visitor networks to individual-based networks
(Gémez, Perfectti & Jordano, 2011; Dupont, Trojelsgaard & Olesen, 2011; Gémez ¢ Perfectti,
2012; Dattilo et al., 2014; Dupont et al., 2014; Tur et al., 2014; Tur, Olesen & Traveset, 2015;
Kuppler et al., 2016; Valverde, Gémez ¢ Perfectti, 2016). These studies have revealed how
inter-individual variation generates link patterns that may have important implications for
community dynamics and species stability. Conspecific individuals within a population
(both plants and pollinators) have been shown to vary widely in the number of interacting
partners (Gémez, Perfectti & Jordano, 2011; Dupont, Trojelsgaard ¢ Olesen, 2011), degree
of specialization (Tur et al., 2014), spatial patterns (Dupont et al., 2014) or even temporal
schedules (Valverde, Gémez & Perfectti, 2016). However, individual-based studies of plant-
flower visitor networks are still scarce (Kuppler et al., 2016; Kuppler et al., 2017), and they
have only focused on the intraspecific variation of one or two species in which different
individuals have been represented as nodes (Dupont, Trojelsgaard ¢ Olesen, 2011; Dupont
et al., 2014; Kuppler et al., 2016). Covering a more diverse community therefore represents
the next step to extend our understanding of plant-flower visitor interaction networks.

Traits play an important role for ecosystem functioning through mechanisms of
resource use complementarity and identity effects, and intraspecific trait variation can
alter ecological dynamics by multiple mechanisms (Bolnick et al., 2011; Gonzilez-Varo ¢
Traveset, 2016). A trait-based approach, zooming in on individual phenotypic variation
(Woodward et al., 2005; Woodward et al., 2010b; Woodward ¢ Warren, 2007) in contrast to
the broad traditional species focus, allows us to move towards a more accurate mechanistic
understanding of network structure (Woodward et al., 2010a). Body size is recognised as
a major determinant of network structure, particularly in predator—prey food webs, with
examples from aquatic systems displaying an increase in body size over orders of magnitude
moving up the food chain (Woodward et al., 2010b; Gravel et al., 2013). Although there is
significantly lower intraspecific size variation in plant-flower visitor networks than in
aquatic food webs (Ings et al., 2009), the size traits of interacting partners (e.g., nectar
holder depth in flowers and tongue length in visitors) are still of direct relevance for the
occurrence of particular interactions (Harder, 1983; Peat, Tucker ¢ Goulson, 2005; Stang,
Klinkhamer & Van der Meijden, 2006a; Stang, Klinkhamer & Van der Meijden, 2006b; Stang
et al., 2009).

We develop an individual trait-based approach to constructing flower-visitor networks
based on functional size of individual bees and the flowers they visit. To introduce and
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test this new approach we use a single network of bee-plant interactions observed over
two summers in a small English meadow. Because tracking individual bees and scoring
traits for all the flowers they interact with is logistically challenging, we instead record
the functional size traits of both bees and flowers recorded during single interactions.
This novel individual-based network, using traits to assign nodes, is then compared to a
traditional species-based network to assess the potential for this approach to increase our
understanding of the mechanisms operating in mutualistic networks. If flower choice by
bees (or the probability of a given interaction occurring) is driven by intraspecific trait
variation more or less than by species identity, we would expect structure to differ between
species-based and individual-based networks. The use of trait data at the resolution of
individuals to assign network nodes provides an alternative or complementary framework
to the traditional process that simplifies interactions by using species, or average trait values
per species, as nodes.

MATERIAL AND METHODS

Study system

We conducted fieldwork in a 0.52 ha flower-rich meadow (UK National Vegetation
Classification MG5—unimproved old hay meadow) located at the Roding Valley Nature
Reserve (Essex, UK [51°38'04.1”N 0°04'12.6"E]) (Fig. S1). The surrounding landscape
comprised similar meadows with associated hedgerows and trees. Due to the labour-
intensive effort required to sample traits for the interacting partners of the entire flower
visitor community, we focused on bees, which stand out among insects as the world’s
primary pollinators in most ecosystems (Neff ¢ Simpson, 1993; Winfree, 2010). Our study
site supported ten species (four families) of flowering plants and 28 species (six families)
of bee (Tables S1, S2).

Sampling procedure

We conducted surveys over 5 days from 29 June to 5 July 2011, and 4 days from 13 June to
28th June 2012, using two observers to record interactions between bees and flowers along
the transects. These short periods represent the peak period for the meadow which is cut for
hay in July, thus removing all flowers. The transects were positioned to maximise coverage
of all possible interactions in the meadow. In 2011 this resulted in an approximately
‘L’-shaped transect, with an angle of 105° between the two sections (Fig. S1A) and a total
length of 135 m. To increase coverage of the meadow in 2012, we changed the transect
into four separate sections (75, 53, 31, and 17 m) perpendicular to the length of the field
with a total length of 176 m (Fig. S1B). Interactions were observed up to 1 m either side
of the transects, meaning an effective coverage of 270 m? (5.2% of the total meadow area)
in 2011 and 352 m? (6.8% of the total meadow) in 2012. To allow for diurnal turnover
in interactions, the transects were walked twice per day in opposite directions between
10:00-13:00 and 12:00-16:00 in 2011. Due to increased duration of transect walks, and
collection of other data, transects in 2012 were only walked once per day in opposite
directions on consecutive days. Surveys lasted approximately 2 h per transect walk in
2011, with one transect conducted on the first day and two transects on all other days
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(approximately 15 h observations). In 2012, surveys lasted between 2 and 4 h. Total survey
time across the two years was approximately 28 h. Surveys in both years were conducted
during fine weather (the weather did not change during the course of any survey and no
transects needed to be abandoned).

On each transect survey, one observer noted the type of interaction (nectar and/or pollen
collection, or nectar robbing) for bees visiting flowers. Once the interaction was observed,
bees were captured and the second observer measured the maximum floral display size
of the flower being visited. We defined floral display size as the width at the widest point
of a single flower, or in the case of Asteraceae and Apiaceae, a single inflorescence. We
placed bees that could be identified in the field (e.g., Bombus spp.) in a bee-marking cage,
positioned so that their bodies were flat and their tegulae were visible, and took digital
photographs of them against a scale to allow the intertegular distance to be measured using
image analysis software (Image]J v1.46r). Prior to their release at the same location as they
were captured, we marked all bees with a dot of non-toxic marker paint (Posca PC-5M,
Uni, Japan) on the dorsal surface of the thorax to avoid any re-recording of the same
individual. For any bees requiring laboratory identification, we used individual collection
vials charged with ethyl acetate, and took a digital photograph of the pinned specimen to
measure intertegular distance and proboscis length using the same image analysis software
as above.

Both proboscis length and nectar holder depth are considered as pivotal functional traits
in plant—pollinator interactions (Harder, 1983; Stang, Klinkhamer ¢~ Van der Meijden,
2006a; Stang, Klinkhamer & Van der Meijden, 2006b; Stang et al., 2009). Therefore, we
used collected specimens of each bee species encountered (n =1 to 29 depending upon
encounter rate per species) to define the relationship between intertegular distance and
proboscis length to enable us to use intertegular distance measured in the field to predict
the proboscis length of bees from all observed interactions. We also collected a subsample
of open flowers from each flowering plant species (5-10 flowers per plant, 1-5 plants per
species; n =5 to 25) to define the relationship between maximum floral display size and
nectar holder depth per plant species. Regressions of nectar holder depth against maximum
floral display size for each species were used to predict the nectar holder depth of flowers
whose floral display size was measured during the transects. For species with nectar holder
depths that were effectively too short to measure, we assigned a value of 1 mm for the
nectar holder depth of all individuals (four out of 10 species). Due to the high abundance
of certain bee species, such as honeybees (Apis mellifera) and bumblebees (B. lapidarius),
and the time-consuming nature of trait measurements, individual measurements were
only taken for the first 50 interactions observed in these cases. This allowed a wider range
of unique individual interactions to be characterised.

Construction of flower-visitation networks

We used the frequency of flower visits by bees as the interaction weight to construct two

different types of quantitative bipartite networks: (i) a traditional species-based network,

and (ii) our novel individual trait-based network. For the trait-based network, we used the
functional size measurements obtained from individual plants and bees. Predicted nectar
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holder depth (NHD; Fig. S2A) was used as the functional size trait to characterize our focal
flowering plant community. We selected intertegular distance (ITD) as our measure of
functional size in bees as it was highly correlated with proboscis length (Fig. S2B) and it
captures other variables such as flight range (Greenleaf et al., 2007). This high-resolution
individual data on trait variation (NHD and ITD) was used to perform cluster analyses
and objectively allocate all interacting individuals into more realistic trait groups, which
were then treated as nodes in the subsequent networks.

All analyses were performed in R 3.2.4 (R Development Core Team, 2015). As both NHD
and ITD are continuous variables, we computed an agglomerative hierarchical clustering
with the function agnes available in the cluster package (Maechler et al., 2016), using
Euclidean distances for calculating dissimilarities between individuals. Agglomerative
clustering starts with each individual contributing to the cluster analysis being treated
separately, and then joins individuals into clusters based on the distance metric. Firstly,
in order to compare the traditional species-based network with our trait-based network
more directly, we ran the analysis while setting the number of clusters in the trait-based
network to match the number of plant and bee species (following Woodward et al., 2010b)
and remove the effect of network size on network properties. We refer to this hereafter as
‘constrained’ functional size-based network. Secondly, we explored the optimal number of
clusters in which individual bees and flowers of the community group according to their
trait variation (and irrespective of species), and constructed the resulting ‘unconstrained’
functional size-based network. To compute these cluster analyses, we used the NbClust
package (Charrad et al., 2014), which provides up to 30 indices for determining the optimal
number of clusters in the dataset. This approach offers the best clustering scheme by varying
all combinations of number of clusters, distance measures, and aggregation methods. We
selected the “average” aggregation method, which uses the average pairwise distance
between all pairs of individuals in the different clusters as the measure of distance (Sokal
& Michener, 1958). Network figures were drawn using the bipartite package (Dormann,
Gruber ¢ Friind, 2008).

Network parameters and data analysis

We used four commonly used quantitative network parameters (weighted connectance,
weighted nestedness, interaction evenness and degree of complementary specialization)
and two node-level parameters (specialization and strength) to describe and compare the
structure of the networks constructed:

Weighted connectance (Cy) (e.g., Kaiser-Bunbury et al., 2011): gives individual weight to
each node based on their total interaction frequency, in contrast to qualitative connectance
(the fraction of all possible links that are realized in a network), and, therefore, better
captures the functional importance of a species (or functional group) in the community.

Weighted nestedness (WNODEF) (Almeida-Neto ¢ Ulrich, 2011): uses quantitative data
to give a measure of the degree of hierarchy in the organization of the interactions. In our
case this relates to size structuring of functional size based network. In a nested network,
nodes with fewer interactions (specialists) are mostly linked with a subset of nodes linked
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to the most connected ones (generalists). Nestedness ranges from zero (not nested) to 100
(highly nested).

Interaction evenness (IE) (Tylianakis, Tscharntke ¢ Lewis, 2007): is based on Shannon’s
evenness and measures the uniformity of interactions among nodes in a network. IE ranges
from zero (complete unevenness in the distribution of interaction frequencies) to one
(complete uniformity).

Degree of complementarity specialization (H,") (Bliithgen, Menzel ¢ Bliithgen, 2006): is a
measure of specialization that depicts how much the interactions of each node differ from
each other in the network. H,' ranges between zero (no specialization) and one (complete
specialization).

Specialization (d') (Bliithgen, Menzel ¢& Bliithgen, 2006) for plants (d’,) and bees (d'y):
gives levels of specialization of each species (or functional trait node in our case). It
accounts for the available resources provided by the interaction partners, so a pollinator
species (or group of species included in a node) that visits resources proportionally to
the total number of interactions of the species (functional size nodes) it interacts with
is considered generalized, while a species that visits rare resources disproportionately is
considered specialized. The index ranges from zero (highly opportunistic) to one (highly
selective).

Strength of a bee species (or node) (st';) is a measure of the importance of a pollinator
from the perspective of the flowering plant community (Bascompte, Jordano ¢ Olesen,
2006). It is the sum of dependencies of the plants relying on that particular pollinator. In
the same way, the strength of a plant species (or species included in a node) (st’,) is the
sum of dependencies of the pollinators relying on that given plant species. In the case of
the bees, for instance, it is calculated as the relative frequency of a bee species (or bee size
cluster) on a particular plant species (or plant size cluster), i.e., the number of interactions
between pollinator nodes j and plant nodes i divided by number of visits of all pollinator
nodes to plant node i.

Network parameters were calculated using the bipartite package (Dormann et al., 2009)
run in R 3.2.4. (R Development Core Team, 2015), testing their significance against 1,000
networks generated by the null model r2dtable (function ‘nullmodel’ in bipartite) based
on the Patefield algorithm (Patefield, 1981), and using a z-score test. We also tested
the significance for nestedness in our networks using three different null models (CRT,
Conserve Row Totals; CCT, Conserve Column Totals; and RCTA, Row Column Total
Average), implemented in FALCON (Beckett, Boulton ¢» Williams, 2014). We used the
adaptive ensemble method to reduce undersampling of the null distribution and to
optimize the minimal ensemble size sufficiently to give robust statistics.

Finally, we also computed centrality to evaluate the node’s relative importance to
the structure of the network and identify key species and functional size ranges in the
community (Martin Gonzdlez, Dalsgaard ¢ Olesen, 2010; Gémez ¢ Perfectti, 2012; Mello
et al., 2015). Centrality indicates how well connected a node is to the rest of the nodes
in the network; central nodes can trigger a rapid breakdown of the network structure if
they are selectively removed (e.g., Memmott, Waser ¢ Price, 2004). We estimated centrality
using three metrics (see Mello et al., 2015 for details): (i) normalized degree centrality,
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i.e., the proportion of different partners a certain node interacts with in relation to the
number of potential partners in the network, (ii) closeness centrality, i.e., the shortest path
from one node to all other nodes in the network, and (iii) betweenness centrality, i.e., the
importance of a node for connecting different parts of the network. Centrality measures
were computed using the software Pajek 4.10 (Batagelj ¢» Mrvar, 1998). To test whether
the node-level parameters varied significantly between the species-based network and the
constrained trait-based network, we performed overall generalized linear models (GLM)
and linear regressions (according to the distribution of the metric values).

RESULTS

Interacting partners and phenotypic traits

We recorded a total of 272 individual bee-flower interactions within our community of
10 plant and 28 bee species (Tables S1, 52). For plant traits, nectar holder depth (range =
0.98-11.63 mm) of sampled flowers (n = 131 flowers from the six out of 10 plant species
with measurable nectar holder depths) was positively correlated (mean R?> = 0.516 £ 0.101)
with maximum floral display size (range = 7.0-53.44 mm) for most (four out of six) of
the plant species subsampled for trait measurement (Fig. S2A). For bee traits, intertegular
distance (range = 1.28-5.47 mm) was positively correlated (R* =0.817) with proboscis
length (range = 1.19-7.86 mm) across the subset of individuals (this included those
collected during this experiment and some additional bees from a private collection held
by T. Ings) measured in the laboratory (Fig. S2B).

Species-based network versus constrained functional trait-based
network
The species-based network (Fig. 1A) comprised 10 plant species from four families
(Table S1) and 28 bee species from six families (Table S2). Predicted NHD of flowers
varied from 1.00 (open flowers) to 10.00 mm, whereas the intertegular distance of bees
varied from 1.37 to 6.42 mm. In the nodes of the equivalent functional size-based network,
where the number of nodes was constrained to match that of the species-based network
(Fig. 1B), the number of species grouped within nodes ranged from 1 to 4 species in the case
of the flowers visited (Table S3), and from 1 to 9 species in the case of the bees (Table S4).
See also Fig. S3 for the distribution of the interacting flowers and bees in their respective
size-based clusters. The interaction matrices (Fig. S4) and network representations (Fig. 1)
of the two networks depict a regular pattern of flower-bee interactions that reveals the
important role of body size. This pattern is more evident in the functional size-based
network, where all intraspecific variation in body size has been considered, and size ranges
do not overlap among nodes. In this network, a general pattern of size matching can be
observed between the NHD of the flowers and the ITD of the bees (see Fig. 1B, where nodes
have been ordered by size).

The two networks were quite similar in their structural parameters, although the
species-based network showed lower values in Cy, IE and WNODF (Table 1 and Table S5).
However, the species-based network was more specialized (H,") compared to its functional
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Figure 1 Comparison of traditional species-based and individual trait-based approaches to construct-
ing plant-flower visitor networks. (A) Species-based network; (B) Constrained (the number of bee and
plant nodes set the same as the species-based network) functional size-based network. Bee (grey rectan-
gles) and plant (black rectangles) nodes are shown in the upper and lower levels respectively. Nodes are
sorted from left to right, from smallest to largest size (see Tables S1-54 for details). The two networks are
quantitative, i.e., the length of the rectangles are proportional to the number of interactions of each node
and the width of the edges indicates the interaction frequency between nodes.

Full-size Gal DOL: 10.7717/peerj.5618/fig-1

size-based counterpart (Table 1). By changing from the taxonomic to the functional trait-
based representations, nestedness was the most affected parameter, jumping from 17.38
in the species-based network to 33.32 (Table S5) in the functional size-based network.
The two webs showed significantly lower values of connectance (C;) and interaction
evenness (IE) than the randomly assembled networks (Table 1). However, both networks
were significantly more specialised (H,') than the networks generated by the null model
(Table 1). At the node level, bees were significantly more specialized in the species-based
network compared to the functional size-based network (F; 54 = 13.43, P < 0.001). There
was no significant variation in the specialization degree of plants between the networks,
and strength did not vary among networks for either bees or plants (Table 1).
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Table 1 Network parameters for the species-based, constrained and unconstrained functional size-

based networks.

Parameters Species-based Constrained size-based Unconstrained size-based

network network network

p 10 10 5

A 28 28 4

C, 0.100 (z=13.20"") 0.195 (z=8.69"") 0.282 (z=27.74"")
IE 0.558 (z =20.54"") 0.661 (z=10.00"") 0.699 (z =28.62"")
H 0.460 (z = —20.54"") 0.332 (z=—9.97") 0.353 (z=—28.62"")
WNODF 17.382 (z =5.43) 33.324 (z=3.10) 51.042 (z = —1.00)
d', (X£SD) 0.326 £0.179 0.170 £ 0.140 0.232 £0.154

d’, (X £ SD) 0.447 £ 0.208 0.331 £ 0.204 0.224 £ 0.182

str'y,(X £ SD) 0.357 £0.518 0.357 £ 0.490 1.250 £ 0.859

str’, (X £ SD) 2.800 + 2.424 2.800 + 4.527 0.800 £ 0.893

Notes.

P, number of flower-nodes; A, number of bee-nodes; C,, weighted connectance; IE, interaction evenness; H,', network spe-
cialization index; WNODF, weighted nestedness; d';, and d',, species specialization index for bees and plants, respectively; str';,
and str’p, strength for bees and plants, respectively.

For the network-level parameters, asterisks indicate the probability that the observed values differ significantly from

mean values obtained from null models: *, P < 0.05; **, P < 0.01; and ***, P < 0.001.

Positive z-values indicate that the observed value is lower than the mean value of the null model. See Table S5 for details on
WNODF values.

Centrality varied between the two networks, as shown by the linear model fitted for the
closeness metric in the case of bee-nodes (F} 54 =22.39, P <0.001). The mean value of
closeness in the species-based network (0.36 £ 0.06) was significantly lower than that of the
functional trait-based network (0.42 & 0.07). While B. lucorum stands out for its central
position in the species-based network (Table 56 : normalized degree = 0.60, closeness =
0.47, betweenness = 0.14), the node with highest value of centrality was B13 (normalized
degree = 0.60, closeness = 0.49, betweenness = 0.12) for the size-based network. B13
groups individuals of three different species of Apidae (A. mellifera, B. lapidarius and B.
pascuorum) with intertegular distances ranging from 3.69-3.83 mm (Table 54). For the
plants, Centaurea nigra showed the most central position (normalized degree = 0.46,
closeness = 0.46, betweenness = 0.31) in the species-based network, whereas the node
F03 was the most central in the functional trait-based network (normalized degree =
0.82, closeness = 0.64, betweenness = 0.52). This flower node (F03), with a NHD ranging
from 3.21 to 4.15 mm (Table S3), comprised flowers of two plant species: C. nigra and
Leucanthemum vulgare.

Unconstrained functional trait-based network

When the functional size-based network was constructed with the optimal number of
clusters according to trait variation (Fig. 2), it comprised five flower nodes that encompassed
one to four plant species (Table S7), and four bee nodes that covered seven to 17 species
(Table S8). Figure S5 shows the distribution of the interacting flowers and bees in their
respective size-based clusters. A general pattern of size matching between bees and flowers
was also evident in this unconstrained functional size-based network (Fig. 2). Thus, bees
with longer proboscises tended to interact more frequently with flowers with deeper nectar
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Figure 2 Unconstrained functional size-based network built independently of the number of inter-
acting species. Bee (grey rectangles) and plant (black rectangles) nodes are shown in the upper and lower
levels respectively. Nodes are sorted from left to right, from smallest to largest size (see Tables S7-S8 for
details). The length of the rectangles are proportional to the number of interactions of each node and the
width of the edges indicates the interaction frequency between nodes.

Full-size Gl DOL: 10.7717/peerj.5618/fig-2

holder tubes, whereas bees with shorter proboscises tended to interact more frequently
with flowers with shallow nectar holder tubes.

Like the constrained functional size-based networks (with equal number of nodes as
interacting species), the unconstrained network was significantly more specialized than the
randomly assembled networks of the null models (Table 1). It also had significantly lower
values of C; and IE than the randomly assembled networks, a pattern also observed for the
constrained network. The observed value of nestedness did not differ significantly from
the null models (Table 1, Table S5).

At the node level, the centrality metrics (see Table S9) show that among the plants the
node F02, composed of C. nigra and L. vulgare, with a NHD ranging from 3.02 to 4.15
mm (Table S7), occupied the most central position. Among bees, those with highest values
of centrality were B02 and B03 (both with normalized degree = 1.00, closeness = 0.73,
betweenness = 0.23). These nodes include bees belonging to four different families that
show intermediate sizes (Andrenidae, Apidae, Megachilidae and Melittidae), and cover
intertegular distances ranging from 3.20 to 3.83 mm and from 3.88 to 5.05, respectively
(Table S8).

DISCUSSION

To date, the taxonomic grouping of interacting individuals has dominated the way in
which we represent and interpret complex communities. However, this approach does not
take into account the importance of intraspecific variability and thus, could be limiting
our understanding on the drivers determining the assemblage of interacting partners
(Woodward et al., 2010b; Bolnick et al., 2011; Gonzdlez-Varo & Traveset, 2016; Kuppler et
al., 2016; Kuppler et al., 2017). Our study shows that the incorporation of individual
functional trait variability in mutualistic networks is a suitable analytical framework. While
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we cannot make strong conclusions based on our analysis of a small, but unique network,
we have demonstrated that our approach has the potential to reveal important patterns that
could be masked when using only a taxonomic-based approach. We found that by using
functional size traits as the level of organization, a single node of our networks grouped
bees from up to four different families and 17 species (three families and nine species when
nodes were established while constraining the size of the network according to the number
of interacting species). This reflects the great differences that our perception of how to
group individuals (taxonomic versus trait-based) can create when building mutualistic
networks (Raffaelli, 2007).

When contrasting the species-based network with the constrained functional size-
based network, a general pattern of size matching is evident. Recent work has shown a
strong correlation between intertegular distance and proboscis length in bees (Cariveau
et al., 2016), which is supported by our study (Fig. S2B). In the trait-based networks we
found that larger bees (with longer proboscises), irrespective of species, interacted more
frequently with flowers that had deeper nectar holder tubes, whereas smaller bees (with
shorter proboscises) interacted more frequently with flowers that had more shallow nectar
holder tubes. This pattern indicates that body size plays an important role in structuring the
general linkage pattern of the community. While this has been previously reported in food
webs (Woodward et al., 2005; Woodward et al., 2010b; Gravel et al., 2013), where predators
are gape limited, we have shown that similar patterns can be expected in mutualistic
systems too, where size traits are also highly relevant to function (Harder, 1983; Peat,
Tucker & Goulson, 2005; Stang, Klinkhamer ¢ Van der Meijden, 2006a; Stang, Klinkhamer
& Van der Meijden, 2006b; Stang et al., 2009). For example, intertegular distance acts as
a proxy of proboscis length, which is a phenotypic trait of paramount importance in
multiple functions of bee ecology and evolution, including flower choice (Peat, Tucker ¢
Goulson, 2005; Goulson, Lye ¢ Darvill, 2008). Intertegular distance is also a good predictor
of foraging distance (Greenleaf et al., 2007) and, as a measure of body size, it is related to
energy requirements (Osorio-Canadas et al., 2016).

The size-matching arrangement observed in the functional size-based network resulted
in a more symmetric linkage pattern, i.e., greater interaction evenness and weighted
connectance, than observed for the species-based network. Kuppler et al. (2016), who
compared individual plant-flower visitor networks with traditional plant species-flower
visitor species networks also found greater interaction evenness and connectance when
individual interactions were considered. Recent work has demonstrated an important
relationship between weighted connectance and the skewness of the distributions of fluxes
and interaction strengths in food webs (Van Altena, Hemerik ¢ De Ruiter, 2016), showing
a positive correlation between weighted connectance and stability. Therefore, while we
need to interpret these results with caution due to the small size of our network, the
differences in structural properties between species and trait-based networks (also shown
by Kuppler et al., 2016) could provide new insights into the stability of the communities.
Furthermore, our species-based network showed a greater degree of network specialization
(Hy'), indicating a higher level of niche partitioning, and thus less redundancy (Bliithgen,
Menzel & Bliithgen, 2006) across taxonomic nodes when compared to the trait-based
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nodes. While this may also be influenced by some aspects of specialization being missed
because other traits that might be important for bee preferences were not included in our
analysis, a similar pattern was also observed by Kuppler et al. (2016) when they compared
species-averaged and individual based plant-insect networks. It is thereofre possible that
additional important information relevant to the resilience of communities (Naeern,
1998; McCann, 2000) may be overlooked if we just examine networks that do not include
intraspecific variation in functional traits (Kuppler et al., 2016; Kuppler et al., 2017).

Our trait-based method also revealed a clear hierarchical structure in our mutualistic
network that was not so apparent using the traditional species-based approach. We found
that nestedness was strongly affected by the level of organisation used to construct the
networks. The individual functional size-based network was almost twice as nested as its
species-based equivalent (Table 1). This difference in nestedness is important because
nestedness reflects functional redundancy, which in turn increases the stability of the
system if some of the interactions disappear (Memimott, Waser ¢ Price, 20045 Bascompte ¢
Jordano, 2007; Thébault ¢ Fontaine, 2010).

An important point worth considering is that weighted connectance (C,) and interaction
evenness (IE) were significantly lower than what would be expected in an assemblage where
interactions are randomly assigned among nodes. The notable exception was network
specialization (H,'), which was significantly higher in both networks than for random
networks. This result could reflect the fact that we have focused our network approach on
a subset (bees) of the whole range of flower visitors present in the community. However,
to explore this further it will be necessary to apply our trait-based approach to all flower
visitors in multiple communities.

At the node level, the species network showed greater bee specialization (d’) than the
functional size-based network. A similar pattern has also been observed by Kuppler et al.
(2016). In their study, they constructed an individual plant-flower visitor network where
plant nodes represented individual plants of a single species and bee nodes represented
species of flower visitors. When they compared specialization of individual plants from one
species with specialization of plant species within traditional species-averaged plant-flower
visitor networks, they found that individual plants were substantially less specialized than
plant species. These results therefore indicate that traditional species-averaged networks
may be overestimating specialization and that by focusing on individual interactions we may
find that mutualistic networks have higher levels of redundancy than previously thought.
The taxonomic network in our study also showed a significantly lower value of closeness
centrality than the trait-based network, indicating a lower cohesion of the interacting
community. Central nodes help to identify keystone species (Martin Gonzilez, Dalsgaard
& Olesen, 20105 Mello et al., 2015), or functional trait groups in the case of trait-based
networks. Accordingly, in the species-based network, B. lucorum (Apidae) and C. nigra
(Asteraceae) stood out by their central position among bees and plants, respectively. The
trait-based network, however, showed that medium sized bees (3.69-3.83 mm) and plants
with NHD ranging from 3.21 to 4.15 mm were key to increase the cohesion of the entire
networks. Therefore, this network revealed other central species than those identified in
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the taxonomic network: A. mellifera, B. lapidarius and B. pascuorum (Apidae) in the case
of the bees and C. nigra, L. vulgare (Asteraceae) in the case of the plants.

When the functional trait-based network was constructed without constraining its size
by the number of interacting species, we obtained a much simpler web, in which the
network parameters analysed significantly differed from the null models in the same way
as the constrained functional trait-based network. The centrality analysis also revealed that
bee species composing keystone nodes were those with intermediate intertegular distances
(ranging from 3.20 to 5.05). Mirroring this pattern, C. nigra and L. vulgare flowers showing
intermediate nectar holder tubes (3.02 to 4.15 mm) were central for maintaining network
cohesion.

CONCLUSIONS

In this study we have provided a new analytical framework for assessing mutualistic
networks at the entire community level using relevant functional traits of individuals as
the level of organisation. We used of cluster analysis, which allows the creation of unevenly
spaced trait classes (therefore avoiding the existence of empty classes). The resultant
individual-trait based networks can be analysed in the same way as traditional species-
based networks to provide a different perspective of plant-animal interactions. Through
this approach, we do not intend to foster the replacement of the classic taxonomic
approach, but to open the possibility of having complementary information through
different assemblage versions of the same community. Species-based networks allow us
to characterize the role of taxonomy in determining the presence and patterning of the
interactions, whereas trait-based networks may better capture the importance of functional
traits and intraspecific variability in shaping the structure of the interactions (Woodward
et al., 2010b).

ACKNOWLEDGEMENTS

We thank Natural England and the Essex Wildlife Trust for permission to work at the field
site, and in particular Patrick Bailly (Essex Wildlife Trust) for his advice and assistance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Thomas C. Ings was supported by a Leverhulme Trust Early Career Fellowship
(ECF/2009/0180) during the design and data collection phases of the work. The study
was funded by the British Ecological Society (ECPG 3377/4365 awarded to Thomas C.
Ings) and internal funding from Anglia Ruskin University to Beatriz Rumeu and Joseph E.
Hawes. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 13/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.5618

Peer

Leverhulme Trust Early Career Fellowship: ECF/2009/0180.
British Ecological Society: ECPG 3377 / 4365.
Anglia Ruskin University.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Beatriz Rumeu analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.

e Danny J. Sheath performed the experiments, authored or reviewed drafts of the paper,
approved the final draft.

e Joseph E. Hawes authored or reviewed drafts of the paper, approved the final draft.

e Thomas C. Ings conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw data and code are provided in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/

peerj.5618#supplemental-information.

REFERENCES

Almeida-Neto M, Ulrich W. 2011. A straightforward computational approach for
measuring nestedness using quantitative matrices. Environmental Modelling ¢
Software 26:173-178 DOI 10.1016/j.envsoft.2010.08.003.

Aratjo MS, Bolnick DI, Layman CA. 2011. The ecological causes of individual specialisa-
tion. Ecology Letters 14:948-958 DOI 10.1111/j.1461-0248.2011.01662.x.

Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture
of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38:567—593
DOI 10.1146/annurev.ecolsys.38.091206.095818.

Bascompte J, Jordano P. 2014. Mutualistic networks. Princeton: Princeton University
Press.

Bascompte J, Jordano P, Olesen JM. 2006. Asymmetric coevolutionary networks facili-
tate biodiversity maintenance. Science 312:431-433 DOI 10.1126/science.1123412.

Batagelj V, Mrvar A. 1998. Pajek: a program for large network analysis. Connections
21:47-57.

Beckett SJ, Boulton CA, Williams HTP. 2014. FALCON: a software package for analysis
of nestedness in bipartite networks. F1000Research 3:185
DOI 10.12688/f1000research.4831.1.

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 14/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.5618#supplemental-information
http://dx.doi.org/10.7717/peerj.5618#supplemental-information
http://dx.doi.org/10.7717/peerj.5618#supplemental-information
http://dx.doi.org/10.1016/j.envsoft.2010.08.003
http://dx.doi.org/10.1111/j.1461-0248.2011.01662.x
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095818
http://dx.doi.org/10.1126/science.1123412
http://dx.doi.org/10.12688/f1000research.4831.1
http://dx.doi.org/10.7717/peerj.5618

Peer

Bliithgen N, Menzel F, Bliithgen N. 2006. Measuring specialization in species interaction
networks. BMC Ecology 6:9 DOI 10.1186/1472-6785-6-9.

Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM, Novak M, Rudolf
VHW, Schreiber SJ, Urban MC, Vasseur DA. 2011. Why intraspecific trait vari-
ation matters in community ecology. Trends in Ecology ¢ Evolution 26:183-192
DOI10.1016/j.tree.2011.01.009.

Bolnick DI, Svanbick R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML.
2003. The ecology of individuals: incidence and implications of individual special-
ization. The American Naturalist 161:1-28 DOI 10.1086/343878.

Cariveau DP, Nayak GK, Bartomeus I, Zientek J, Ascher JS, Gibbs J, Winfree R.
2016. The allometry of bee proboscis length and its uses in ecology. PLOS ONE
11:e0151482 DOI 10.1371/journal.pone.0151482.

Charrad M, Ghazzali N, Boiteau V, Niknafs A. 2014. NbClust: an R package for deter-
mining the relevant number of clusters in a data set. Journal of Statistical Software
61:1-36.

Dattilo W, Fagundes R, Gurka CAQ, Silva MSA, Vieira MCL, I1zzo TJ, Diaz-Castelazo
C, Del-Claro K, Rico-Gray V. 2014. Individual-based ant-plant networks:
diurnal-nocturnal structure and species—area relationship. PLOS ONE 9:¢99838
DOI 10.1371/journal.pone.0099838.

Dormann CF, Friind J, Bliithgen N, Gruber B. 2009. Indices, graphs and null mod-
els: analyzing bipartite ecological networks. The Open Ecology Journal 2:7-24
DOI 10.2174/1874213000902010007.

Dormann CF, Gruber B, Friind J. 2008. Introducing the bipartite package: analysing
ecological networks. R news 8:8-11.

Dupont YL, Trojelsgaard K, Hagen M, Henriksen MV, Olesen JM, Pedersen NME,
Kissling WD. 2014. Spatial structure of an individual-based plant—pollinator
network. Oikos 123:1301-1310 DOT 10.1111/01k.01426.

Dupont YL, Trejelsgaard K, Olesen JM. 2011. Scaling down from species to individuals:
a flower-visitation network between individual honeybees and thistle plants. Oikos
120:170-177 DOI 10.1111/j.1600-0706.2010.18699 .x.

Gomez JM, Perfectti F. 2012. Fitness consequences of centrality in mutualistic
individual-based networks. Proceedings of the Royal Society of London, Series B:
Biological Sciences 279:1754—1760 DOI 10.1098/rspb.2011.2244.

Gomez JM, Perfectti F, Jordano P. 2011. The functional consequences of mutualistic
network architecture. PLOS ONE 6:¢16143 DOI 10.1371/journal.pone.0016143.

Gonzalez-Varo JP, Traveset A. 2016. The labile limits of forbidden interactions. Trends
in Ecology & Evolution 31:700-710 DOI 10.1016/j.tree.2016.06.009.

Goulson D, Lye GC, Darvill B. 2008. Diet breadth, coexistence and rarity in bumblebees.
Biodiversity and Conservation 17:3269-3288 DOI 10.1007/s10531-008-9428-y.
Gravel D, Poisot T, Albouy C, Velez L, Mouillot D. 2013. Inferring food web structure
from predator—prey body size relationships. Methods in Ecology and Evolution

4:1083-1090 DOI 10.1111/2041-210X.12103.

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 15/18


https://peerj.com
http://dx.doi.org/10.1186/1472-6785-6-9
http://dx.doi.org/10.1016/j.tree.2011.01.009
http://dx.doi.org/10.1086/343878
http://dx.doi.org/10.1371/journal.pone.0151482
http://dx.doi.org/10.1371/journal.pone.0099838
http://dx.doi.org/10.2174/1874213000902010007
http://dx.doi.org/10.1111/oik.01426
http://dx.doi.org/10.1111/j.1600-0706.2010.18699.x
http://dx.doi.org/10.1098/rspb.2011.2244
http://dx.doi.org/10.1371/journal.pone.0016143
http://dx.doi.org/10.1016/j.tree.2016.06.009
http://dx.doi.org/10.1007/s10531-008-9428-y
http://dx.doi.org/10.1111/2041-210X.12103
http://dx.doi.org/10.7717/peerj.5618

Peer

Greenleaf SS, Williams NM, Winfree R, Kremen C. 2007. Bee foraging ranges and their
relationship to body size. Oecologia 153:589-596 DOI 10.1007/500442-007-0752-9.

Harder LD. 1983. Functional differences of the proboscides of short- and long-tongued
bees (Hymenoptera, Apoidea). Canadian Journal of Zoology 61:1580-1586
DOI10.1139/283-212.

Heleno R, Garcia C, Jordano P, Traveset A, Gémez JM, Bliithgen N, Memmott J, Moora
M, Cerdeira J, Rodriguez-Echeverria S, Freitas H, Olesen JM. 2014. Ecological
networks: delving into the architecture of biodiversity. Biology Letters 10:Article
20131000 DOI 10.1098/rsbl.2013.1000.

Ings TC, Hawes JE. 2018. The history of ecological networks. In: Déttilo W, Rico-Gray
V, eds. Ecological networks in the tropics. Cham: Springer International Publishing,
15-28 DOI 10.1007/978-3-319-68228-0_2.

Ings TC, Montoya JM, Bascompte J, Bliithgen N, Brown L, Dormann CF, Edwards F,
Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM,
Van Veen FJF, Warren PH, Woodward G. 2009. Ecological networks—beyond food
webs. Journal of Animal Ecology 78:253-269 DOI 10.1111/j.1365-2656.2008.01460.x.

Kaiser-Bunbury CN, Valentin T, Mougal J, Matatiken D, Ghazoul J. 2011. The tolerance
of island plant—pollinator networks to alien plants. Journal of Ecology 99:202-213
DOI10.1111/5.1365-2745.2010.01732.x.

Kuppler J, Grasegger T, Peters B, Popp S, Schlager M, Junker RR. 2017. Volatility of
network indices due to undersampling of intraspecific variation in plant—insect inter-
actions. Arthropod-Plant Interactions 11:561-566 DOI 10.1007/s11829-016-9493-1.

Kuppler J, Héfers MK, Wiesmann L, Junker RR. 2016. Time-invariant differences
between plant individuals in interactions with arthropods correlate with intraspe-
cific variation in plant phenology, morphology and floral scent. New Phytologist
210:1357-1368 DOI 10.1111/nph.13858.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2016. cluster: cluster analysis
basics and extensions. R package version 2.0.4. Available at https:// cran.r-project.org/
web/ packages/ cluster/ index.html (accessed on 5 September 2018).

Martin Gonzélez AM, Dalsgaard B, Olesen JM. 2010. Centrality measures and the
importance of generalist species in pollination networks. Ecological Complexity
7:36—43 DOI 10.1016/j.ecocom.2009.03.008.

McCann KS. 2000. The diversity—stability debate. Nature 405:228-233
DOI10.1038/35012234.

Mello MAR, Rodrigues FA, Costa L da F, Kissling WD, Sekercioglu CH, Marquitti
FMD, Kalko EKV. 2015. Keystone species in seed dispersal networks are mainly
determined by dietary specialization. Oikos 124:1031-1039 DOI 10.1111/0ik.01613.

Memmott J, Waser NM, Price MV. 2004. Tolerance of pollination networks to species
extinctions. Proceedings of the Royal Society of London, Series B: Biological Sciences
271:2605-2611 DOI 10.1098/rspb.2004.2909.

Naeem S. 1998. Species redundancy and ecosystem reliability. Conservation Biology
12:39-45 DOI 10.1111/;.1523-1739.1998.96379.x.

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 16/18


https://peerj.com
http://dx.doi.org/10.1007/s00442-007-0752-9
http://dx.doi.org/10.1139/z83-212
http://dx.doi.org/10.1098/rsbl.2013.1000
http://dx.doi.org/10.1007/978-3-319-68228-0_2
http://dx.doi.org/10.1111/j.1365-2656.2008.01460.x
http://dx.doi.org/10.1111/j.1365-2745.2010.01732.x
http://dx.doi.org/10.1007/s11829-016-9493-1
http://dx.doi.org/10.1111/nph.13858
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/cluster/index.html
http://dx.doi.org/10.1016/j.ecocom.2009.03.008
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1111/oik.01613
http://dx.doi.org/10.1098/rspb.2004.2909
http://dx.doi.org/10.1111/j.1523-1739.1998.96379.x
http://dx.doi.org/10.7717/peerj.5618

Peer

Neff JL, Simpson BB. 1993. Bees, pollination systems and plant diversity. In: LaSalle
J, Gauld ID, eds. Hymenoptera and Biodiversity. Wallingford: CAB International,
143-167.

Olesen JM, Dupont YL, O’Gorman EJ, Ings TC, Layer K, Melian C]J, Trojelsgaard K,
Pichler DE, Rasmussen C, Woodward G. 2010. From Broadstone to Zackenberg:
space, time and hierarchies in ecological networks. In: Woodward G, ed. Advances
in ecological research. Ecological networks, vol. 42. London: Elsevier/Academic Press,
1-69 DOI 10.1016/B978-0-12-381363-3.00001-0.

Osorio-Canadas S, Arnan X, Rodrigo A, Torné-Noguera A, Molowny R, Bosch J. 2016.
Body size phenology in a regional bee fauna: a temporal extension of Bergmann’s
rule. Ecology Letters 19:1395-1402 DOI 10.1111/ele.12687.

Patefield WM. 1981. An efficient method of generating random RxC tables with given
row and column totals. Applied Statistics 30:91-97 DOT 10.2307/2346669.

Peat J, Tucker J, Goulson D. 2005. Does intraspecific size variation in bumblebees allow
colonies to efficiently exploit different flowers? Ecological Entomology 30:176-181
DOI10.1111/5.0307-6946.2005.00676.x.

Proulx SR, Promislow DEL, Phillips PC. 2005. Network thinking in ecology and
evolution. Trends in Ecology & Evolution 20:345-353 DOI 10.1016/j.tree.2005.04.004.

R Development Core Team. 2015. R: a language and environment for statistical comput-
ing. Vienna, Austria. Available at http://www.R-project.org/.

Raffaelli D. 2007. Food webs, body size and the curse of the latin binomial. In: Rooney
N, McCann KS, Noakes DLG, eds. From energetics to ecosystems: the dynamics
and structure of ecological systems. Dordrecht: Springer Netherlands, 53—64
DOI 10.1007/978-1-4020-5337-5_3.

Reiss J, Bridle JR, Montoya JM, Woodward G. 2009. Emerging horizons in biodiversity
and ecosystem functioning research. Trends in Ecology ¢ Evolution 24:505-514
DOI10.1016/j.tree.2009.03.018.

Sokal RR, Michener CD. 1958. A statistical method for evaluating systematic relation-
ships. University of Kansas Science Bulletin 38:1409-1438.

Stang M, Klinkhamer PGL, Van der Meijden E. 2006a. Asymmetric specialization and
extinction risk in plant—flower visitor webs: a matter of morphology or abundance?
Oecologia 151:442—453 DOI 10.1007/500442-006-0585-y.

Stang M, Klinkhamer PGL, Van der Meijden E. 2006b. Size constraints and flower
abundance determine the number of interactions in a plant-flower visitor web. Oikos
112:111-121 DOI 10.1111/;.0030-1299.2006.14199.x.

Stang M, Klinkhamer PGL, Waser NM, Stang I, Van der Meijden E. 2009. Size-specific
interaction patterns and size matching in a plant—pollinator interaction web. Annals
of Botany 103:1459-1469 DOI 10.1093/aob/mcp027.

Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of
mutualistic and trophic networks. Science 329:853—-856 DOI 10.1126/science.1188321.

Tur C, Olesen JM, Traveset A. 2015. Increasing modularity when downscaling networks
from species to individuals. Oikos 124:581-592 DOI 10.1111/01k.01668.

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 1718


https://peerj.com
http://dx.doi.org/10.1016/B978-0-12-381363-3.00001-0
http://dx.doi.org/10.1111/ele.12687
http://dx.doi.org/10.2307/2346669
http://dx.doi.org/10.1111/j.0307-6946.2005.00676.x
http://dx.doi.org/10.1016/j.tree.2005.04.004
http://www.R-project.org/
http://dx.doi.org/10.1007/978-1-4020-5337-5_3
http://dx.doi.org/10.1016/j.tree.2009.03.018
http://dx.doi.org/10.1007/s00442-006-0585-y
http://dx.doi.org/10.1111/j.0030-1299.2006.14199.x
http://dx.doi.org/10.1093/aob/mcp027
http://dx.doi.org/10.1126/science.1188321
http://dx.doi.org/10.1111/oik.01668
http://dx.doi.org/10.7717/peerj.5618

Peer

Tur C, Vigalondo B, Trojelsgaard K, Olesen JM, Traveset A. 2014. Downscaling pollen-
transport networks to the level of individuals. Journal of Animal Ecology 83:306-317
DOI10.1111/1365-2656.12130.

Tylianakis JM, Tscharntke T, Lewis OT. 2007. Habitat modification alters the structure
of tropical host-parasitoid food webs. Nature 445:202-205 DOT 10.1038/nature05429.

Valverde J, Gomez JM, Perfectti F. 2016. The temporal dimension in individual-based
plant pollination networks. Oikos 125:468—479 DOI 10.1111/01k.02661.

Van Altena C, Hemerik L, De Ruiter PC. 2016. Food web stability and weighted
connectance: the complexity-stability debate revisited. Theoretical Ecology 9:49—58
DOI 10.1007/s12080-015-0291-7.

Winfree R. 2010. The conservation and restoration of wild bees. Annals of the New York
Academy of Sciences 1195:169—-197 DOT 10.1111/j.1749-6632.2010.05449.x.

Woodward G, Benstead JP, Beveridge OS, Blanchard J, Brey T, Brown LEEE, Cross
WE, Friberg N, Ings C, Jacob UTE, Jennings S, Ledger ME, Milner AM, Montoya
JM, Gorman EQ, Olesen JM, Petchey OL, Pichler E, Reuman DC, Thompson
MSA, Veen FJFVAN, Yvon-durocher G. 2010a. Ecological networks in a changing
climate. In: Advances in ecological research. Ecological networks, vol. 42. London:
Elsevier/Academic Press, 72—120 DOI 10.1016/B978-0-12-381363-3.00002-2.

Woodward G, Blanchard J, Lauridsen RB, Edwards FK, Jones JI, Figueroa D, Warren
PH, Petchey OL. 2010b. Individual-based food webs. Species identity, body size
and sampling effects. In: Woodward G, ed. Advances in ecological research. London:
Elsevier/Academic Press, 211-266 DOI 10.1016/B978-0-12-385005-8.00006-X.

Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, War-
ren PH. 2005. Body size in ecological networks. Trends in Ecology ¢ Evolution
20:402—409 DOI 10.1016/j.tree.2005.04.005.

Woodward G, Warren P. 2007. Body size and predatory interactions in freshwaters:
scaling from individuals to communities. In: Hildrew AG, Raffaelli DG, Edmonds-
Brown R, eds. Body size: the structure and function of aquatic ecosystems. Cambridge:
Cambridge University Press, 98—117 DOI 10.1017/CB0O9780511611223.007.

Rumeu et al. (2018), PeerJ, DOI 10.7717/peerj.5618 18/18


https://peerj.com
http://dx.doi.org/10.1111/1365-2656.12130
http://dx.doi.org/10.1038/nature05429
http://dx.doi.org/10.1111/oik.02661
http://dx.doi.org/10.1007/s12080-015-0291-7
http://dx.doi.org/10.1111/j.1749-6632.2010.05449.x
http://dx.doi.org/10.1016/B978-0-12-381363-3.00002-2
http://dx.doi.org/10.1016/B978-0-12-385005-8.00006-X
http://dx.doi.org/10.1016/j.tree.2005.04.005
http://dx.doi.org/10.1017/CBO9780511611223.007
http://dx.doi.org/10.7717/peerj.5618

