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INTRODUCTION

Climate change and the introduction of non-
indigenous species are particularly prevalent conse-
quences of human activities that have potential to
alter marine biodiversity and ecosystem functioning
on a global scale (Rahel & Olden 2008). In particular,
it is anticipated that rising temperatures and increas-
ing levels of atmospheric CO2 (leading to acidifica-

tion of aquatic habitats; Doney et al. 2012) will occur
in tandem (IPCC 2014). It is important, therefore, to
gain mechanistic insights by considering both the
independent effects of temperature and CO2 and
those of non-additive (antagonistic or synergistic)
interactions associated with combined changes in
temperature and CO2 that are hard to predict (Duarte
et al. 2014). Such changes in temperature and CO2

have potential to increase the successful establish-
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ABSTRACT: Global increases in sea temperatures and atmospheric concentrations of CO2 may af-
fect the health of calcifying shellfish. Little is known, however, about how competitive inter actions
within and between species may influence how species respond to multiple stressors. We experi-
mentally assessed separate and combined effects of temperature (12 or 16°C) and atmospheric CO2

concentrations (400 and 1000 ppm) on the health and biological functioning of native (Ostrea edulis)
and invasive (Crassostrea gigas) oysters held alone and in intraspecific or inter specific mixtures. We
found evidence of reduced phagocytosis under elevated CO2 and, when combined with increased
temperature, a reduction in the number of circulating haemocytes.  Generally, C. gigas showed
lower respiration rates relative to O. edulis when the species were in intraspecific or interspecific
mixtures. In contrast, O. edulis showed a higher respiration rate relative to C. gigas when held in an
interspecific mixture and exhibited lower clearance rates when held in intraspecific or interspecific
mixtures. Overall, clearance rates of C. gigas were consistently greater than those of O. edulis. Col-
lectively, our findings indicate that a species’ ability to adapt metabolic processes to environmental
conditions can be modified by biotic context and may make some species (here, C. gigas) competi-
tively superior and less vulnerable to future climatic scenarios at local scales. If these conclusions
are generic, the relative role of species interactions, and other biotic parameters, in altering the out-
comes of climate change will require much greater research emphasis.
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ment of opportunistic invasive species by enhancing
their dispersal (Kokko & López-Sepulcre 2006), sur-
vival (Sorte et al. 2010) or dominance (Smith et al.
2000), or by inhibiting native species (Sorte & White
2013). Some native and invasive species have been
found to respond differently to environmental stress
in aquatic habitats (Tomanek & Zuzow 2010), yet few
experimental studies have explicitly compared their
physiological responses to predicted scenarios of
 climatic change (Sorte & White 2013). Moreover, to
compound this uncertainty, these studies are based
on a limited number of ‘model species’, which may
not encapsulate the full spectrum of physiological
complexity in even closely-related coastal marine
species.

Oysters that build reefs create biogenic habitat im -
portant for estuarine biodiversity (Lenihan & Peter-
son 1998, Grabowski et al. 2012), promote  benthic−
pelagic coupling and fishery production (Barbier
et al. 2011), and can also influence local  benthic
and pelagic community structure (Wheat & Ruesink
2013). The European flat oyster Ostrea edulis (Lin-
naeus 1758) occurs throughout the Atlantic and
Mediterranean coasts of Europe (Airoldi & Beck
2007, Lallias et al. 2007) and is native to parts of
Europe, including the UK. This species historically
has represented one of the most commercially impor-
tant resources in European waters (Beck et al. 2011),
although natural stocks of O. edulis have been in
decline over the last 50 yr (Edwards 1997, Mackenzie
et al. 1997, Laing et al. 2006). In contrast, the Pacific
oyster Crassostrea gigas has proliferated throughout
Europe since its introduction in the mid-1960s (or
possibly much earlier, Humphreys et al. 2014). In
places, this species has become naturalised (Ruesink
et al. 2005); for example, C. gigas natural spatfall was
recorded in the Oosterschelde estuary (southwest
Netherlands) in 1975 (Smaal et al. 2009), and their
presence was reported in the East Frisian Wadden
Sea, North Sea, between 2003 and 2005 (Brandt et al.
2008). C. gigas has been reported in Strangford
Lough in Northern Ireland from the 1990s (Guy &
Roberts 2010), as well as Scotland (Smith et al. 2015)
and as far north as Sweden and Norway (Wrange et
al. 2010). Information from experimental studies on
C. gigas (e.g. Havenhand & Schlegel 2009, Dutertre
et al. 2010) indicate, with high probability, further
spread of this species across Europe, leading to
large-scale biogeographic shifts in coastal marine
communities (Thomas et al. 2016) and potential to
outcompete the native oyster O. edulis.

The potential for competition between C. gigas as a
non-indigenous species and native oysters has been

the subject of debate. For example, in Australia, a
consensus is yet to be reached on whether or not C.
gigas is likely to outcompete the native rock oyster
Saccostrea glomerata (Krassoi et al. 2008, Bishop et
al. 2010). In Europe, initial observations suggested
that the presence of C. gigas would not affect O.
edulis populations, or their settlement and establish-
ment, because the 2 species tend to occupy different
niches (Walne & Helm 1979, Reise et al. 1998). O.
edulis has a more limited tolerance range for salinity
than C. gigas and is commonly found in subtidal or
low intertidal zones (Askew 1972), whilst C. gigas
usually occupies the mid to low intertidal zone
(Askew 1972). Recently, however, it has been recog-
nised that these 2 oyster species are not necessarily
spatially separated in both subtidal and intertidal
habitats. For example, in Sweden and Norway, C.
gigas has been regularly observed in deeper waters
(1−9 m) where O. edulis also occurs, and O. edulis
has been documented occupying intertidal waters
(Bodvin et al. 2010, Dolmer et al. 2014). Furthermore,
C. gigas has been found in subtidal O. edulis beds
in Donegal, Ireland (Tully & Clarke 2012, Zwerschke
et al. 2016), suggesting that C. gigas and O. edulis
can co-exist.

When C. gigas is non-indigenous, it may be more
resilient to environmental stress than native species,
such as O. edulis, because C. gigas seems less vul -
nerable to parasites (Romestand et al. 2002, Comesaña
et al. 2012) and generally has a greater tolerance to
environmental fluctuations, such as salinity (Miossec
et al. 2009) and CO2 (Havenhand & Schlegel 2009).
With regards to temperature, however, the 2 species
occupy an overlapping thermal tolerance range, from
−1.5°C to ~35°C for O. edulis (Reise 1998, Piano et al.
2002) and −5 to 35°C for C. gigas (Reise 1998, Nehring
2011). When these 2 species do co-occur, C. gigas may
compete for food and space with O. edulis, but little is
known about competitive interactions between these
species, or if competition could exacerbate direct,
multiple effects of climate change.

Here, we assessed how the separate and combined
effects of temperature and atmospheric CO2 concen-
trations affect the health and biological functioning
of native (O. edulis) and invasive (C. gigas) oysters
held alone and in intraspecific or interspecific mix-
tures. Specifically, our goal was to (1) determine the
separate and interactive effects of elevated tempera-
ture and CO2 on the health and biological function-
ing of native and non-indigenous oysters and (2) test
the prediction that competition within and between
these species of oysters will alter the response of indi-
vidual oysters to future climatic scenarios.
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MATERIALS AND METHODS

Experimental design and set-up

The experiment was set up and carried out at the
Biodiversity and Ecosystem Futures Facility at the
University of Southampton, UK. This facility is
 de signed for manipulating marine environmental
variables, and follows European Project on Ocean
Acidification (EPOCA: www.epoca-project.eu/) re -
commen da tions for manipulating marine carbonate
systems. Crassostrea gigas oysters were collected
from Woolston Shore (50.891° N, 1.384° W) whilst
Ostrea edulis were collected from Ryde Middle
(50.762° N, 1.180° W) near Southampton, UK. The
experiment consisted of 3 fixed factors; ‘Tempera-
ture’ (2 levels: 12°C [ambient] and 16°C [elevated]),
‘CO2’ (2 levels: 400 ppm [ambient] and 1000 ppm
[elevated]) and ‘Oyster’ (6 levels: 2 individuals of C.
gigas; 2 individuals of O. edulis; 1 C. gigas with 1 O.
edulis (C. gigas sampled); 1 O. edulis with 1 C. gigas
(O. edulis sampled); a single C. gigas; a single O.
edulis). Since individuals maintained in interspecific
mixtures involve the same combination of oysters,
only 1 set of mesocosms was used for this treatment
and measurements of our response variables were
achieved by independently examining both indi -
viduals. In total, our experimental design required
120 mesocosms (n = 6) and 192 oysters.

We used oysters that were adults with an average
length of (mean ± SE) 75.48 ± 1.88 mm and 73.80 ±
0.98 mm and an average wet weight of 4.12 ± 0.30
and 4.14 ± 0.22 g for C. gigas and O. edulis, respec-
tively. C. gigas and O. edulis oysters did not differ in
length (t104 = 0.875, p = 0.384) or wet weight (t128 =
0.029, p = 0.976). The temperatures (12 and 16°C)
and CO2  levels (400 and 1000 ppm) were selected to
represent present-day conditions (based on yearly
UK averages for 2014) and a warming scenario of
+4°C (IPCC 2014). Individual mesocosms were con-
structed from plastic buckets filled with 4 l of natural
seawater (source: Itchen estuary, Southampton), fil-
tered through 5 µm mesh and UV sterilised. Water

was changed every 3 d by replacing 50% of the vol-
ume with fresh, equilibrated seawater. Each meso-
cosm was provided with 200 ml of live Isochrysis
 galbana and Tetraselmis sp. (at 1.51 × 105 ± 4.11 ×
104 cells ml−1) 3 times wk−1. Mesocosms were main-
tained at their required temperatures using separate
water baths. Elevated CO2 concentrations were
achieved by bubbling air mixed with the appropriate
concentration of CO2 gas into each mesocosm and
were constantly monitored using a LiCOR calibration
system (Licor LI-840A; LI-COR Biosciences). Along-
side the experiment, pH (NBS), temperature and
salinity measurements were taken 3 times wk−1 using
a temperature and salinity probe and a Mettler
Toledo™ pH meter. Mean mesocosm water tempera-
ture was 12.74 ± 0.15°C for ambient and 16.46 ±
0.10°C for elevated treatments, and pH was 8.063 ±
0.072 for ambient and 7.762 ± 0.038 for elevated CO2

concentration. Alkalinity was determined by titration
(Apollo SciTech Alkalinity Titrator AS-ALK2) using
standard protocols at the National Oceanography
Centre, Southampton, UK, Carbonate Facility. Bi -
carbonate (H2CO3

−), carbonate (CO3
2−) and pCO2

were calculated from measured pH, total alkalinity,
temperature and salinity (Dickson et al. 2007, Dick-
son 2010) and dissolved inorganic carbon was calcu-
lated using CO2calc (Robbins et al. 2010) from pH
and alkalinity (Table 1). All mesocosms were ex -
posed to a 12:12 h light:dark cycle. The experiment
commenced on 31 January 2014 and ran for 61 d.

Assessment of biological activity of the oysters

Clearance

Clearance rates were measured by placing a single
oyster inside a glass chamber, each containing a
 magnetic stir bar (separated from the oyster by wire
mesh) and 300 ml of filtered (0.1 µm) seawater. Once
an  oyster had opened its valves, I. galbana (Coccol-
ithophyceae) were added at a concentration of
25 000 cells ml−1. A 20 ml water sample was taken
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Temp (°C) CO2 Salinity TA (mmol l−1) pCO2 (µatm) DIC (µmol kg−1) Ωaragonite Ωcalcite

12 400 32.24 ± 0.13 2.01 ± 0.08 458.36 ± 17.14 1770 ± 61 1.49 ± 0.06 2.35 ± 0.09
1000 32.24 ± 0.12 2.10 ± 0.09 996.48 ± 40.72 1848 ± 81 0.82 ± 0.04 1.28 ± 0.06

16 400 34.25 ± 0.15 1.82 ± 0.17 429.28 ± 39.25 1614 ± 133 1.64 ± 0.15 2.56 ± 0.24
1000 34.28 ± 0.25 2.10 ± 0.08 1028.53 ± 39.71  1897 ± 72 0.99 ± 0.03 1.54 ± 0.05

Table 1. Salinity, total alkalinity (TA), pCO2, dissolved inorganic carbon (DIC) and resistance based on aragonite and calcite 
for sea water at ambient and elevated temperature and pCO2. Data are mean ± SE
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from each chamber immediately, and again after 1 h.
Although stir bars were included in each chamber
to maintain a homogenised cell suspension, we ac-
counted for passive settlement of the algal cells by fol-
lowing the same procedure in control chambers that
did not contain an oyster. I. galbana were stained by
adding 0.3 ml of Lugol’s solution to each subsample,
and cells were counted (for each sample in triplicate)
using a 0.1 mm deep improved Neu bauer haemo -
cytometer viewed under bright field. Clearance rates
were calculated based on Coughlan (1969) as:

Clearance rate  = V × ((loge(C1) − loge(C2) / (n × t)) (1)

where clearance rate is in l h−1, V = volume of water
(l) in the chamber, C1 = initial cell density (l−1), C2 =
final cell density (l−1), n = number of oysters in the
sampling vessel and t = time interval (h).

In addition, at the end of the experiment, remain-
ing tissues (after extraction of muscle used for protein
analysis, see below) were dried to constant weight
at 60°C (dry weight) and then placed into a muffle
furnace at 450°C for 6 h to determine shell-free ash-
free dry weight (AFDW). Hence, clearance rate is
expressed as l h−1 g−1 AFDW.

Respiration

Respiration was measured according to Warkentin
et al. (2007). Briefly, oysters were gently scrubbed with
a scourer to remove epibiota before each individual
was placed inside a 1000 ml flow-through re spiro -
metry chamber that contained a ‘sensor spot’ (planar
oxygen-sensitive foil). A PreSens Fibox 3™  fibre-optic
oxygen meter was used to measure concentrations of
dissolved oxygen which were analysed using OxyView
3.51 software (PreSens). After a 3 h acclimation period,
oxygen concentrations were re corded at three 30 min
intervals (i.e. for a total of 90 min). A chamber without
oysters was used to account for any microbial respira-
tion in the system. The respiration rates of the oysters
were corrected for AFDW to give final respiration rates
expressed as mg O2 h−1 g−1 AFDW.

Assessment of oyster health 

Number of haemocytes and phagocytosis rates

To measure the number of haemocytes, 20 µl of
haemolymph was extracted from a pool in the
promyal chamber using a hypodermic needle and
syringe and fixed with 20 µl of 20% formalin in fil-

tered (0.1 µm) seawater. An additional 25 µl of
haemolymph was diluted with 25 µl of saline solution
(Schlieper 1972) for use in the phagocytosis assay.
Formalin-fixed haemocytes were enumerated using
a 0.1 mm deep improved Neubauer haemocytometer
viewed under bright field (in triplicate for each sam-
ple). The total haemocyte count was subsequently
used to determine the required concentration of heat-
inactivated yeast (Saccharomyces cerevisiae) for the
phagocytosis assay, using the method of McCormick-
Ray (1987). Briefly, 100 µl of diluted haemolymph
were added to a baked glass slide, and 100 µl yeast
dilution were added to create a 2:1 yeast:haemocyte
ratio. The slide was agitated gently and a cover slip
added. To estimate the phagocytic rate, the sample
was incubated for 1 h as per temperature treatment
(12 or 16°C) before the total number of cells that had
incorporated yeast particles was counted.

Protein and glucose concentrations

Concentrations of proteins and glucose were meas-
ured from the adductor muscle, which was removed,
frozen in liquid nitrogen and stored at −80°C. In
order to calculate the total concentration of proteins
in the adductor muscles, a bicinchoninic acid assay
(BCA) was used following Smith et al. (1985) meas-
ured at λ = 562 nm. Megazyme™ D-Glucose-HK kits
(Megazyme International Ireland) were used to
determine the glucose concentrations of the adductor
muscles following the manufacturer’s protocol and
measured with a spectrophotometer at λ = 340 nm.

Statistical analysis

All data were screened for outliers, normality and
homoscedasticity before statistical analysis. Phago-
cytosis rates were expressed as percentages and arc-
sine then square root transformed to satisfy the re -
quirement for normality. Normality of the data was
assessed visually using q–q plots showing theoretical
quantiles versus standardised residuals, and homo-
geneity of variance was determined after plotting
residuals versus fitted values. Linear regression mod-
els were constructed to which a generalised least
squares (GLS) estimation was applied following Pin-
heiro & Bates (2000), which permitted the variance
structure of the data imposed by the experimental
design to be modelled. Linear regression models
were developed to test the effects of elevated levels
of temperature, carbon dioxide, oyster identity and
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their interactions on each response variable. We
treated all explanatory variables as nominal factors
and, where there was a heterogeneous variance, the
data were analysed using a ‘varIdent’ variance-
covariate structure and a GLS estimation procedure
to allow the residual spread to vary with individual
explanatory variables (based on Table 5.1 in Pinheiro
& Bates 2000). 

Determining the optimal variance covariate struc-
ture involved comparisons based on Akaike’s infor-
mation criterion (AIC) using residual estimated maxi -
mum likelihood. When the optimal variance structure
was identified, minimal adequate models were deter-
mined using a backwards selection procedure de -
scribed by Diggle et al. (2002) and Zuur et al. (2009),
based on maximum likelihood (ML) testing. The min-
imal adequate linear regression models were checked
by plotting residuals versus fitted values. The im -
portance of each factor in the model was determined
by testing nested models based on ML estimations;
briefly, this involves removing a factor of interest
(and any interactions including the factor of interest)
from the minimal adequate linear regression model
and comparing it to the full minimal adequate linear
regression model using ML testing. The likelihood
ratio (L-ratio) test is assumed to have a chi-squared
distribution of which the degrees of freedom are based
on the difference between the number of parameters
in the full and minimal adequate models. Results are
presented according to the highest significant inter-
action term with the data pooled for that term; sum-
mary results of each factor can be found in Supple-
ment 1 at www.int-res.com/articles/suppl/ m582p093
_supp.pdf. All analyses were done using R v3.2.3 (R
Core Team 2015) with the nlme package v3.1-128
(Pinheiro et al. 2016).

RESULTS

Effects of elevated temperature and 
CO2 on biological activity

There were no significant effects of elevated tem-
perature or CO2 concentration on clearance rates for
either Crassostrea gigas or Ostrea edulis, but clear-
ance rate did depend on the composition of each
 species mixture (Fig. 1, Fig. S1 and Table S1a in
 Supplement 2; Oyster: L-ratio = 34.47, df = 5, p <
0.001). Overall, O. edulis had lower clearance rates
compared with C. gigas, and the clearance rates of O.
edulis were lower when in intraspecific (single vs.
intra, t = −2.27, p = 0.024) or interspecific (single vs.

inter, t = −2.25, p = 0.026) mixtures (Table S1b) rela-
tive to when indi viduals were alone. Clearance rates
of C. gigas did not differ between intra- or inter -
specific mixtures (Table S1b).

Similarly, regardless of levels of temperature or
CO2 concentration, C. gigas and O. edulis showed
different respiration rates depending on the com -
position of each species mixture (Fig. 2, Fig. S2 and
Table S2a in Supplement 3, Oyster: L-ratio = 21.44,
df = 5, p < 0.001). Specifically, O. edulis had greater
respiration rates whilst in interspecific mixture than
when alone (Table S2b; single vs. inter, t = 2.17, p <
0.032). In contrast, C. gigas respired less when in
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Fig. 1. Independent effect of oysters on clearance rate of
Crassostrea gigas and Ostrea edulis when alone or in intra-
or interspecific mixtures. Bars are means ± SE, dots repre-

sent individual observations. AFDW: ash-free dry weight

Fig. 2. Independent effect of oysters on the respiration of
Crassostrea gigas and Ostrea edulis when alone or in intra-
or interspecific mixtures. Bars are means ± SE, dots represent 

individual observations

http://www.int-res.com/articles/suppl/m582p093_supp.pdf
http://www.int-res.com/articles/suppl/m582p093_supp.pdf
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intraspe cific (single vs. intra, t = −3.64, p < 0.001) or
inter specific (single vs. inter, t = −3.16, p = 0.002)
mixtures relative to when alone.

Effects of elevated temperature and CO2 on health

The combined effect of elevated temperature and
CO2, regardless of the composition of each species
mixture (Temp × CO2: L-ratio = 14.22, df = 5, p = 0.014),
resulted in fewer haemocytes in the haemo lymph
of oysters (Fig. 3a, Table S3a,b in Supplement 4, 16°C
400 ppm vs. 16°C 1000 ppm: t = 3.35, p = 0.001). The
number of haemocytes, however, de pended on whether
individuals were in inter- or intraspecific mixtures and
on CO2 concentration (Fig. 3b, Fig. S3, Table S3a,c;
CO2 × Oyster: L-ratio = 9.04, df =12, p = 0.003). Specifi-
cally, at elevated CO2 concentration and whilst in in-
tra- (single vs. intra, t = 2.11, p = 0.037) or interspecific
(single vs. inter, t = 2.94, p = 0.004) mixture, C. gigas
had more haemocytes than lone individuals (Fig. 3b,
Fig. S3, Table S3c). Similarly, at the elevated CO2 con-
centration, O. edulis in interspecific mixtures had more
haemocytes than lone individuals (t = 2.36, p = 0.020).

Phagocytic rates were similar for C. gigas and O.
edulis, regardless of species composition and tem -
perature, but were affected by CO2 concentrations
(Fig. 4, Fig. S4 & Table S4 in Supplement 5, CO2: L-ratio
= 6.07, df = 1, p = 0.014), with greater rates observed
at 400 ppm than at 1000 ppm (t = 2.45, p = 0.016).

Protein concentrations in the adductor muscle were
affected by the interaction between temperature and

oyster (Fig. 5, Fig. S5 & Table S5a in Supplement 6,
Temp × Oyster: L-ratio = 12.77, df = 5, p = 0.025), but
no further effects could be determined for either
 species of oyster (Table S5b).

Glucose concentrations were extremely variable
for each species of oyster, and were not affected by
our explanatory variables (Fig. S6 in Supplement 7).

DISCUSSION

Oysters are in decline globally, with a ~85% loss
over the past century due to over harvesting (Beck et
al. 2011). By removing phytoplankton, suspended
solids and organic particles from the water column,
filter-feeding bivalve molluscs play a key role in
nutrient cycling and the control of coastal eutrophi-
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Fig. 3. Interactive effects of (a) temperature × CO2 and (b) CO2 × Oyster on the density of haemocytes in haemolymph of Crass-
ostrea gigas and Ostrea edulis. In (b), individuals of each species were maintained alone or in intra- or inter specific mixtures. 

Bars are means ± SE, dots represent individual observations

Fig. 4. Independent effect of CO2 on the phagocytosis rate
of oysters. Bars are means ± SE, dots represent individual 

observations
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cation (Newell & Jordan 1983, Ward & Shumway
2004, Fulford et al. 2010). Consequently, further re -
duction of oyster reefs as a result of climate change
could have severe socio-economic impacts (Ekstrom
et al. 2015). We have demonstrated that the health,
but not the biological activity, of Crassostrea gigas
and Ostrea edulis are altered by future environmental
conditions and that the magnitude of this response is
dependent on the presence and type of competitive
interaction. Effects of exposure to elevated CO2 are
likely due to disruption of the acid−base balance
leading to physiological changes (Lannig et al. 2010).
Here, decreasing pH negatively affected both spe-
cies of oyster by reducing the rate of phagocytosis.
Although an increase in phagocytosis rate can also
indicate stress in bivalves, (e.g. in response to heavy
metals, Parry & Pipe 2004; or rising temperatures,
Gagnaire et al. 2006), decreases in phagocytosis rates
are commonly reported in bivalves following periods
of environmental stress (Pipe & Coles 1995, Gagnaire
et al. 2007, Hooper et al. 2007, Bouchard et al. 2009).
At elevated temperature and CO2, both species of
oyster had fewer haemocytes overall. A reduction in
the total number of haemocytes has been found in
other bivalves in response to stressors such as heavy
metal contamination (Pipe & Coles 1995) and star-
vation (Husmann et al. 2011). The number of total
haemocytes, however, increased when oysters were
in mixture, indicating a modifying effect of competi-
tive interactions at increased CO2. When exposed to
elevated CO2 and interspecific mix tures, both spe-

cies of oyster had a greater number of circulating
haemocytes. Haemocytes are a  primary line of
defence against contaminants and infections; they
are directly linked with immune function (Fisher
et al. 1987), and departures from baseline counts
(whether an increase or a decrease) can therefore
indicate stress (Gagnaire et al. 2006). Elevated
haemocyte counts in invertebrates can also be a
symptom of other health problems and can be associ-
ated with decreased fitness (Auld et al. 2012). A com-
promised immune status of oysters in response to ele-
vated atmospheric CO2 could lead to an in creased
susceptibility to parasites or disease. Even intraspeci-
fic competition altered the immune re sponse of C.
gigas to elevated CO2. It is therefore likely that the
density of oyster beds could affect how individuals
respond to climate change; densities of C. gigas
forming reefs in the wild, or stocked for aquaculture,
can be orders of magnitude greater than the densities
(~40 m−2) used here (Mitchell 2006). This has implica-
tions for determining appropriate stocking densities
for oyster management and/or restoration initiatives.

Competition for resources (e.g. space, food) be -
tween species may be altered by climatic change; for
example, competitive dynamics between fleshy and
calcareous species of seaweed amplify the physiolog-
ical responses of calcareous algae to acidification,
with the calcareous species eventually being over-
grown by fleshy morphological forms under acidified
conditions, even though recruitment was similar
(Kroeker et al. 2013). Here, competitive effects re -
sulted in alterations to the biological functioning
(clearance and respiration rates) of the oysters.
Notably, regardless of the climatic scenario, C. gigas
filtered at a greater rate than O. edulis and, when in
intra- or inter- specific mixtures, C. gigas filtered at a
greater rate than when alone. In contrast, O. edulis
had lower clearance rates when in the presence of
other oysters (either inter- or intraspecific mixtures).
A recent experiment found that C. gigas and O.
edulis filter and retain at least 5 of the same species
of algae (Nielsen et al. 2017). It is therefore possible
that where the 2 species co-occur and resources are
limited, O. edulis may be outcompeted by C. gigas.
However, C. gigas appears to exhibit a greater ability
to regulate its metabolism relative to O. edulis. For
example, respiration rates were lower in C. gigas
exposed to intra- or interspecific competition than in
those kept alone, whilst O. edulis increased its respi-
ration rates when in interspecific mixture. Alterations
to respiration rates can also indicate stress in bivalves
(Vernberg & Vernberg 1975), with increases in re -
spiration sometimes associated with stress due to
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Fig. 5. Interactive effect of temperature × Oyster on the pro-
tein concentration in Crassostrea gigas and Ostrea edulis.
Individuals of each species were maintained alone or in
intra- or interspecific mixtures. Bars are means ± SE, dots 

represent individual observations
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poor environmental conditions (Lannig et al. 2006).
In some cases, however, a suppression of respiration,
as found here for C. gigas, can be a strategy to con-
serve energy and increase probability of survival
(Guppy & Withers 1999).

O. edulis seems to be more sensitive than C. gigas
to some other perturbations, including pathogenic
infections (e.g. the parasitic protist Bonamia ostreae;
Culloty et al. 1999, Comesaña et al. 2012) and heavy
metal contamination (Helm et al. 2004). Conversely,
C. gigas is susceptible to infection with ostreid her-
pes virus-1 (OsHV-1), whereas there are no known
occurrences of infection by this virus in O. edulis.
Clearly, the future status of both oysters in natural
systems remains a complex function of the environ-
mental tolerance of both species, in competition and
in isolation, combined with the tolerance of existing
and emergent protozoan, viral and bacterial patho-
gens, which also varies as a function of environmen-
tal condition (e.g. see de Kantzow et al. 2016).

Given the long-term processes involved with a
changing climate, longer exposure periods than
attempted here may reveal differences in responses
over time as species interactions develop and indi-
viduals acclimate to increased concentrations of
CO2 and temperature (Godbold & Solan 2013).
Whilst the physiological responses of bivalves to
scenarios of climatic change are highly variable and
complex (Matozzo et al. 2012), our findings indicate
that these responses are further complicated by
intra- and interspecific competitive interactions that
are sufficient to alter species contributions to func-
tioning (Godbold et al. 2017). Despite the complex-
ity of the results, where the oysters co-occur, it is
possible that C. gigas may outcompete O. edulis for
food due to their greater clearance rate. Continued
efforts to protect O. edulis beds from C. gigas inva-
sion are therefore prudent. In the current study,
closed chambers were used to estimate clearance
rates. Although different methods are likely to pro-
duce similar results once standardised (Widdows
1985, 2001), future work using flow-through cham-
bers will help to strengthen understanding of com-
petitive interactions between native and invasive
oysters. The 2 species, however, have different repro-
ductive mechanisms (C. gigas, broadcast spawning;
O. edulis, brooding), and it is possible that larval
development could be differentially affected by cli-
mate change. Indeed, a similar species of brooding
oyster, O. lurida, builds shells more slowly than C.
gigas, potentially reducing the energetic burden of
acidification at early life stages (Waldbusser et al.
2016). It is possible that brooding species may have

inadvertently evolved (exaptation) to cope with high
CO2 environments due to the CO2-enriched envi-
ronment of the brood chamber (Waldbusser et al
2016). Whilst the present study has not considered
the reproductive potential of either species in isola-
tion or in competition, it is already known that mul-
tiple  climatic stressors are particularly important for
re production and during early devel opmental stages
(Byrne 2011). Hence, it is clear that the response of
species to climatic change can be moderated in the
short term by species’ interactions with each other
and their environment and by cumulative physio-
logical responses that may accrue over the longer
term as species acclimate to novel circumstances.
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