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Abstract
Background: Acute thrombotic syndromes lead to atherosclerotic plaque rupture 
with subsequent thrombus formation, myocardial infarction and stroke. Following 
rupture, flowing blood is exposed to plaque components, including collagen, which 
triggers platelet activation and aggregation. However, plaque rupture releases other 
components into the surrounding vessel which have the potential to influence plate-
let function and thrombus formation.
Objectives: Here we sought to elucidate whether matrix metalloproteinase- 13 
(MMP- 13), a collagenolytic metalloproteinase up- regulated in atherothrombotic and 
inflammatory conditions, affects platelet aggregation and thrombus formation.
Results: We demonstrate that MMP- 13 is able to bind to platelet receptors alphaIIb-
beta3 (αIIbβ3) and platelet glycoprotein (GP)VI. The interactions between MMP- 13, 
GPVI and αIIbβ3 are sufficient to significantly inhibit washed platelet aggregation 
and decrease thrombus formation on fibrillar collagen.
Conclusions: Our data demonstrate a role for MMP- 13 in the inhibition of both plate-
let aggregation and thrombus formation in whole flowing blood, and may provide 
new avenues of research into the mechanisms underlying the subtle role of MMP- 13 
in atherothrombotic pathologies.
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GPVI collagen receptor, Integrin alphaIIbbeta3 (αIIbβ3), matrix metalloproteinase-13, 
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Essentials
• MMP-13 has the potential to influence platelet function and thrombus formation directly.
• We sought to elucidate whether MMP-13 is able to bind to specific platelet receptors.
• MMP-13 is able to bind to platelet alphaIIbbeta3 (αIIbβ3) and glycoprotein (GP)VI.
• These interactions are sufficient to inhibit platelet aggregation and thrombus formation.
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1  | INTRODUCTION

Platelet- extracellular matrix and platelet–platelet adhesions are cen-
tral to the formation of thrombi. MMP- 13 is up- regulated in inflam-
mation, and is elevated in the atherosclerotic plaque, contributing to 
its vulnerability.1 It is also implicated in the progression and remod-
elling of cerebral tissue in stroke.2 Plaque rupture releases MMP- 13 
into the local environment where it has direct access to plasma pro-
teins, blood cells, and platelets. Following injury to the blood vessel 
wall, specific platelet receptors mediate platelet–collagen and plate-
let–platelet interactions. GPIbα binds to immobilized von Willebrand 
factor (VWF) in the vessel wall, initiating platelet capture,3 and gly-
coprotein (GP)VI binds directly to collagen and activates platelets. 
Integrin α2β1 stabilises the early stages of the platelet- collagen in-
teraction, and integrin αIIbβ3 supports platelet–platelet interactions 
mediated by fibrinogen and VWF.4–7

MMP- 2 and - 9 have previously been shown to bind to platelet 
receptors and/or to modulate platelet function.8–13 Here, we hy-
pothesized that MMP- 13 may also interact directly with platelet re-
ceptors GPVI, integrin α2β1, or the platelet adhesive integrin αIIbβ3 
to modulate platelet adhesion, aggregation and thrombus formation. 
Our work identifies potential roles for MMP- 13 in modulating the 
recruitment or activation of platelets in thrombotic pathologies.

2  | METHODS

2.1 | MMP- 13 expression, purification and activation

ProMMP- 13 and its MMP- 13 catalytic (CAT, 249- 451) domain 
were expressed, purified, activated, and dialysed as previously de-
scribed.14–16 The structurally homologous but catalytically inactive 
proMMP- 13(E204A) was a kind gift from Dr. R. Visse (Kennedy Institute 
of Rheumatology Division, Imperial College London, London, 
UK). GST- Hemopexin (HPX) domain (264- 471) was expressed in 
E. coli using the pGEX- 2T expression vector, the forward primer 
TCCGCGTGGATCCCTCTATGGTCCAGGAGATGAA and the reverse 
primer GCAA- ATTCCATTTTGTGGTGTTGAAGAATTCAT, which contain 
BamHI and EcoRI restriction sites respectively, as previously described.16

2.2 | Washed platelet preparation and platelet 
adhesion assays

Plates were coated with 10 μg/ml MMP- 13 variants in Tris buff-
ered saline (TBS) for 1 h at 24°C. Plates were then blocked with 
5% BSA in TBS for 20 minutes at 24°C and washed with TBS  
prior to the addition of washed platelets. Platelets were puri-
fied and adhesion assays conducted as previously described.17,18 
Glanzmann thrombasthenic blood was kindly provided by 
Prof M. Makris, Royal Hallamshire Hospital, Sheffield, UK. 
GR144053 (4- [4- [4- (aminoiminomethyl)phenyl]- 1- piperazinyl]- 1- 
piperidineacetic acid hydrochloride trihydrate) was purchased from 
Calbiochem, Nottingham, UK. The α2β1 integrin- binding peptide 
GFOGER (GPC[GPP]5- GFOGER- [GPP]5- GPC) and GPVI- binding 

peptide CRP-XL (GCO-[GPO]10-GCOG); cross- linked where ap-
propriate and the inert GPP10 (GPC- [GPP]10- GPC) were gener-
ated as previously described7 along with the anti–GPVI scFvs 
10B12 and 1C3 and the non- GPVI- binding scFv 2D419–23 which 
were a kind gift from Dr. P. Smethurst. Human fibrinogen type I 
was purchased from Sigma, UK. Anti–α2β1 antibody 6F1 was a kind 
gift from Prof. B. Coller (Mount Sinai Hospital, New York, NY, USA). 
RGDS (Arg- Gly- Asp- Ser) and cyclic RGD (H- Cys- Arg- Gly- Asp- Phe- 
Pro- Ala- Ser- Ser- Cys- OH) were purchased from Bachem, Weil am 
Rhein, Germany. The fibrinogen- derived peptide, Lys- Gln- Ala- 
Gly- Asp- Val (KQAGDV), was purchased from Innovagen, Sweden. 
Inhibitory antibodies/compounds were used at 10 μM (6F1, 10B12, 
1C3, 2D4, cRGD, GR144053, KQAGDV) or 100 μmol L−1 (fibrino-
gen and RGDS).

2.3 | Flow cytometry

In activation experiments, whole blood diluted 1:4 with Hepes buffered 
saline (HBS) was mixed for 10 minutes at 24°C with an equal volume 
of 10 μg/ml mouse anti P- Selectin (Abcam, Cambs, UK) and the fol-
lowing agonists 2 mmol L−1 proMMP- 13(E204A) or MMP- 13, 100 μg/
ml CRP- XL, 100 μg/ml HORM® equine collagen I fibers (Takeda, Linz, 
Austria), thrombin activating peptide (TRAP; 500 μmol L−1; Sigma, 
UK) calcium ionophore A23187 (100 μmol L−1; Sigma UK) or HBS 
(negative control) added. Alexa 488 conjugated anti- mouse (30 μg/
ml final concentration; Jackson Immuno Research, Ely, UK) was 
then added and after 10 minutes at 24°C the volume was made up 
to 500 μl with isotonic solution. After 30 minutes fluorescence was 
measured using an Accuri C6 flow cytometer (BD Biosciences, Oxford, 
UK). In inhibition experiments, whole blood was pre- incubated with 
proMMP- 13(E204A), GR144053 (20 μmol L−1) or 10B12 (10 μg/ml) 
for 20 minutes prior to the addition of CRP- XL.

2.4 | Solid phase adhesion assays

Recombinant human αIIbβ3 and GPVI monomer were obtained from 
R&D Systems (Abingdon, Oxford, UK). Recombinant extracellular 
domain of GPVI (GPVIex, comprising D1D2 (amino acids 1–214; 
42 kDa) fused with the Fc domain of human IgG (GPVI- Fc2, 150 kDa) 
was prepared as previously described.24

HB 96- well plates (Nunc, Langenselbold, Germany) were coated 
with recombinant GPVI monomer or dimer (10 μg/ml in Phosphate- 
Buffered Saline [PBS]) for 1 h at 24°C. All further incubations were 
performed at room temperature for 1 h unless otherwise stated. The 
wells were washed three times with adhesion buffer (1 mg/ml BSA in 
PBS containing 0.1% [v/v] Tween- 20) between each incubation step. 
The wells were then blocked with 50 mg/ml BSA in TBS prior to the 
addition of MMP- 13 at a concentration of 83 nmol L−1 (unless other-
wise stated) for 1 h at 24°C in adhesion buffer. Rabbit anti- MMP- 13, 
raised against MMP- 13 hinge region (Abcam, Cambridge, UK), and 
goat anti- rabbit HRP (Dako, Stockport, UK) were added at a dilution 
of 1:2000 in adhesion buffer prior to the addition of a TMB substrate 
system (Sigma, UK) and the plates read at 450 nm.
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2.5 | Aggregometry

Washed platelet aggregation was performed using a Chrono- Log turbi-
dimetric aggregometer (Labmedics, Abingdon on Thames, UK). 250 μL 
aliquots of platelets, 2 × 108/mL in calcium- free Tyrodes buffer (CFT), 
were pre- incubated for 1 h with 80 nmol L−1 MMP- 13 or vehicle con-
trol prior to the addition of receptor agonists in a maximum volume of 
5 μL. Thrombin, calcium ionophore A23187 (San Diego, CA, USA), bo-
vine collagen I fibers (Ethicon Corp, Somerville, NJ, USA), HORM® and 
CRP–XL were prepared and employed to activate platelets as previously 
described.25,26 Aggregations were allowed to proceed for 5 minutes.

2.6 | Cleavage of platelet receptors and their 
substrates by MMP- 13

Recombinant human (rh)GPVI, purified αIIbβ3 (100 μg/mL, R&D 
Systems) and human fibrinogen type I (1 mg/mL) were incubated 
with MMP- 13 or MMP- 13(E204A) (8 μmol L−1 final concentration) 
for 2 h at 37°C. An equal volume of Tris buffer was used as a nega-
tive control. Reducing sample buffer was then added to the mixture 
in preparation for electrophoresis and Western blotting.

2.7 | In vitro sheddase activity assays

Dialysed MMP- 13 at a final concentration of 130 nmol L–1 was in-
cubated with washed platelets for 60 minutes at 37°C. Positive 
controls for shedding included thrombin (1 U/mL, Sigma, UK) com-
bined with fibrous type I collagen (1 mg/mL), the calcium ionophore 
A23187 (1 μg/mL). The platelets were then pelleted at 1500 g for 
1 minute. The supernatants were aspirated and centrifuged again 
to ensure platelet depletion. This new supernatant was retained for 
analysis. Where indicated, platelet lysate was resuspended in reduc-
ing sample buffer.

2.8 | Electrophoresis and Western blotting

Protein samples in reducing sample buffer were boiled for 5 minutes 
and applied to 4- 12% NuPage Gels and separated by electrophore-
sis using the Xcell SureLock system (Invitrogen, Paisley, UK) under 
reducing conditions. Proteins were then transferred on to nitrocel-
lulose membrane (Millipore, Bedford, UK) at 40 V overnight at 4°C 
using a Mini Protean II system (Bio- Rad, Hemel Hempstead, UK). 
Following transfer, the PVDF was blocked (5% nonfat dry powdered 

F IGURE  1 Washed platelet adhesion 
assays. (A) Platelets adherent to 10 μg/ml 
coated MMP- 13 variants in the presence 
of 2 mmol L−1 Mg2+ (red bars) or 2 mmol L−1 
EDTA (orange bars) where stated. 
Where appropriate, platelets were pre- 
incubated with anti- GPVI, αIIbβ3 or α2β1 
antagonists. BSA and GPP10 were used as 
Mg2+- independent negative controls. The 
platelet α2β1 binding- peptide GFOGER 
was included as an Mg2+ dependent 
positive control. *P < .05; **P < .01; †(one- 
way anova and Holm multiple comparison 
test) relative to untreated platelets in 
either the presence of Mg2+ or EDTA, 
as appropriate. (B) Inhibition of platelet 
adhesion to CRP by anti- GPVI scFvs as 
described above (C) Platelets adherent 
to MMP- 13(E204A) and MMP- 13 CAT 
and HPX domains. CRP- XL was used as 
a positive control. **P < .01 (one- way 
anova and Holm multiple comparison test) 
relative to adhesion to MMP- 13(E204A). 
Data represent mean A405 ± SE of three 
experiments
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milk, 0.1% Tween 20 in TBS) for 1 h and primary antibody was then 
added (1:1000 dilution) and incubated for 2 h at room temperature. 
Anti- human GPVI was a kind gift from Dr. P. Smethurst, and anti- β3 
was obtained from Abcam, Cambridge, UK. Following washes with 
TBST, the membrane was incubated with HRP conjugated second-
ary antibody (1:10000 dilution/TBST) for 1 h at 24°C. The PVDF 
was developed using a chemiluminescent substrate (GE Healthcare, 
Amersham, Bucks, UK).

2.9 | Whole blood perfusion experiments

Whole blood was pre- incubated with either carrier (TBS) or 
80 nmol L−1 MMP- 13 for 1 h prior to perfusion over 10 μg/mL type I 
fibrous collagen as previously described.17,25 Where indicated, slides 
were coated with MMP- 13(E204A) alone as a (negative) control.

3  | RESULTS

Adhesion assays were performed in the presence of 2 mmol L−1 
EDTA or Mg2+ to ablate or support integrin- mediated adhesion. 
Platelet adhesion to MMP- 13 preparations was significantly re-
duced, but not abolished, by EDTA, suggesting both integrin- 
dependent and - independent contributions, whereas EDTA fully 
abolished binding to the collagen- binding integrin- specific peptide 
GFOGER (Figure 1A).

Platelet pre- incubation with the αIIbβ3 antagonists, GR144053, 
cRGD, and RGDS, and with anti- GPVI scFv 10B12 and 1C3, all caused 
a substantial and significant reduction (P < .01) in platelet adhesion 
to proMMP- 13 (Figure 1A), with residual adhesion being observed in 
the presence of EDTA remaining above negative control levels (non-
specific substrates). This may indicate cooperative binding to αIIbβ3 

F IGURE  2 Competition, GPVI and Glanzmann platelet binding assays. (A) MMP- 13(E204A) and either 10B12 or GR144053 were used to 
obtain IC50 values for the inhibition of washed platelet adhesion to 10 μg/ml coated fibrinogen (i, iii) or CRP (ii, iv), respectively. (v) Adhesion 
of MMP- 13(E204A) to recombinant human GPVI monomer and dimer. Plates were coated with 10 μg/ml GPVI or BSA as a negative control. 
MMP- 13(E204A) at a concentration of 83 nM was allowed to adhere for 1 h at room temperature, then detected using an antibody directed 
at the MMP- 13 linker region, as described in Methods. Data represent mean A450 ± SE of three experiments. (B) Platelets from a healthy 
donor (red bars) and from a Glanzmann thombasthenic individual (orange bars) were allowed to adhere to MMP- 13, fibrinogen and CRP- XL 
coated plates. Where appropriate, platelets were pre- incubated with anti- GPVI (1C3), or αIIbβ3 antagonists as described for Figure 1. Data 
represent mean A405 ± SE of duplicate readings for one experiment due to the rarity of the Glanzmann donor
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and GPVI. Interaction between MMP- 13 and integrin α2β1 was less 
prominent, since blocking antibody 6F1 had just a small effect, and 
was not studied further. Platelet pre- incubation with the fibrinogen- 
derived peptide, KQAGDV, had no effect on platelet adhesion, indi-
cating that MMP- 13 binds αIIbβ3 closer to the primary RGD- binding 
site. Soluble fibrinogen also did not block platelet adhesion to MMP- 
13, in line with the need for platelet activation for soluble fibrinogen 
binding to αIIbβ3 to occur, whereas immobilized fibrinogen is already 
competent to bind. The GPVI- specific scFv, 1C3, does not target the 
collagen- binding site at the apex of GPVI, unlike 10B12, and was un-
able to inhibit the adhesion of washed platelets to CRP (Figure 1B). 
1C3 binding requires both GPVI Ig domains and is thought to re-
duce platelet activation by inhibiting receptor clustering; its epitope 
includes isoleucine 148,21,23 located in strand E on the opposite 
face of D2 to the crystal structure dimerization interface located in 
strand G.24 An indifferent control, the anti- HLA- A2 scFv, 2D4, was 
inactive in these experiments. In subsequent experiments, only low 
platelet binding was observed to isolated CAT and HPX domains of 
MMP- 13 in comparison with the intact protein (Figure 1C), indicat-
ing that neither domain alone governs the interaction between the 
MMP and platelets, and supporting the possibility that two sites on 
MMP- 13 cooperate to bind αIIbβ3 and GPVI.

Competition assays in which washed platelets were pre- incubated 
with increasing amounts of the catalytically- dead MMP- 13(E204A) 
provided further evidence that MMP- 13 interacts with both GPVI 
and αIIbβ3; like GR144053 and 10B12, MMP- 13 can compete αIIbβ3 
off immobilized fibrinogen and GPVI off CRP (IC50 150 ng/mL and 
~10 ng/mL respectively; Figures 2A[i- iv]). Solid phase binding as-
says to coated isolated receptors revealed that MMP- 13 was able 
to bind weakly to GPVI monomer, but strongly to the GPVI dimer 
(Figure 2A[v]). Similar assays of adhesion to recombinant αIIbβ3 re-
vealed some binding of its native ligand, fibrinogen, but little or no 
binding of MMP- 13, regardless of whether Mg2+, Mn2+, or Ca2+ was 
present, nor could we detect binding of MMP- 13 to purified αIIbβ3 
(results not shown). Adhesion of αIIbβ3- null Glanzmann platelets to 
MMP- 13, however, was markedly reduced (Figure 2B[i]). Blockade of 
αIIbβ3 on healthy platelets resulted in the same adhesion level as 
seen for αIIbβ3- null platelets. As expected, binding of Glanzmann 
platelets to fibrinogen was abolished (Figure 2B[ii]) and to CRP was 
unaffected (Figure 2B[iii]). Our results indicate that, whilst MMP- 13 
appears able to bind to αIIbβ3 on the platelet surface, recombinant 
αIIbβ3 used here cannot reproduce this effect.

Whilst it was able to cleave the recombinant αIIbβ3 β- chain and 
GPVI in solution, as well as fibrinogen α and β chains (Figure 3A), 

F IGURE  3 Platelet receptor cleavage 
and shedding assays. (A) Degradation 
analysis of recombinant platelet 
receptors by active and MMP- 13(E204A). 
Recombinant human (rh)GPVI and 
purified αIIbβ3 and fibrinogen type I 
were incubated with MMP- 13 or MMP- 
13(E204A) for 2 h at 37°C. An equal 
volume of Tris buffer was used as a 
negative control. Samples were subjected 
to electrophoresis under reducing 
conditions and Coomassie stained. Images 
are representative of three experiments. 
(B) Shedding analysis of platelet receptors. 
Washed platelets were incubated with the 
calcium ionophore A23187, a thrombin 
and collagen type I mixture or MMP- 
13 for 1 h at 37°C. The platelets were 
then pelleted, the supernatant isolated 
and subjected to SDS- PAGE under 
reducing conditions and Western blotted. 
Platelet GPVI and the integrin β3 chain 
were detected using the appropriate 
antibodies as described in materials and 
methods. Recombinant human GPVI or 
αIIbβ3 were loaded onto the gels where 
appropriate as positive controls. Images 
are representative of three experiments
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MMP- 13 was unable to either cause or mediate shedding of either 
receptor in situ (Figure 3B).

Pre- incubation of washed platelets for 1 h with 80 nmol L−1 
MMP- 13(E204A) significantly reduced platelet aggregation to a se-
ries of agonists, and for the mid- range dose of each, analyzed using 
two- way anova, the inhibitory effect of MMP- 13 was significant 
(P < .01). Prominent amongst these stimuli were: CRP- XL, ionophore 
A23187, and bovine fibrillar collagen I, for which it was easier to es-
tablish mid- range doses than for thrombin and equine fibrillar colla-
gen. A summary of results is shown in Figure 4A and representative 
traces in Figure 4B. MMP- 13 does not activate platelets measured by 
flow cytometry: no change in fluorescence using the anti- P- Selectin 
antibody was observed following the incubation of whole blood 
with pro- MMP- 13(E204A) or MMP- 13, whereas clear expression 

was seen following treatment with CRP- XL, TRAP, HORM®, and 
ionophore A23187 (Figure 5A). In addition, MMP- 13 does not pro-
mote the aggregation of washed platelets (Figure 4B[i]). Subsequent 
flow cytometry experiments revealed that unlike the anti- GVI scFv 
10B12, neither proMMP- 13(E204A) nor GR144053 (a potent αIIbβ3 
antagonist) are able to alter secretion following platelet activation 
via CRP- XL (Figure 5B). This would suggest that in solution, the poly-
meric CRP- XL is a more potent ligand than MMP- 13, and that the in-
teraction of MMP- 13 with αIIbβ3 predominates over that with GPVI.

We investigated the influence of MMP- 13 or MMP- 13(E204A) 
on platelet adhesion and activation in flowing blood in vitro, using 
fibrillar collagen I coatings and a shear rate of 1000 s−1. Pre–incuba-
tion of whole blood with MMP- 13 resulted in significantly reduced 
platelet surface coverage (P < .05), mean thrombus height (P < .01), 

F IGURE  4  Inhibition of platelet 
aggregation by MMP- 13(E204A). 
Different agonists were added to washed 
platelets following pre- incubation with 
80 nmol L−1 MMP- 13(E204A). The 
equivalent volume of 0.01 mol L−1 acetic 
acid was used as a negative control. 
Mean donor responses performed in 
duplicate and repeated three times 
with different donors are shown in (A), 
and representative individual traces 
in response to MMP- 13 only, A23187, 
thrombin, cross- linked collagen related 
peptide (CRP- XL), HORM® and type I 
collagen shown in (B)
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and ZV50 (P < .05), using one- way anova and Holm multiple com-
parison test; Figure 6A(i- iii). ZV50 is the height within a Z- stack at 
which thrombus volume = 50% and describes the activation state 
of adhered platelets in flowing human blood.25 Data obtained using 
pre- incubations with MMP- 13(E204A) reached significance only 
for mean thrombus height (P < .05, Figure 6A[ii]). MMP- 13(E204A)- 
coated slides were not able to support platelet adhesion under flow 
(Figure 6A[i- iii]). These results indicate that the interaction of MMP- 
13(E204A) with platelet GPVI and αIIbβ3 is sufficient to reduce 
platelet thrombus height. Catalytically active MMP- 13, whilst unable 
to cleave these receptors off the platelet surface, appears more able 
to inhibit platelet deposition. MMP- 13 co- coated with collagen type 
I did not significantly alter platelet aggregate formation under flow 
conditions (Figure 6B[i- iii]). Interaction of active MMP- 13 with other 
blood components is not excluded by the present work, and further 
study is indicated.

4  | DISCUSSION

We have previously shown that degradation by MMP- 13 has the 
potential to modulate platelet adhesion to collagen.17 MMPs are 
zymogens; proteolysis is required to expose their catalytic site. 
Here we show that surprisingly, all forms of MMP- 13, pro-  and ac-
tive wild type enzyme as well as their catalytically inactive mutant 

counterparts, were able to support a high level of platelet adhe-
sion under static conditions. This adhesion was inhibited by the 
anti- GPVI scFvs 10B12 and 1C3 suggesting that the relatively large 
MMP- 13 occludes the sites of both 10B12 and 1C3 binding on the 
receptor. MMP- 13 was also able to bind strongly to the GPVI dimer. 
Although GPVI dimerization increases upon platelet activation, di-
meric GPVI is also present on resting platelets and is required for 
their initial interaction with exposed collagen.26 Crystallography 
of the proMMP- 13 structure in complex with pro- domain peptides 
revealed a dimeric form as an HPX- mediated dimer like some other 
metalloproteinases, although in this study,27 MMP- 13 was not di-
meric in solution. Conceivably, interaction of MMP- 13 with platelet 
surface GPVI dimer may provide a template for dimerization of the 
MMP. Platelet adhesion to MMP- 13 was also inhibited by the anti- 
αIIbβ3 compound GR144053, and binding of Glanzmanns αIIbβ3- 
null platelets to MMP- 13 was significantly reduced. Following 
pre- incubation of washed platelets with MMP- 13, neither GPVI 
nor αIIbβ3 was shed from the platelet surface. It would appear, 
therefore, that whilst able to bind to platelet αIIbβ3 and GPVI, the 
orientation of MMP- 13 on the platelet surface does not allow ac-
cess of its CAT domain to the cleavage site, which, for other shed-
dases, resides close to the transmembrane region and is regulated 
by membrane structure28 or substrate phosphorylation.29 Pre- 
incubation with MMP- 13 did not result in platelet activation or ag-
gregation. Here it is worth noting that MMP- 13 has been reported 

F IGURE  5 Activation of platelets in whole blood. Whole blood was mixed with anti P- Selectin and the agonists 2 mmol L−1 proMMP- 
13(E204A)/MMP- 13, 100 μg/ml CRP- XL, 100 μg/ml HORM® equine collagen I fibers, thrombin activating peptide (TRAP; 500 μmol L−1) 
calcium ionophore A23187 (100 μmol L−1) or HBS (negative control) added. Alexa 488 conjugated anti- mouse was then added and after 
10 minutes at 24°C the volume was made up to 500 μl with isotonic solution. After 30 minutes fluorescence was measured using an Accuri 
C6 flow cytometer (BD Biosciences, Oxford, UK). Data represent mean A450 ± SE of three separate donors. **P < .005; (one- way anova and 
Holm multiple comparison test)

P- selectin expression following agonist addition(A) (B) P- selectin expression following inhibitor
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to cleave and thus activate PAR- 1 on cardiac cells.30 This has not 
been demonstrated on platelets, and may result in platelet activa-
tion concomitant with αIIbβ3 inhibition, however in this case the 
catalytically inactive proMMP- 13(E204A) is rendered unable to 
cleave the PAR- 1 receptor.

Coated as a substrate, MMP- 13 is independently unable to sup-
port platelet adhesion in whole flowing blood, and its colocalization 
with collagen does not result in an increase in platelet binding. In 
solution however, MMP- 13 is able to interact with platelet recep-
tors GPVI and αIIbβ3 thereby modulating both platelet aggregation 
and thrombus formation under flow. Whilst MMP- 13 is able to com-
pete with immobilized CRP- XL for occupation of the GPVI receptor, 
our flow cytometry experiments reveal that the interaction of the 
MMP with platelets is insufficient to compete with the polymeric 
solution- phase CRP- XL and so alter platelet secretion. In this re-
spect, it behaves much like the αIIbβ3 antagonist, GR144053, and 

it would appear therefore that the inhibitory effects of MMP- 13 
in solution are mediated predominantly through αIIbβ3. At con-
centrations comparable to those reached in stroke patient plasma 
and found to correlate with severity of infarction,31 MMP- 13 can 
interact with both GPVI and αIIbβ3, and can compete with CRP and 
fibrinogen for occupation of these receptors. MMP- 13 is unable to 
cleave GPVI and αIIbβ3 from the platelet surface however, and ap-
pears to exert its effects by direct physical blockade of receptor 
engagement.

Until now, the role of MMP- 13 in atherothrombosis has been con-
sidered to be restricted to collagen proteolysis and remodelling, ren-
dering plaque more friable and prone to rupture.1 However, MMPs 
are now emerging as important mediators of platelet function.32,33 
MMPs - 1 and - 2 are released from activated platelets where they co-
localize with integrins at the sites of platelet–platelet interaction.10,34 
Active MMP- 1 and - 2 can stimulate platelet function, suggesting 

F IGURE  6 Platelet adhesion and 
thrombus deposition on fibrillar type I 
collagen. Untreated whole blood and 
blood pre- incubated with 80 nmol L−1 
MMP- 13 or negative control where stated 
was drawn through a flow chamber for 
5 minutes over (A) collagen type I fibers 
or (B) collagen type I fibers co- coated 
with MMP- 13 using a syringe pump to 
generate a wall shear rate of 1000 s−1, 
corresponding to arteriolar conditions. 
Surface coverage (i) mean height (ii) 
and (iii) ZV50 are the mean taken from 
a minimum of three different donors as 
measured using confocal microscopy. 
*P < .05; **P < .01; (one- way anova and 
Holm multiple comparison test) relative to 
MMP- untreated platelets
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receptor engagement and proteolysis.34,35 MMPs in atherosclerotic 
lesions, released from the injured vessel wall itself or from platelets 
and monocytes, and that can also interact with platelets, are likely 
to interfere with the progression of plaque rupture, subsequent 
thrombosis and its associated pathologies including stroke, reper-
fusion injury, and hemorrhagic transformation. Indeed, these pro-
cesses are associated with an upregulation of MMP activity.2,31,36 In 
mice, MMP- 13 is the key mediator of collagen degradation in ather-
oma and confers instability onto the vulnerability plaque cap.37–39 
Disruption of the blood brain barrier (BBB) by MMPs is associated 
with hemorrhagic transformation following ischemic stroke,36,40,41 
whilst MMPs - 9 and - 13 are implicated in the early pathology of 
stroke progression, and plasma MMP- 13 levels correlate with lesion 
volume.2,31 In addition, the platelet collagen receptor GPVI has been 
identified in models of models of reperfusion injury,42 is associated 
with increased risk of stroke development, and is also seen after 
ischemic stroke.43

Here we demonstrate that MMP- 13 can exert an antithrombotic 
effect; inhibiting platelet aggregation and thrombus formation in 
flowing whole blood. It may be that this metalloproteinase has mul-
tiple roles in the pathology of ischemic stroke; firstly by undermin-
ing the stability of the fibrous cap of atheroma and so promoting 
its rupture, then modulating the BBB to increase bleeding risk, and 
finally acting on platelets to impair the aggregatory interactions, by 
antagonising GPVI and αIIbβ3 which would normally protect against 
bleeding. MMP- 13 would appear therefore to modulate the architec-
ture around sites of infarction to increase both risk of stroke and its 
hemorrhagic complications. The effect of MMP- 13 will depend upon 
its local level and the exposure of MMP- 13- binding matrix compo-
nents and warrants further investigation.
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