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Abstract

Colour discrimination has been widely studied in red-green (R-G) dichromats but the extent

to which their colour constancy is affected remains unclear. This work estimated the extent

of colour constancy for four normal trichromatic observers and seven R-G dichromats when

viewing natural scenes under simulated daylight illuminants. Hyperspectral imaging data

from natural scenes were used to generate the stimuli on a calibrated CRT display. In exper-

iment 1, observers viewed a reference scene illuminated by daylight with a correlated colour

temperature (CCT) of 6700K; observers then viewed sequentially two versions of the same

scene, one illuminated by either a higher or lower CCT (condition 1, pure CCT change with

constant luminance) or a higher or lower average luminance (condition 2, pure luminance

change with a constant CCT). The observers’ task was to identify the version of the scene

that looked different from the reference scene. Thresholds for detecting a pure CCT change

or a pure luminance change were estimated, and it was found that those for R-G dichromats

were marginally higher than for normal trichromats regarding CCT. In experiment 2, observ-

ers viewed sequentially a reference scene and a comparison scene with a CCT change or a

luminance change above threshold for each observer. The observers’ task was to identify

whether or not the change was an intensity change. No significant differences were found

between the responses of normal trichromats and dichromats. These data suggest robust

colour constancy mechanisms along daylight locus in R-G dichromacy.

Introduction

Normal trichromatic colour vision is colour constant, i.e., has the ability to partially discount

the effects of the colour of the illumination on the perception of the surface colours of objects.

The phenomenon of colour constancy has been extensively studied in normal colour vision [1]

but has been little studied in defective colour vision, in particular in dichromacy, where the

absence of one cone photopigment class severely impairs colour discrimination [2].

The most common form of dichromacy is red-green (R-G) dichromacy which is a geneti-

cally determined abnormality of the retinal pigments sensitive to medium (M pigment) or
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long (L pigment) wavelengths, affecting around 2% of males and 0.02% of females [2]. R-G

dichromats are classified as protanopes or deuteranopes. Protanopia is caused by the substitu-

tion of L-photopigment by M-photopigment in the L-cones; deuteranopia is caused by the

substitution of M-photopigment by L-photopigment in the M-cones [3], and in some rare

cases either may be caused by photoreceptor loss [4]. Consequently, for practical purposes

R-G dichromats only have two types of functional cones: in addition to S-cones, protanopes

have operative M-cones whereas deuteranopes have operative L-cones. Given the absence of

one of the pigments, colour discrimination in R-G dichromats is impaired along the R-G con-

fusion lines [5] resulting in the perception of only a small gamut of the colours normal observ-

ers can perceive [6,7]. The famous description by John Dalton (a deuteranope himself [8]) of

the pink flowers of a cranesbill, which appeared to him sky-blue by daylight but near yellow by

candlelight [9], suggests that colour constancy may also be impaired in dichromacy.

In normal colour vision colour constancy has been experimentally accessed in diverse ways

(for a detailed review, see Foster [1]): by asymmetric colour matching, colour naming, achro-

matic adjustment and by the performance in tasks requiring discrimination of illuminant

changes from surface-reflectance changes. In dichromatic colour vision, however, studies have

mainly used discrimination of illuminant changes from surface-reflectance changes and both

achromatic matches and asymmetric paper matches. In the former, R-G dichromats showed

less constancy than normal controls with Munsell samples [10,11] but almost normal con-

stancy with natural scenes [11]. In experiments using achromatic matching, similar colour

constancy was found for normal observers and R-G dichromats in the three axes tested [R-G

cardinal axis, yellow-blue (Y-B) cardinal axis and Planckian locus] despite the R-G dichromats’

poorer colour discrimination in the R-G axis [12]. In experiments based on paper matches, a

similar degree of adaptation to the illuminant was found for normal and R-G dichromats [13].

Together, this research suggests that colour constancy is, at least for natural surfaces and natu-

ral illuminants (and contrary to what could be inferred from John Dalton’s description of the

colour of cranesbills), as efficient in dichromacy as in normal trichromacy. None of these stud-

ies, however, tested colour constancy with real natural images and global illuminant changes.

The aim of the work reported here was to test colour constancy in dichromacy with natural

images and natural illuminants. Spectral reflectance data from natural images were obtained

by hyperspectral imaging and used to build the stimuli. The experiments were based on an

experimental paradigm reported recently [14,15] which estimates thresholds to perceive

changes in a scene due to global illuminant changes. This experimental methodology is partic-

ularly well suited to test colour constancy on natural viewing conditions as it measures the sen-

sitivity to detect chromatic changes in a complex natural image.

Methods

Stimuli

Images of the scenes used in this study were rendered using hyperspectral imaging of natural

scenes. The spectral range used was from 400 to 720 nm, with a spectral resolution of 10 nm.

Two scenes of rural and two scenes of urban environments (as depicted in Fig 1) were selected

from an existing database [16]. The images were presented on a CRT colour display, subtended

an angle of 10˚ in the horizontal axis and were observed at 60 cm. Images were trimmed about

70 pixels from their original resolution to delete the reflectance standard reference from the

scene and to match them in resolution. Images were also subsampled every other pixel from

the original resolution of 1270x1017 pixels, so the image rendering system was able to cope

with the images’ digital size. To simulate the effect of different illuminants on the images, the

reflectance spectrum of each pixel of the scenes was multiplied by each illuminant spectrum.
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Illuminants were simulations of daylight of variable correlated colour temperature (CCT)

synthetized from Judd’s daylight spectral basis functions [17].

There were two experimental conditions applied. In condition 1 the colour of the simulated

illumination was changed. Each scene was rendered assuming an illuminant with a CCT in the

range 4012–41231 K (249.25–24.25 MK-1) in 10 steps, equally spaced by 25 MK-1 (see Fig 2;

where yellowish illuminants are represented by yellow triangles and bluish illuminants are rep-

resented by blue triangles). The CCT was spaced in reciprocal colour temperature (MK-1) to

ensure visual uniformity [5]. The average luminance was kept constant at 10 cd/m2. In condi-

tion 2 the intensity of the simulated illumination was changed. Each scene was rendered with a

constant CCT of 6700 K (149.25 MK-1, selected as the neutral point of the CCT testing inter-

val) and the average luminance was adjusted in the range of 6–15 cd/m2 in 10 steps equally

spaced by 1 cd/m2. For all conditions and scenes tested at least�90% of the pixels above 10 cd/

m2 were inside the screen colour gamut or the displayed colour was deviated less than 2 JND

(ΔE�ab� 2.3) from the intended colour. The ΔE�ab = 2.3 value was around the threshold of

chromatic discrimination for complex coloured images [18,19].

Apparatus

The images of the scenes were displayed on a Sony–GDM F520 (Sony Corporation, Tokyo,

Japan) controlled by a video card (ViSaGe Visual Stimulus Generator; Cambridge Research

Systems, Rochester, Kent, UK) in 24-bits-per-pixel true-colour mode. The screen was

Fig 1. Images of the scenes used as stimuli rendered under the standard illuminant D67. The images

were retrieved from a database of images with hyperspectral data of natural scenes [16] which can be freely

accessed and used from: http://online.uminho.pt/pessoas/smcn/hsi_2004/hsi_2004.html.

https://doi.org/10.1371/journal.pone.0180310.g001
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calibrated in colour and luminance with a telespectroradiometer (PR-650 SpectraScan Color-

imeter; Photo Research, Chatsworth, CA). A CB6 response box (Cambridge Research Systems,

Rochester, Kent, UK) was used to register the observer’s responses.

General procedure

The procedure was similar to that used by Pearce et al. [14] and Radonjić et al. [15] in a study

with normal observers and real illuminants. The experiments were performed inside a dark

room. At the beginning of each session, the observers viewed a uniform grey background with

a CCT of 6700 K and a luminance of 10 cd/m2 for 5 minutes.

Experiment 1: Thresholds for detecting a change

First experiment (a two-alternative forced-choice task) measured thresholds for detecting a

change in the colour or in the intensity of the illuminant. Each observer performed 800 trials

in one session: 4 scenes x 10 levels in each condition x 2 conditions (CCT or luminance

change) x 10 repetitions. There were three automatic breaks every 200 trials (� 20 minutes).

During the breaks the grey adaptation background was presented. All the trials had the same

structure (see Fig 3). After a short presentation of a black background (400 ms), the reference

image (6700 K and 10 cd/m2) appeared for 2 s. This was followed by another short presenta-

tion of the background (400 ms) and then the first comparison scene for 1 s. After another

Fig 2. Daylight illuminants used in condition 1. In this condition only the colour of the illumination changed.

The reference illuminant was always D67 (grey triangle). Each scene was rendered with a CCT in the range

4012–41231 K (249.25–24.25 MK-1; yellowish illuminants are represented by yellow triangles; bluish

illuminants are represented by blue triangles), in steps of 25 MK-1.

https://doi.org/10.1371/journal.pone.0180310.g002
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short presentation of the background (400 ms), the second comparison scene was presented

for 1 s. Finally, a black background was presented until a response was made (6.5 s maximum).

One of the comparison scenes was identical to the reference scene, i.e., with the same illumina-

tion; in the other either the CCT or the average luminance was different (see average lumi-

nance change of the second comparison image in Fig 3). The observers had simply to identify

which of the two comparison scenes looked different from the reference scene.

Experiment 2: Identification of the type of perceived changes

Second experiment (a two-alternative forced-choice task) identified how the changes are per-

ceived by different types of observers. Each observer performed 160 trials: 4 scenes x 2 condi-

tions (CCT or luminance change) x 2 supra-threshold levels in each condition (change

towards higher or lower CCT/luminance) x 10 repetitions. All the trials had the same structure.

After a short presentation of a black background (400 ms), the reference image (6700 K and 10

cd/m2) appeared for 2 s. It was followed by another short presentation of background (400 ms)

and a comparison scene for 1 s. Finally, a black background was presented until a response

was made (6.5 s maximum). The average illumination of the comparison scene was different

from the illumination in the reference scene, but it presented either a pure CCT change or a

pure luminance change. The extent of the CCT/luminance change was adapted for each

observer/scene individually, using the threshold results from experiment 1. It was a supra-

threshold change two steps above the 75% threshold computed from experiment 1, assuming

the 10 levels in both conditions as described before. The observers were required to specify

whether or not the change was only in intensity. Observers verbally informed the experimenter

that they understood the task.

Discrimination thresholds task. A discrimination task [20] was used to estimate colour

discrimination thresholds loci using a staircase procedure. Each observer was tested with 500

trials: 25 trials x 20 hues. Each trial presented a square chromatic target on an achromatic static

luminance noise background. Observers were required to indicate the location of the square

(right or left). Discrimination thresholds for each hue were measured on three occasions and

averaged for each observer.

Design

Experiment 1: Thresholds for detecting a change. A two-alternative forced-choice task

measured discrimination thresholds (the dependent variable) in a 3x2x2x4 mixed-measures

design. The independent variable group of observers (normal trichromats, protanopes and

deuteranopes) was the between-subjects factor and the independent variables type of illumina-

tion change (CCT or luminance), change direction (higher or lower) and scene (four scenes,

see Fig 1) were within-subject factors.

Fig 3. Stimuli sequence of an example trial. The reference image was always simulated rendered by D67. In condition 1 the CCT of the illumination

changed in one of the intervals; in condition 2 the intensity of the illumination changed in one of the intervals. The observer’s task was to identify which of

the intervals was different from the reference. Here a luminance change in the second image presentation is illustrated.

https://doi.org/10.1371/journal.pone.0180310.g003
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Experiment 2: Identification of the type of perceived changes. A two-alternative forced-

choice task measured hit rate (the dependent variable) in the same 3x2x2x4 mixed-measures

design as described for experiment 1.

Observers

Eleven observers (4 colour normal, age range 25–36 y; 3 protanopes, age range 22–51 y; 4 deuter-

anopes, age range 22–47 y) participated in the experiments. A one-way ANOVA analysis showed

no significant group differences in age (mean age: colour normal = 30.00 y, SD = 4.69; prota-

nopes = 32.33 y, SD = 16.20; deuteranopes = 35.00 y, SD = 10.86), F(2,8) = 0.21, p = 0.81. All but

two of the authors (LA and JML) were naïve to the experiments’ purposes. Each observer had nor-

mal or corrected-to-normal acuity and their colour vision was tested with Ishihara plates [21], the

Farnsworth-Munsell 100 hue colour vision test [22], the Cambridge Colour Test [23], the Color

Assessment & Diagnosis (CAD) test [24], an in-house adaptation [20] of the Universal Colour

Discrimination Test (UCDT [25]) and performed Rayleigh match in an Oculus HMC anomalo-

scope ([26], see S1 Table for detailed results on colour vision tests). Observers were reimbursed

for their participation in the study. The experiment was conducted in accordance with the Decla-

ration of Helsinki and was granted ethical approval by the Ethics Committee of the University of

Minho (Process SECVS 029/2014). Observers were asked to give written consent before partici-

pating in the study, and were informed of their right to withdraw at any time without penalty.

Results

Experiment 1

A psychometric function was fitted to the data to extract thresholds using a criterion of 75%

towards higher or lower CCT or luminance (see Fig 4). The function was fitted on a non-

Fig 4. Examples of psychometric functions. Thresholds were computed based on a 75% criterion (dashed line) and extracted from fitted psychometric

functions (solid line). Provided examples represent data from a protanope observer for a change towards higher CCT for scene 4 (Fig 4A) and a normal

observer for a change towards lower luminance for scene 2 (Fig 4B).

https://doi.org/10.1371/journal.pone.0180310.g004
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parametric approach which made no assumption about the shape of the true function underly-

ing the experimental data except its smoothness [27].

Thresholds detecting changes on CCT. Fig 5 shows the mean thresholds for the two con-

ditions of experiment 1 for changes towards higher (yellow or light grey bars) or lower (blue or

dark grey bars) CCT or luminance for the four scenes for normal observers (N), protanopes

(P) or deuteranopes (D). Bar colours exhibit the type of illuminant change represented by the

thresholds: yellow bars for changes towards yellowish illuminants (lower CCT); blue bars for

changes towards bluish illuminants (higher CCT); light grey bars for changes towards brighter

illuminants; dark grey bars for changes towards dimmer illuminants. For simplicity, Fig 6

shows similar data to Fig 5 but which are averaged across scenes and observers for normal

observers (N), protanopes (P) or deuteranopes (D).

A mixed-model ANOVA analysis was conducted with group (normal observers, prota-

nopes and deuteranopes) as the between-subjects factor, and change direction (higher or

lower) and scene (scene 1, 2, 3 4) as within-subject factors on the estimated thresholds for

CCT changes in relation to the reference scene (149.25 MK-1, see Fig 5A; Normality of vari-

ables was confirmed by Kolmogorov-Smirnov tests, all p>.05). This analysis did not show any

significant effect of change direction, scene, group or their interactions (all p>.05). In order to

increase statistical power, the same analyses were repeated but combining both dichromat

groups (between-subjects factor with two levels: normal and dichromat). This analysis did

reveal a significant effect of group [two levels, F(1,9) = 6.90, p< .05, η2 = .43, higher thresholds

for dichromats (38.60 MK-1) in relation to normal observers (28.13 MK-1)] but not significant

effects of change direction, scene, or their interactions (all p>.05).

Thresholds detecting changes in intensity. A mixed-model ANOVA analysis was con-

ducted with group (normal observers, protanopes and deuteranopes) as the between-subjects

factor, and change direction (higher or lower) and scene (scene 1, 2, 3 4) as within-subject fac-

tors on the estimated thresholds for luminance changes in relation to the reference scene (10

cd/m2, see Fig 5B). This analysis did not show any significant effect of change direction, scene,

group or their interactions (all p>.05) except for an effect of the interaction of change direc-

tion and scene [F(3,24) = 4.13, p< .05, η2 = .34]. Bonferroni-corrected pairwise comparisons

showed significant differences only on scene 2 towards higher thresholds for the lighter (3.82

cd/m2) than for the darker (2.55 cd/m2) direction. In order to increase statistical power, the

same analyses were repeated but combining both dichromat groups (between-subjects factor

with two levels: normal and dichromat) but there were no significant effect of change direc-

tion, scene, group or their interactions (all p>.05) except for the same effect of the interaction

of change direction and scene [F(3,27) = 5.28, p< .04, η2 = .37] (Bonferroni-corrected pairwise

comparisons showed significant differences only on scene 2 towards higher thresholds for the

lighter direction).

Comparison between colour and illuminant discrimination thresholds. Fig 7 compares

CCT discrimination thresholds from the current experiment with those from Pearce et al. (see

Fig 2C in [14]) in CIELUV colour space (u� and v� units were used to allow a direct compari-

son). The results are similar for normal observers in both experiments and also between differ-

ent types of observers in the current experiment, especially for yellowish illuminants. The

small differences may result from different sampling of the background colours [14,15].

Fig 8 shows the mean thresholds transformed to ΔE�uv units for the CCT condition (values

from Fig 6A) of experiment 1 for the two illumination change directions (towards yellowish illu-

minants, yellow circles; towards bluish illuminants, blue circles) in relation with the reference

illuminant (u´, = 0.1968; v´ = 0.4663) for normal observers (N), protanopes (P) or deuteranopes

(D). Fig 8 also represents the colour discrimination thresholds along daylight locus (yellow/blue

dashes). These discrimination thresholds loci were estimated from the discrimination ellipses
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Fig 5. Thresholds for the four scenes in experiment 1. Mean reciprocal CCT (in MK-1, Fig 5A) or luminance (in cd/m2, Fig 5B)

thresholds towards higher (yellow bars in 5A; light grey bars in 5B) or lower (blue bars in 5A; dark grey bars in 5B) values in
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obtained using an in-house adaptation [20] of the UCDT [25]. The two intersections (bluish/

yellowish illuminants) between the individual’s discrimination ellipse and the corresponding

illuminant segment of the line represented in Fig 2 were calculated. These values are the estima-

tions of the colour discrimination thresholds along daylight locus in Fig 8 (blue/yellow dashes).

A mixed-model ANOVA analysis was conducted with group (normal observers, prota-

nopes and deuteranopes) as the between-subjects factor and discrimination type (illuminant

or chromatic discrimination, circles and dashes in Fig 8) and direction (yellowish or bluish) as

within-subject factors on the estimated ΔE�uv thresholds. This analysis revealed a significant

main effect of discrimination type [F(1,8) = 201.67, p< .001, η2 = .96; lower thresholds for

chromatic discrimination (ΔE�uv = 6.38) in relation to illuminant discrimination (ΔE�uv =

24.26)], of direction [F(1,8) = 8.40, p< .05, η2 = .51; higher discrimination thresholds towards

bluish direction (ΔE�uv = 17.37) in relation to yellowish direction (ΔE�uv = 13.26)] and of

group of observers [F(2,8) = 4.52, p< .05, η2 = .53; Bonferroni-corrected pairwise comparisons

did not show significant differences between the three groups; LSD pairwise comparisons

showed higher thresholds for protanopes (ΔE�uv = 17.81) and deuteranopes (ΔE�uv = 16.43) in

relation to normal observers (ΔE�uv = 11.72), both p< .05] but no effect of their interactions

(all p>.05). There was no significant Pearson correlation between the yellow or bluish illumi-

nant discrimination thresholds and the colour discrimination thresholds for none of the

groups of observers either collapsing or not collapsing the two dichromat groups (R2 = 0.01–

0.41, all p>.05, see S1 Fig).

Experiment 2

In order to discard that dichromat observers could use their particular intensity perception as

a cue to detect the CCT changes, experiment 2 required the observers to identify if the change

was a pure luminance change or not.

Fig 9 shows the mean hit rates for the two conditions of illuminant change identification of

experiment 2 (reciprocal CCT, Fig 9A; luminance, Fig 9B) towards higher (yellow or light grey

bars) or lower (blue or dark grey bars) CCT or luminance in relation to the reference scene

(149.25 MK-1 and 10 cd/m2) for the four scenes for normal observers (N), protanopes (P) or

deuteranopes (D). For simplicity, Fig 10 shows similar data to Fig 9 but averaged across scenes

and observers for normal observers (N), protanopes (P) or deuteranopes (D).

A mixed-model ANOVA analysis was conducted with group (normal observers, prota-

nopes and deuteranopes) as the between-subjects factor and type of change (CCT or lumi-

nance), change direction (higher or lower) and scene (scene 1, 2, 3 4) as within-subject factors

on the hit rates obtained in experiment 2, with the Greenhouse–Geisser correction applied

when appropriate. This analysis showed a significant effect of scene [F(3,24) = 3.52, p< .05,

η2 = .31], and of the interaction between type of change and direction [F(1,8) = 8.32, p< .05,

η2 = .51], but no effect of type of change, change direction, scene, group of observers or any

other interaction (all p>.05). Bonferroni-corrected pairwise comparisons did not show signifi-

cant differences between the four scenes used [LSD pairwise comparisons showed a signifi-

cantly lower hit rate for scene 2 (.75) in relation to scenes 1 (.85) and 3 (.88), both p< .05] but

showed differences between the two change directions only in the CCT condition [higher hit

rate for changes towards yellowish illuminants (.92) in relation to bluish illuminants (.73)]. In

order to increase statistical power, same analyses were repeated but combining both dichromat

relation to the reference scene (149.25 MK-1 and 10 cd/m2) for normal observers (N), protanopes (P) or deuteranopes (D) for the

four scenes (see x-axis). Error bars show standard error of the mean (SEM). The lack of an error bar in some conditions/groups is

due to lack of variability in the data.

https://doi.org/10.1371/journal.pone.0180310.g005
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Fig 6. Thresholds for experiment 1 averaged across scenes. Mean reciprocal CCT (in MK-1, Fig 6A) or luminance (in cd/m2, Fig

6B) thresholds towards higher (yellow bars in 6A; light grey bars in 6B) or lower (blue bars in 6A; dark grey bars in 6B) values in
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groups (between-subjects factor with two levels: normal and dichromat), with the Green-

house–Geisser correction applied when appropriate. This analysis did not reveal any signifi-

cant effect of change type, change direction, scene, group or their interactions (all p>.05).

Discussion

The main purpose of this work was to test how normal trichromats and colour deficient

observers perceived changes in the colour or the intensity of illuminants on complex images of

natural scenes. It was found that R-G dichromats detect natural changes in the colour of the

illumination in natural scenes slightly worse than normal trichromats do. The magnitude of

the difference between normal trichromats and dichromats was 10.47 MK-1 which is far from

the average threshold for normal observers towards bluish (30.54 MK-1) or yellowish direction

(25.72 MK-1). Thus illuminant discrimination thresholds of R-G dichromats are comparable

to those of normal observers. No differences were found regarding the detection of changes in

the intensity of illuminants. Thus R-G dichromats detect natural changes in the intensity of

the illumination in natural scenes at the same level as normal trichromats do. The CCT and

luminance discrimination thresholds were similar independently of the scenes used, which

implies that the type of scene does not impact the final outcome. These results suggest that col-

our constancy mechanisms are robust for R-G dichromats over the daylight illuminants tested

relation with the reference scene (149.25 MK-1 and 10 cd/m2) for normal observers (N), protanopes (P) or deuteranopes (D)

averaged across scenes. Error bars show SEM.

https://doi.org/10.1371/journal.pone.0180310.g006

Fig 7. Mean thresholds for illuminants along daylight locus, plotted in CIE u*v* coordinates. Reference white corresponds to D67 illuminant

(u* = 0, v* = 0, grey triangle). Data for normal observers in Pearce et al. ([14], open circles) in comparison with normal observers (solid circles),

protanopes (squares) and deuteranopes (diamonds) in this study. Yellowish illuminants are represented as yellow symbols; bluish illuminants are

represented as blue symbols.

https://doi.org/10.1371/journal.pone.0180310.g007
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and are comparable to those of normal trichromats, a result supported on the basis of the filter-

ing properties of the dichromatic colour system [28]. Although these constancy levels hold for

natural lighting, it is unclear whether they hold for other more artificial lighting such as those

tested by Pearce et al. [14].

In the experimental paradigm adaptation may not be complete because the times involved

in the presentation of the stimuli are short. Detection of changes could therefore be driven by

single surface detection mechanisms and be unrelated to colour constancy. However, thresh-

olds for detecting CCT changes were much larger than thresholds for colour discrimination in

the same area of the colour space (both differed in 17.88 ΔE�uv units). Moreover, there was no

linear relation between both types of thresholds in any observers’ group. Thus, colour discrim-

ination and illuminant discrimination are unlikely to be related in this task. There has been

some debate about the strong colour constancy mechanisms in R-G dichromats arising from

the weaker chromatic discrimination in these observers [12]. The dissimilarity of the CCT and

the chromatic discrimination thresholds suggests the action of independent mechanisms for

colour discrimination and colour constancy both in normal observers and in R-G dichromats.

Fig 8. Mean illuminant discrimination and mean colour discrimination thresholds along daylight locus. Circles correspond to

thresholds in ΔE*uv for illuminants along daylight locus for the two illumination change directions of the CCT condition (towards yellowish

illuminants, yellow circles; towards bluish illuminants, blue circles) of experiment 1 in relation with the reference illuminant (u´, = 0.1968;

v´ = 0.4663; Y = 10 cd/m2). Dashes correspond to the colour discrimination thresholds along daylight locus in ΔE*uv for the two

illumination directions in Fig 2 (yellowish illuminants, yellow dashes; bluish illuminants, blue dashes) in relation with the reference white

(u´, = 0.1947; v´ = 0.4639; Y = 11 cd/m2). Mean thresholds correspond to normal observers (N), protanopes (P) or deuteranopes (D, see

x-axis). Error bars show SEM.

https://doi.org/10.1371/journal.pone.0180310.g008
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Fig 9. Mean hit rates for the four scenes in experiment 2. Mean reciprocal CCT (Fig 9A) or luminance (Fig 9B) change

identification hit rate towards higher (yellow bars in 9A; light grey bars in 9B) or lower (blue bars in 9A; dark grey bars in 9B)

values for normal observers (N), protanopes (P) or deuteranopes (D) for the four scenes (see x-axis). Error bars show SEM.

The lack of an error bar in some conditions/groups is due to lack of variability in the data.

https://doi.org/10.1371/journal.pone.0180310.g009
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Fig 10. Mean hit rates for experiment 2 averaged across scenes. Mean reciprocal CCT (Fig 10A) or luminance (Fig 10B)

change identification hit rate towards higher (yellow bars in 10A; light grey bars in 10B) or lower (blue bars in 10A; dark grey bars

in 10B) values for normal observers (N), protanopes (P) or deuteranopes (D) averaged across scenes. Error bars show SEM.

https://doi.org/10.1371/journal.pone.0180310.g010
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In experiment 2 it is shown that R-G dichromats also identify the quality of illumination

changes, colour or intensity, in the same way as normal trichromats. This rules out the possi-

bility of intensity changes being used as a cue to identify colour changes in our experiments, as

suggested in other context by several works as Jameson and Hurvich [29] or Wachtler, Dohr-

mann and Hertel [30].

The task used in the first experiment was similar to the task previously used by Pearce et al.

[14] and Radonjić et al. [15] with normal trichromats. Fig 7 shows high similarity in the mean

discrimination accuracy along the yellow-blue line between the normal observers of this study

and those of Pearce et al. [14]. Although the task was the same in both studies, the stimuli were

quite different. However, the similarity in the overall results suggests that both studies measured

the same colour constancy mechanisms in normal observers, again despite the different stimuli.

Colour constancy mechanisms of normal observers both in the current study and in previ-

ous research [14,31,32] are optimised for bluish illuminants. This trend also appears for the

R-G dichromats included in this study. However, our data do not support the influence of

stimulus content in the CCT discrimination thresholds, as has been also previously reported

[15]. The absence of a scene effect in the current research may arise from a lack of power due

to a limited number of observers. This fact along with the impossibility of capturing a differ-

ence between normal trichromats and the two groups of dichromats as separate groups suggest

that future research will benefit of a larger number of observers and scenes.

These results confirm previous research [10,11] proposing strong colour constancy mecha-

nisms in R-G dichromats with natural scenes and illuminants along the daylight locus, and

also other studies suggesting independency between chromatic discrimination and colour con-

stancy [12,32].
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Formal analysis: Leticia Álvaro, Humberto Moreira, Sérgio M. C. Nascimento.
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