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Understanding the nature of the relationship between vocal complexity and brain
architecture across non-human primates may help elucidate some of the key elements
underlying the evolution of human speech. Here, we report a positive correlation
between vocal repertoire size and the relative size of cortical association areas
(governing voluntary control over behavioural output) in non-human primates. We further
demonstrate that a hominid grade shift in the relative volume of cortical association areas
coincides with a similar grade shift in the hypoglossal nucleus (which is associated
with the cranial nerve that innervates the muscles of the tongue). Our results support
a qualitative continuity in the neural correlates of vocal repertoire, but a quantitative
discontinuity in the extent to which the neural system supporting speech is innervated
by cortical association areas in great apes and humans.

Keywords: prefrontal cortex, cortical association areas, evolution of speech, vocal complexity, brain evolution,
primate evolution, language, primates

INTRODUCTION

Relative to humans, non-human primates (hereinafter “primates”) produce a very limited range
of vocalisations. However, vocal repertoire varies widely among primate species, ranging from
just two call types in Calabar angwantibos (Arctocebus calabarensis) to at least 38 call types in
bonobos (Pan paniscus) (McComb and Semple, 2005). Understanding the evolutionary basis for
such variation in vocal repertoire among our closest relatives may provide important insight into
how a communication system as complex as human speech evolved.

The basic layout of the larynx and vocal tract is highly conservative and homologous in both
form and function among virtually all terrestrial mammals, including humans (Fitch, 2000, 2006,
2010; Fitch and Zuberbuhler, 2013; Fitch et al., 2016). This strongly suggests that differences in
vocal repertoire among primate species do not result from differences in vocal tract morphology
(Fitch et al., 2016; Boë et al., 2017). Indeed, the macaque vocal tract has recently been shown to be
“speech ready,” i.e., capable of producing an adequate range of speech sounds to support spoken
language (Fitch et al., 2016). However, despite many attempts, no non-human primate has ever
been trained to produce speech sounds.

One key factor that has been suggested to influence vocal repertoire is neural control (Fitch,
2010). This hypothesis posits that the reason primates are incapable of producing speech is
because they lack adequate brain mechanisms to control and coordinate vocal production. The
possibility has long been recognised; after examining the comparative data on vocal anatomy,
Darwin concluded that “the development of the brain has no doubt been far more important”
(Darwin, 1871). Nevertheless, this hypothesis has received surprisingly little attention, and, to date,
there have been no comparative studies relating vocal repertoire to neuro-anatomy in primates.

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 534

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00534
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00534
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00534&domain=pdf&date_stamp=2018-08-09
https://www.frontiersin.org/articles/10.3389/fnins.2018.00534/full
http://loop.frontiersin.org/people/556474/overview
http://loop.frontiersin.org/people/132957/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00534 August 6, 2018 Time: 16:31 # 2

Dunn and Smaers Neural Correlates of Vocal Repertoire in Primates

Here, we test the hypothesis that vocal repertoire size
in primates is associated with neural substrates of increased
voluntary control over behavioural output. Two neural features
are crucial in this regard: (1) the cortical association areas that
govern voluntary control over behavioural output (Fuster, 1997;
Miller, 2000); and (2) the brainstem nuclei that are involved in the
neural control of the orofacial muscles (Sherwood et al., 2005). If
voluntary control is an important element in vocal complexity
and, by extension, the evolution of speech, we might expect these
two neural features to be associated with each other and with
vocal repertoire size. We also test for associations between vocal
repertoire size and measures of both overall brain size and its
main gross anatomical substructure, the neocortex.

MATERIALS AND METHODS

Vocal Repertoire
We obtained data on primate vocal repertoire (the number of
acoustically different calls that a species gives) from the literature.
Following (McComb and Semple, 2005), we applied a series
of rules when collecting data on vocal repertoire in order to
make comparisons across species as systematic as possible. We
only considered studies that reported the whole adult repertoire
(excluding calls given exclusively by infants and juveniles) and
which distinguished the calls on the basis of their acoustic
structure. This led to the exclusion of studies that did not report
the complete repertoire, or that only distinguished calls by the
context in which they were given. To make all data consistent
with that reported in (McComb and Semple, 2005), we did not
consider lip smacking, teeth chattering/grinding or vomiting
as part of the repertoire, and only included vocalisations that
consisted of multiple units if any of these units had not previously
been included as a distinct call in the repertoire. After applying
these rules to each study, the vocal repertoire that we included
in our analysis often differed from that reported in the original
study. Humans were not included in these analyses, owing to the
difficulty in quantifying vocal repertoire. Raw data are reported
in Supplementary Table S1.

Brain Region Volumes
We obtained brain region volumes (i.e., volumes of
gross-anatomical structures and of areas within those structures)
from published studies (Stephan et al., 1981; Sherwood et al.,
2005; Smaers et al., 2010, 2011, 2013), all of which report
data for the same specimens housed at the Vogt Institute for
Brain Research (Zilles et al., 2011). We analysed three cortical
association areas – the prefrontal cortex, the frontal motor
cortex, and the temporal-parietal cortex; three brain stem
nuclei – the trigeminal, facial, and hypoglossal nuclei; as well as
brain volume and neocortical volume. All raw data are provided
in Supplementary Table S1.

Measures of Relative Size of Brain
Regions
We only considered brain region volumes after controlling for
overall size by using control variables that are functionally

and neuroanatomically relevant (Dechmann and Safi, 2009;
Passingham and Smaers, 2014). We controlled brain regions
for size by obtaining residuals from a regression analysis. For
the relative volume of the brain size, we used body size as the
independent variable. For the relative volume of the neocortex,
we used the rest of brain size as the independent variable. For the
relative volume of brain stem nuclei, we used the volume of the
rest of the brainstem as the independent variable. For the relative
volume of cortical association areas, we used cortical primary
sensory areas as the independent variable. Raw data are reported
in Supplementary Table S1. We used different independent
variables for these different neural regions considering the nature
of their different functional and anatomical modularity and
interconnectivity. It is crucial that the choice of appropriate
comparative regions is made based on the functional and
neuroanatomical realities of neural information processing. It has
long been established that information processing in the brain
occurs in a hierarchical manner. Stimuli are initially mapped
onto primary sensory areas, and information subsequently
projects to higher order association areas (Passingham et al.,
2016). Throughout this process, perception, and interpretation
of stimuli becomes increasingly complex (Desimone and Schein,
1987; Miller and Cohen, 2001). When aiming to assess the
neural substrates of complex cognitive processing, an approach
that adequately accounts for the functional and neuroanatomical
underpinnings of neural information processing is to compare
regions at the top of the hierarchy of information processing
(heteromodal association areas) to those at the beginning of
the hierarchy (primary sensory areas) (Passingham and Smaers,
2014). This approach effectively compares the amount of complex
information processing relative to the amount of sensory input
and is different to the more traditional procedure of comparing
the size of a brain region to the size of the rest of the
brain. This more traditional procedure is undesirable because
it underestimates changes in neural systems (Passingham and
Smaers, 2014) and erroneously assumes that neural information
processing is isolated in particular regions, hereby ignoring
the well-established hierarchical nature of neural information
processing. Although it is advised to only consider relative
volumes based on neurobiologically meaningful comparisons, we
also checked results when calculating relative volumes compared
to “rest of brain” in order facilitate comparisons with previous
studies. These analyses provided similar results.

Group Size
One factor that is thought to act as a selection pressure driving
increases in vocal repertoire is sociality. The “social complexity
hypothesis” for communication posits that animals with complex
social systems require more complex communicative systems
to regulate interactions and relations among group members
(Freeberg et al., 2012). Indeed, there is now evidence in a diverse
range of animal taxa, in different communicative modalities,
that complexity in social groups is related to, and/or can drive
complexity in signalling systems (Freeberg, 2006; delBarco-
Trillo et al., 2012; Krams et al., 2012; Pollard and Blumstein,
2012; White et al., 2012). For example, McComb and Semple
(2005) found a positive association between vocal repertoire
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and both group size and grooming rate (a measure of the
strength of social bonding between individuals in a group) among
non-human primates. Therefore, there is a need to control for the
confounding effect of social group size on vocal repertoire when
analysing the relationship between brain architecture and vocal
repertoire.

In most primates, individuals form clearly defined social
groups, which are relatively stable over time. However, some
species form temporary parties or subgroups during foraging
(e.g., Macaca fascicularis, Pan troglodytes). Therefore, we have
distinguished between three types of social groups: (1) the
foraging group (ForGroup), being the animals that forage
together; (2) the population group (PopGroup), being the
animals that share a common range or at least come together
frequently, usually sleep together, and among which foraging
units have highly overlapping ranges [data from Clutton-Brock
and Harvey (1977) and Nunn and van Schaik (2002) in both
cases]; (3) for the sake of comparison, we also analysed the group
size data originally reported in McComb and Semple (2005)
(MSgroup), which represent a midpoint of a range given in Rowe
(1996). This may underestimate group size when solitary, perhaps
dispersing individuals, are included as the lower group size in the
primary reference. We use PopGroup as our principle measure
of group size in the main text, as this is the most biologically
meaningful measure, and report equivalent results for ForGroup
and MSgroup in Supplementary Table S2. Raw data are reported
in Supplementary Table S1.

Statistical Methods
Comparative data points are not expected to be independent
because of their shared phylogenetic history. To account for this
data non-independence we use phylogenetic generalised
least-squares procedures to analyse our data. We used
phylogenetic analysis of covariance (pANCOVA) (Smaers
and Rohlf, 2016; Smaers and Mongle, 2018) to assess the
occurrence of grade shifts among primate clades in the relative
volumes of brain regions and phylogenetic generalised least
squares regression analysis [pGLS; Rohlf et al. (2001)] with
a likelihood-fitted lambda parameter (Pagel, 1999) to test for
correlations between vocal repertoire size and the relative size
of brain regions. We calculated confidence intervals following

Smaers and Rohlf (2016). The phylogeny (Supplementary
Figure S1) was taken from the 10k Trees Project (Arnold et al.,
2010). All data were log transformed prior to analysis.

Before deriving allometric residuals, we followed standard
statistical procedures to test for significant differences in
intercepts and slopes before interpreting allometry (Sokal and
Rohlf, 2012). When subgroups indicate either a difference in
slope, or a difference in intercept they should be considered
as part of different allometry (Rao and Toutenburg, 1999).
Therefore, if a multi-grade allometry was found to be a
significantly better fit to the data than a single-grade allometry
(Smaers and Rohlf, 2016), residuals were derived from the
ancestral grade. For completeness, we also ran analyses using a
single allometry. These analyses provided similar results.

RESULTS

Our results indicate a significant positive association between
vocal repertoire and the relative size of all three cortical
association areas under investigation (Figure 1A: F = 11.23,
P = 0.003, df = 2,10; Figure 1B: F = 15.05, P < 0.001,
df = 2,10; Figure 1C: F = 12.72, P = 0.002, df = 2,10).
Further analyses reveal no positive associations between vocal
repertoire and the relative volume of the brain or neocortex,
nor of any of the brain stem nuclei (Supplementary Figure
S2). Using ForGroup, or MSGroup, instead of PopGroup
as a control for vocal repertoire yielded equivalent results
(Supplementary Table S2). Either considering or not considering
the grade shift when calculating the relative size of brain region
also produced equivalent results. Using absolute brain region
volumes, rather than relative volumes, led to non-significant
results (Supplementary Figure S3).

The relationship between brain stem nuclei and cortical
association areas was not significant when considering all species
in the sample (Supplementary Figure S4). This primate-general
trend, however, masks a significant relationship with prefrontal
cortex and a marked positive trend with other cortical association
areas in apes (Figure 2A: F = 81.85, P = 0.012, df = 2,2; Figure 2B:
F = 14.5, P = 0.065, df = 2,2; Figure 2C: F = 17.39, P = 0.054,
df = 2,2). This hominoid trend is confirmed by a significant

FIGURE 1 | pGLS regressions of the residual volume of brain regions (A, prefrontal cortex; B, frontal motor cortex; C, temporal-parietal cortex) versus residual vocal
repertoire. We represent 95% confidence intervals as dashed lines. Monkeys are represented in black, non-human apes in gray.
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FIGURE 2 | pGLS regressions of the residual volume of brain regions (A, prefrontal cortex; B, frontal motor cortex; C, temporal-parietal cortex) versus the residual
volume of the hypoglossal nucleus in apes. We represent 95% confidence intervals as dashed lines. Non-human apes are represented in gray, humans in white.

difference in the hominid versus non-hominid allometry for
both the cortical association areas (no difference in slope, but a
difference in intercept; Smaers et al., 2017) and the relative size of
the hypoglossal nucleus (difference in slope: F = 9.274, P = 0.004)
(Table 1).

DISCUSSION

The brain is central to the adaptive profile of any animal, as it
underlies the capacity to modify behaviour. Therefore, natural
selection shaping behavioural capacities is likely to be reflected
in changes to the systems mediating those capacities. Indeed,
there is strong evidence for specific brain adaptations for different
locomotor strategies (de Winter and Oxnard, 2001), activity
timing, diet, and habitat (Barton et al., 1995; Barton, 1996), spatial
learning and memory (Jacobs et al., 1990), visual specialisation
(Barton, 1998, 2004), sex differences in behaviour (Jacobs, 1996;
Lindenfors et al., 2007), and variation in group size (Dunbar,
1992). Among birds, there is a significant correlation between
the relative volume of song control nuclei and the number of
song types typically found in the repertoire (Devoogd et al.,
1993), however, to date there has been no similar research among
mammals.

Several studies have highlighted changes in brain size as a key
factor in species adaptation. For example, bigger relative brain
size has been related to higher cognitive ability among primates
(Deaner et al., 2007) and increased survival in mammals, birds,
and reptiles (Sol et al., 2005, 2008; Amiel et al., 2011). Both
relative brain size and relative neocortical volume have also been
cited as important elements in the evolution of human speech,
partly because of their positive correlation with group size (Aiello
and Dunbar, 1993; Dunbar, 2010). Moreover, measures of overall
brain size have recently been suggested to be associated to aspects
of complex behaviour such as self-control (MacLean et al., 2014)
and manipulation complexity (Heldstab et al., 2016). The use of
overall brain size as a relevant measure to explain variation in
behavioural complexity, however, remains contentious because
it does not accurately represent critical neurobiological features
such as modularity and interconnectivity (Chittka and Niven,
2009).

Here, we found no evidence that brain size or neocortex
size (neither relative nor overall) were positively correlated with
vocal repertoire size. However, when considering functionally
specific, cytoarchitectonically defined areas of gross-anatomical
structures, strong correlations were revealed. We focus on
cortical association areas and demonstrate significant positive
correlations with vocal repertoire among primates. Cortical
association areas are areas within the neocortex that underlie
the higher cognitive processing capacities often considered to

TABLE 1 | Results from a phylogenetic ancova procedure on the relative size of
cortical association areas and relative hypoglossal nucleus size, examining
evidence for grade shifts among different primate clades.

pANCOVA

Grouping df F P

Prefrontal

Among groups (humans vs. great apes vs. others) 2,12 15.630 < 0.001

Humans vs. others | great apes vs. others 1,12 30.622 < 0.001

Humans vs. great apes | others 1,12 13.969 0.003

Great apes vs. others | humans 1,12 14.431 0.003

Frontal motor

Among groups (humans vs. great apes vs. others) 2,12 4.930 0.027

Humans vs. others | great apes vs. others 1,12 8.962 0.011

Humans vs. great apes | others 1,12 3.051 0.106

Great apes vs. others | humans 1,12 5.817 0.033

Temporal-parietal

Among groups (humans vs. great apes vs. others) 2,12 11.475 0.002

Humans vs. others | great apes vs. others 1,12 22.267 0.001

Humans vs. great apes | others 1,12 8.919 0.011

Great apes vs. others | humans 1,12 12.352 0.004

Hypoglossal

Among groups (humans vs. great apes vs. others) 2,42 3.866 0.029

Humans vs. others | great apes vs. others 1,42 7.355 0.010

Humans vs. great apes | others 1,42 4.427 0.041

Great apes vs. others | humans 1,42 2.071 0.158
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be the foundation for the complex forms of behaviour observed
in primates (Miller, 2000). The prefrontal cortex, for example,
specifies the spatial and object goals of action, which can include
a series of goals in the context of planning or performing
sequences of action (Mushiake et al., 2006; Shima et al., 2007;
Yamagata et al., 2012). Prefrontal-parietal function has been
argued to aid in reducing errors during foraging choices and
to provide a context for generating foraging goals (Genovesio
et al., 2014). Overall, the nature of the processing capacities that
underlie the cortical association areas can be understood as an
increased voluntary control over behavioural output governed
by an increased foresight, insight, and hindsight in the potential
relevance of environmental cues (Fuster, 1997; Miller and Cohen,
2001; Passingham et al., 2016). Our findings that the relative
sizes of cortical association areas are strongly correlated with
vocal repertoire size suggest that vocal complexity coevolved
with increases in such higher cognitive processing capacities.
However, more research is necessary to understand the exact
causal factors driving this relationship.

Particularly intriguing is the positive association between
the hypoglossal nucleus and the cortical association areas
in hominoids, most strongly observed with the prefrontal
cortex. These results align with previous work reporting direct
corticoefferent projections to the orofacial motor neurons in
humans (Iwatsubo et al., 1990; Jürgens and Alipour, 2002;
Simonyan and Jürgens, 2003), but an absence of such direct
projections in macaques (Jürgens and Alipour, 2002). Direct
neocortical projections to motor neurons in the human brain
stem have traditionally been interpreted as indicative of increased
cognitive control over the muscles that are innervated by those
motor neurons (Kuypers, 1958; Pearce et al., 2003; Rödel et al.,
2003). Our results confirm these earlier findings and suggest
that the increased corticoefferent projections in hominoids and
humans may stem primarily from cortical association areas
(and the prefrontal cortex in particular). The positive trend in
hominoids between cortical association areas and the hypoglossal
nucleus suggests an increased cognitive control over the tongue in
hominoids, with humans lying at the high end of this correlation.

One key difference that has been highlighted between human
speech and primate vocalisations is that the former is learned
while the latter is innate or reflexive (Fitch, 2000). In light of
our results, this difference may be understood as an expansion
of the voluntary control over vocalisations in hominoids and
humans. Given that both the cortical association areas (Deacon,
1990) and the hypoglossal nucleus are significantly expanded
in great apes and humans, it may be argued that the cortical
association areas exerted more influence over the innervation of
the tongue. Larger neural areas are known to exert more influence
over overall brain function by means of increased connexional
invasion (Deacon, 1990). This process allows hypertrophied areas
to invade targets they did not innervate ancestrally, and/or to
increase target innervation relative to the ancestral condition.
Such new connexions may displace old connexions causing
the hypertrophied areas to exert more influence over brain
functioning.

Overall, our results support the idea of a qualitative
continuity in the association between vocal repertoire and higher

cognitive processing capacities by demonstrating a significant
comparative correlation between cortical association areas and
vocal repertoire size across non-human primates. Our results
also suggest a quantitative discontinuity of prefrontal inputs
supporting the transition from more reflexive vocalisations in
non-human primates toward more learned complex vocalisations
underlying human speech. We suggest that this quantitative
discontinuity is based on increased innervation of cortical
association areas to subcortical areas involved in speech
production in great apes and humans (e.g., the hypoglossal
nucleus). An interesting next step would be to evaluate whether
such continuities/discontinuities are also found across other
mammalian clades, with a particular focus on species capable
of vocal learning. Recent research on the evolution of the
cerebellum demonstrates that species capable of vocal learning
exhibit significantly larger lateral cerebella than those that are
not, suggestive of an evolutionary association between changes
in cerebellar processing and cognition (Smaers et al., 2018).

Future work should continue attempting to match behavioural
and brain data for a wide variety of species in a continued
endeavour to investigate the evolutionary/comparative basis of
behaviour. For example, cortical association areas may also be
relevant in explaining other aspects of complex behaviour (e.g.,
deception, tool use, or self-control). Underlying this endeavour
lies a continued effort to collect comparative neuroanatomical
data. Data on the nucleus ambiguous (which is associated with
the vagus nerve that innervates the larynx) would, for example,
allow for a more direct test on the neural substrates of vocal
production and the evolution of human speech (Fitch, 2011).
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