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Foveal vision in strabismic amblyopia can show
increased levels of crowding, akin to typical peripheral
vision. Target–flanker similarity and visual-acuity test
configuration may cause the magnitude of crowding to
vary in strabismic amblyopia. We used custom-designed
visual acuity tests to investigate crowding in observers
with strabismic amblyopia. LogMAR was measured
monocularly in both eyes of 11 adults with strabismic or
mixed strabismic/anisometropic amblyopia using
custom-designed letter tests. The tests used single-letter
and linear formats with either bar or letter flankers to
introduce crowding. Tests were presented monocularly
on a high-resolution display at a test distance of 4 m,
using standardized instructions. For each condition, five
letters of each size were shown; testing continued until
three letters of a given size were named incorrectly.
Uncrowded logMAR was subtracted from logMAR in
each of the crowded tests to highlight the crowding
effect. Repeated-measures ANOVA showed that letter
flankers and linear presentation individually resulted in
poorer performance in the amblyopic eyes (respectively,
mean normalized logMAR¼ 0.29, SE ¼ 0.07, mean
normalized logMAR ¼ 0.27, SE ¼ 0.07; p , 0.05) and
together had an additive effect (mean¼ 0.42, SE¼ 0.09,
p , 0.001). There was no difference across the tests in
the fellow eyes (p . 0.05). Both linear presentation and
letter rather than bar flankers increase crowding in the
amblyopic eyes of people with strabismic amblyopia.
These results suggest the influence of more than one
mechanism contributing to crowding in linear visual-
acuity charts with letter flankers.

Introduction

Amblyopia is a developmental syndrome, whereby
neuroplasticity at birth drives structural and functional

changes (Barrett, Bradley, & McGraw, 2004; McKee et
al., 1992). It is characterized by deficits in visual acuity
and contrast sensitivity (Asper, Crewther, & Crewther,
2000), crowding (Bonneh, Sagi, & Polat, 2004; Levi &
Klein, 1985; Whitney & Levi, 2011), fixation and ocular
motility (Birch, 2013; Carpineto et al., 2006; Ciuffreda,
Levi, & Selenow, 1991; González, Wong, Niechwiej-
Szwedo, Tarita-Nistor, & Steinbach, 2012; Schor, 1975;
Schor & Hallmark, 1978), temporal processing (Bon-
neh et al., 2007; Tkacz-Domb & Yeshurun, 2017),
global motion perception (Meier, Sum, & Giaschi,
2016), spatial localization (Hess & Holliday, 1992; Levi,
Klein, & Yap, 1987), spatial interactions (Polat, Sagi, &
Norcia, 1997), and contour integration (Kovács, Polat,
Pennefather, Chandna, & Norcia, 2000).

Crowding is a reduction in the ability to recognize
objects in the midst of clutter and is present in
everyday vision (Flom, 1991; Levi, 2008). A number of
factors can contribute to the overall crowding effect,
including the proximity of the flanking elements to the
target, similarity of the target and flankers, and
overall target–flanker configuration (Dakin, Cass,
Greenwood, & Bex, 2010). Here we refer to contour
interaction as the specific reduction in visual acuity
caused by the proximity of simple flanking elements
(Flom, Weymouth, & Kahneman, 1963), which is
governed by the spacing of the target and flankers.
This paper explores the effect of two other aspects of
visual-acuity chart design on crowding in participants
with strabismic amblyopia: target–flanker similarity
(letter or bar) and configuration of letters (single or
linear).

The use of crowded visual acuity tests has long been
advocated to avoid the potential overestimation of
acuity arising from the use of single, unflanked
optotypes (Flom, 1991; Hilton & Stanley, 1972;
Youngson, 1975), but the overall level of crowding
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varies according to the configuration of the test
components (Formankiewicz & Waugh, 2013; Norgett
and Siderov, 2011). Crowding is achieved in visual
acuity tests by placing either bars or optotypes around
a single target optotype or by using rows of opto-
types—either in a traditional chart format or presented
one row at a time—with a surround box providing a
contour around the optotypes. Crowded acuity tests of
different designs have been judged to be equivalent to
each other because they give a similar result, but the
risk is that they may not give a similar result in
individuals with abnormal crowding, such as young
children or those with strabismic amblyopia (Stager,
Everett, & Birch, 1990).

Crowded acuity has a longer timescale of matura-
tion in children than uncrowded acuity (Doron,
Spierer, & Polat, 2015; Drover et al., 2008; Langaas,
2011; Morad, Werker, & Nemet, 1999; Norgett &
Siderov, 2014; Pan et al., 2009). During typical
maturation of the visual system, a decrease in
crowding is accompanied by an improvement in higher
level functions such as contour integration and lateral
interactions (Doron et al., 2015; Kovács, Kozma,
Fehér, & Benedek, 1999). It follows that visual acuity
measured using more complex targets—such as full
letter charts, which require higher level processing—
may not be expected to show maturity until later than
is the case for simple targets and may therefore be
more affected in amblyopia.

One of the questions addressed in this study is
whether similarity of targets and flankers affects
crowding in foveal or extrafoveal vision in strabismic
amblyopia. Our previous work has shown that use of
letter rather than bar flankers increases crowding in
foveal vision in young children, but not in adults with
typical vision (Norgett & Siderov, 2014). There is
evidence that target–flanker similarity increases
crowding in the retinal periphery for lower level
features such as contrast polarity, shape, depth,
contrast, and color (Astle, Mcgovern, & McGraw,
2014; Chung, Levi, & Legge, 2001; Kennedy &
Whitaker, 2010; Kooi, Toet, Tripathy, & Levi, 1994;
Nazir, 1992), for higher level features such as faces
(Farzin, Rivera, & Whitney, 2009) and global config-
uration (Livne & Sagi, 2011), and for letter targets
(Bernard & Chung, 2011; Freeman, Chakravarthi, &
Pelli, 2012). In strabismic amblyopia, foveal crowding
has been found to be greater in extent than in typical
eyes and has been likened to crowding in the periphery
in typical vision (Flom, 1991; Levi & Klein, 1985).
Some authors have reported that when scaled to
individual resolution threshold, crowding is similar for
amblyopic and typical eyes (Flom et al., 1963; Simmers,
Gray, McGraw, & Winn, 1999), but others have
reported that in amblyopic vision, the extent of
crowding is greater than even the reduced acuity would

predict (Hariharan, Levi, & Klein, 2005; Hess, Dakin,
Tewfik, & Brown, 2001; Levi, Hariharan, & Klein,
2002). Studies in amblyopia performed with children
(Greenwood et al., 2012) and adults (Bonneh et al.,
2004) have reported both results; excessive crowding
was found in individuals with strabismic and mixed
strabismic/anisometropic amblyopia but not with pure
anisometropic amblyopia.

The task of reading across a line of letters in a visual
acuity test rather than naming a single crowded letter
places demands which may disproportionally disad-
vantage a reader with strabismic amblyopia over one
with typical vision. Abnormal gaze control may reduce
acuity in line charts or reading long strings of letters,
where accurate fixation is required (Bedell, Siderov,
Formankiewicz, Waugh, & Aydin, 2015; Giaschi,
Regan, Kraft, & Kothe, 1993; Regan, Giaschi, Kraft,
& Kothe, 1992). Kanonidou, Proudlock, and Gottlob
(2010) measured reading speed and tracked eye
movements in observers with strabismic amblyopia
and compared the results to those from observers
without amblyopia. They found that those with
strabismic amblyopia made more saccades per line
than those in the control group. In contrast to the
conclusions of Levi, Song, and Pelli (2007), that
reduced reading speeds in those with amblyopia can be
explained fully by crowding effects (letter spacing),
Kanonidou et al. concluded that those slower reading
speeds could not be accounted for solely by spacing.
The study by Levi et al. used rapid serial visual
presentation to eliminate the effect of eye movements,
so it could be that oculomotor deficits added a
hindrance to amblyopic reading in addition to the
spatial deficit introduced by contour interaction.

An alternative or additional factor which could
disadvantage a person with amblyopia in reading a line
test is positional uncertainty, which could cause
misnaming of letters. Positional uncertainty can be
thought of as an imprecision in the focus of attention,
which increases with increasing eccentricity in typical
vision (Strasburger, 2005). Positional uncertainty has
been shown to be greater in strabismic amblyopia than
in typical vision (Hess, Mcilhagga, & Field, 1997; Levi
et al., 1987), as a result of neural undersampling (Levi
& Klein, 1986) or disruption of cortical topography
(Hess, 1982; Kiorpes & McKee, 1999).

In the present study, visual acuity was measured in
both eyes of adults with strabismic and mixed
strabismic/anisometropic amblyopia using custom-de-
signed tests to investigate the relative contributions of
target–flanker similarity and linear versus single-letter
presentation to the crowding effect. Analysis of letter-
identification errors enabled comparison between
fixation behavior in amblyopic and fellow eyes.
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Methods

Participants

Five adult participants with strabismic amblyopia
and six with mixed strabismic/anisometropic ambly-
opia were recruited from the local community. The
number of participants was sufficient to obtain a power
of 80% at the 5% level (one tailed) for an effect size of
0.15 logMAR. For the purposes of this study,
amblyopia was defined as at least a two-line difference
in visual acuity between the eyes of participants, in the
presence of strabismus or anisometropia (or both) and
in the absence of structural abnormality of the eye or
visual pathway. All participants underwent a detailed
optometric assessment prior to experimental testing,
including fundus examination, subjective refraction,
logMAR acuity (Thompson logMAR chart, Thomson
Software Solutions, Hatfield, Hertfordshire, UK),
stereopsis using the Lang II Stereotest (Lang-Stereot-
est, Küsnacht, Switzerland), and cover test for distance
and near fixation. Any observed heterophoria or
heterotropia was measured using a prism cover test.
History of previous treatment, if any, was also
recorded. Clinical details of the participants are given

in Table 1. Written, informed consent was obtained
from participants after all the procedures were ex-
plained to them. Ethical approval for the study was
obtained from the university research ethics Panel, and
the study followed the tenets of the Declaration of
Helsinki.

Tests

A series of letter tests was produced, comprising
single letters and lines of letters with letter and bar
flankers (Table 2). An unflanked condition was also
included. The test optotypes comprised the set of 10
Sloan letters (C, D, H, K, N, O, R, S, V, and Z),
constructed in a 5 3 5 format, with the height and the
width of each letter 5 times the stroke width. Edge-to-
edge separation of letters and flankers for all conditions
was 0.5 letter width, in order to produce crowding
(Norgett & Siderov, 2014). The length of the bar
flankers was fixed at 0.6 times letter height (i.e., three
stroke widths), in order to maintain the same average
contour interaction across different flankers. The
distance of flanking features to a target influences the
possibility of integration of the flankers with target,
with flankers close to the target being more heavily

Initials

Age/

gender Eye (type)

Surgery/

patching Alignment

Stereopsis

(in.) Refractive error logMAR

KW 56/F R (strabismus) No/yes Microtropia 600 R þ2.50 0.62

L þ2.50/�0.50 3 90 �0.14
FD 39/F R (strabismus) Yes/yes Microtropia 200 R �1.00/�1.00 3 180 0.44

L �0.50/�0.75 3 140 �0.08
MP 40/M L (strabismus) No/yes 8^ esotropia R þ0.50/�0.50 3 170 �0.20

L plano 0.80

BS 75/F R (strabismus) No/yes 12^ esotropia R þ2.50/�0.25 3 110 0.36

L þ2.25/�0.25 3 70 0.10

JP 62/M L (strabismus) No/yes 3^ esotropia R þ2.00/�1.25 3 170 0.00

2^ hypotropia L þ1.75 0.56

JB 61/F R (strabismus/mixed) Yes/yes 5^ esotropia R þ3.75/�0.50 3 80 0.60

L þ1.00/�1.25 3 95 0.00

PD 49/F L (strabismus/mixed) No/no 4^ esotropia R �2.50/�1.00 3 160 �0.08
L þ0.75/�0.50 3 10 0.44

PG 69/M L (strabismus/mixed) Yes/yes 6^ esotropia R plano/�1.25 3 80 0.02

L þ2.50/�1.25 3 10 0.66

LM 23/F R (strabismus/mixed) Yes/yes 40^ accommodative

esotropia

R þ7.00/�2.00 3 40 0.10

Microtropia with Rx L þ6.50/�0.50 3 140 �0.10
TW 43/M R (strabismus/mixed) Yes/yes 4^ R hypotropia and 10^

esotropia

R þ1.50 0.92

L plano 0.02

MOL 37/F L (strabismus/mixed) No/yes 24^ accommodative

esotropia; microtropia

with Rx

R þ5.00/�3.50 3 157 0.20

L þ6.50/�5.00 3 20 0.78

Table 1. Clinical characteristics of the participants. Notes: Microtropia: presumed microtropia—no movement detected on cover test;
^ prism diopters.
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weighted (Dakin et al., 2010; Takahashi, 1968). Hence,
to ensure consistency of the size of the nearest edge
between letter and bar flankers, we considered each of
the four sides of the virtual box surrounding each letter
and identified where there was contact with the edge of
the letter. For example, consider the letter H in Sloan
format: There are five stroke widths’ contact with the
edge of the virtual box on the right and left sides and
two on the top and bottom, giving a mean of 3.5 stroke
widths’ contact over the four sides of the letter. For
circular letters, we took an approximation because of
curvature. The stroke width of the edges of all the
letters was averaged to derive the value of three stroke
widths, or 0.6 times the letter height.

The following between-test comparisons were made:
(i) S0 with SB to determine the magnitude of contour
interaction; (ii) SB with SC, and LB and LB7 with LC
to determine the effect of letter rather than bar flankers;
and (iii) SB with LB and LB7, and SC with LC to
determine the effect of single-letter versus linear
presentation.

In comparisons ii and iii, contour interaction was
kept constant by maintaining a fixed edge-to edge
target–flanker distance. In LB and LB7, the bar flanker
between letters was retained so that the nearest contour
to each letter would always be a bar at 0.5 letter width’s
separation from the target letter, as in SB. In test SC
the task was to read the central letter only, and in test

LC the task was to read the letters on the middle line.
However, because the end letters in LC are flanking
letters, only the middle five letters were scored. Test
LB7 was created to enable comparison between flanker
types in linear tests with seven letters. Tests SC and LC
used 14 non-Sloan letter flankers, created in the same
format as Sloan letters. The letters I and G were not
used, because the I does not contact the outside of the
virtual box on either side and the appearance of the G
in this format was judged to be unusual. In addition, a
version of the single-letter chart with letter flankers, SC,
was created using Sloan flankers and named SCsl. This
was to allow further error analyses, because when non-
Sloan letter flankers were used, the procedure did not
allow for non-Sloan letter responses.

Tests were displayed, with black letters on a white
background, on an Apple iMac 21.5-in. screen (Apple
Inc., Cupertino, CA) with a resolution of 1,9203 1,080
pixels at 102.46 pixels/in., so 1 pixel subtended 0.2
arcmin at a test distance of 4 m. Background luminance
of the display was 266 cd/m2, resulting in a letter Weber
contrast of�92%. The acuity range of the tests was 0.6
logMAR to �0.4 logMAR in steps of 0.05 logMAR.
For each acuity level, five letters were scored in each
test. In the single-letter presentations, five different
letters of the same size were shown consecutively.

Procedure

Testing was carried out in a room with lighting
adequate for visual acuity testing (National Academy
of Sciences National Research Council Committee on
Vision, 1980), approximately 100 lux. Following
refraction and screening tests, the experimental tests
were viewed, separately, by each eye of eligible
participants wearing their best corrective lenses. For
each participant, the nonamblyopic eye was tested
first. The eye not being tested was occluded. Partic-
ipants sat 4 m from the screen and held a card showing
the 10 Sloan letters. A testing distance of 4 m was
chosen to maximize largest letter size within the
confines of the screen size and test room. The eight
experimental tests were presented in a random order
across individuals, and viewing time was unlimited.
Testing began using a letter size 0.1 logMAR larger
than the acuity measured following refraction. Smaller
letter sizes were presented in steps of 0.05 logMAR
until the termination point was reached, when three or
more letters of one size were named incorrectly. If any
letters at the starting level were named incorrectly, the
next largest size was presented until a size was found
where all five responses were correct. Where the
largest letters (0.6 logMAR) were not all read
correctly at 4 m, the viewing distance was decreased to
2 m, with the participant’s refractive correction and

Test

Sloan-letter

target Flanker type Example display

S0 Single None

SB Single Bars

LB Linear

(five letters)

Bars

LB7 Linear

(seven letters)

Bars

SC Single Non-Sloan

characters

SCsl Single Sloan characters

LC Linear Non-Sloan

characters

Table 2. Tests used in the study, with an example presentation
of each. Notes: Letters were presented in single (S) or linear (L)
format with bar (B) or character (C) flankers. The edge-to-edge
letter–flanker separation was 0.5 letter width in each of the
crowded tests.
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logMAR score adjusted appropriately. For the single-
letter tests with letter flankers (SC and SCsl),
participants were asked to read the middle letter only
(Table 2). For the line test with letter flankers (LC),
participants were asked to read all the letters on the
middle row, but only the central five letters were
scored. In the line test with seven letters and bar
flankers (LB7), only the central five letters were
scored. If a participant was not sure of a letter, they
were encouraged once to guess—or in the tests with
letter flankers (SC and LC), if they named a non-Sloan
letter they were directed to retry from the Sloan-letter
set. Pointing at the letters by the examiner was not
used under any test condition.

All responses were recorded on a spreadsheet by the
examiner, and letter-by-letter scoring was used. For the
line tests, if a participant read an incorrect number of
letters in a line without indicating that they were
leaving one out, the responses were recorded in the
order and position they were read. Results were
normalized by subtracting the unflanked logMAR (S0)
from the logMAR derived from each of the crowded
tests, to allow comparison of the crowding effect
between the tests.

Data analysis

Data were analyzed using paired t tests and
repeated-measures ANOVA with a Greenhouse–
Geisser correction for violation of sphericity applied
(Keppel, 1982). Post hoc analyses with Tukey’s honest
significant difference correction were performed as
required (Statistica StatSoft, Tulsa, OK). Letter-nam-
ing errors were also analyzed in the three line tests (LB,
LB7, LC) and in the single-letter test with letter flankers
(SCsl) to investigate any difference in pattern between
tests and amblyopic or fellow eyes. Errors were defined
as either adjacent, if the response letter was adjacent to
the target letter (either left or right, top or bottom), or
random, if any other letter was named. In the line tests
with bar flankers (LB and LB7), errors pertaining to
just the central three or five letters (respectively) were
analyzed, because the end letters had only one possible
adjacent option. In the line test with letter flankers
(LC), errors pertaining to the central five letters were
analyzed. Four analyses were carried out. The first
examined whether the adjacent errors in the line tests
(LB, LB7, LC) were anything other than random; the
second examined the frequency of right and left
adjacent errors in line tests LB and LC; the third
examined whether the adjacent errors in the single-
letter test with Sloan-letter flankers (SCsl) were
anything other than random; and the fourth looked for
a difference in the frequency of adjacent and random
errors between amblyopic and fellow eyes in test SCsl.

Chi-square tests were performed to assess statistical
significance at a level of p , 0.05.

Results

Individual participants

Figure 1 shows the logMAR for each individual,
normalized to the unflanked logMAR, for each of the
crowded tests. Visual acuity in the amblyopic eye, as
found from the initial screening, is displayed in the top
right-hand side of each panel. The panels are arranged
in order of increasing depth of amblyopia. There was a
general trend toward more crowding in participants
with deeper amblyopia, consistent with the findings of
Bonneh et al. (2004).

As expected, the mean logMAR for the sample was
better than 0.00 (6/6) in the nonamblyopic (fellow) eyes
in all the tests. Before we normalized the results, paired
t tests were performed to look for a difference between
the uncrowded condition (S0) and the single-letter
condition with bar flankers (SB). There was a
significant difference between these two tests for both
amblyopic and fellow eyes (p , 0.05), showing an effect
of contour interaction in each. When logMAR was
normalized to the unflanked condition, there was no
significant difference between amblyopic and fellow
eyes using test SB (p ¼ 0.43), showing, on average, no
additional contour interaction in the amblyopic eyes
relative to the fellow eyes in this condition.

Figure 2 and Table 3 show mean, normalized
logMAR across the test conditions for amblyopic and
fellow eyes. A one-way repeated-measures ANOVA for
the amblyopic eyes yielded a significant main effect of
test, F(2.11, 21.15)¼ 12.47, p , 0.001. A post hoc
analysis showed mean, normalized logMAR in the
amblyopic eyes in the single-letter condition with bar
flankers (SB) to be different from all the other tests (p
, 0.05). There was no difference in mean normalized
logMAR in the nonamblyopic eyes across any of the
tests, F(3.39, 33.94) ¼ 0.75, p ¼ 0.59.

Effect of letter versus bar flankers (target–
flanker similarity)

In the amblyopic eyes, there was more crowding in
the tests with letter rather than bar flankers. For the
single-letter tests, mean logMAR was significantly
poorer in the test with letter flankers (SC) than the one
with bar flankers (SB; p , 0.05). In the line tests, there
was also more crowding with letter than bar flankers;
mean, normalized logMAR was significantly worse in
LC than LB (p , 0.05).
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Figure 1. LogMAR for the amblyopic (dotted bars) and fellow (black bars) eyes for each of 11 adults with strabismic and mixed

strabismic/anisometropic amblyopia, normalized to the uncrowded logMAR for each of the crowded conditions. LogMAR in the

amblyopic eye as derived from initial screening is shown in the top right corner. An example of each display is shown in the key for

Figure 2.
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Effect of single-letter versus linear test
presentation

In the amblyopic eyes, there was more crowding in
the linear than the single-letter test conditions. Mean,
normalized logMAR was significantly poorer in both
the line tests with bar flankers (LB, LB7) than in the
single-letter test with bar flankers (SB; p , 0.01). The
seven-letter test (LB7) showed a trend toward more
crowding than the five-letter version (LB), but the
difference between the two was not significant (p ¼
0.44). Mean, normalized logMAR was also signifi-
cantly poorer in the line test with letter flankers (LC)
than in the single-letter test with letter flankers (SC; p ,
0.05).

Error analysis

Figure 3 shows the relative percentages of the
different error types in the line tests (LB, LB7, LC) in
the amblyopic and fellow eyes of the participants with
strabismic and mixed strabismic/anisometropic ambly-
opia. Light-gray shading shows random errors, dark
shading shows adjacent left errors, and diagonally
striped shading shows adjacent right errors.

The first analysis examined whether the adjacent
errors were anything other than chance in each of the
line tests. Because there were two adjacent letters from
nine possible Sloan letters other than the target letter,
the probability of naming an adjacent letter correctly
by chance was 2/9, or 0.22. For the line tests with bar
flankers (LB, LB7), on average the frequency of
adjacent errors when viewing was with the fellow,
nonamblyopic eyes was not significantly different from
expectations resulting from chance (LB: v2 ¼ 3.44, p ¼
0.06; LB7: v2¼ 2.08, p¼ 0.15); but for the amblyopic
eyes, more adjacent errors occurred than would be
expected from chance (LB: v2¼ 9.69, p , 0.05; LB7: v2

¼ 21.31, p , 0.001). In the line test with letter flankers
(LC), on average more adjacent errors occurred than
would be expected from chance for both amblyopic (v2

¼37.51, p , 0.001) and fellow eyes (v2¼4.88, p , 0.05).
The second analysis examined the frequency of right

and left adjacent errors in the line tests with bar and
letter flankers (LB and LC, respectively). In test LB7,
Figure 3 shows a large proportion of adjacent right
errors in the amblyopic eyes, although the number of
some error types was too low to enable a chi-square
analysis. In the line test with bar flankers (LB), the
proportion of right and left errors was not different for
amblyopic (v2¼ 0.07, p¼ 0.80) or fellow eyes (v2¼ 0.33,

Figure 2. Mean logMAR for the amblyopic (dotted bars) and fellow (black bars) eyes of 11 adults with strabismic and mixed

strabismic/anisometropic amblyopia, normalized to the uncrowded logMAR for each of the test conditions. An example of each

display is shown in the key. Edge-to-edge target–flanker separation was 0.5 letter width in each test. Error bars represent 61

standard error.

Eyes SB LB LB7 SC SCsl LC

Fellow eyes 0.05 (0.02) 0.05 (0.02) 0.03 (0.02) 0.04 (0.03) 0.05 (0.02) 0.05 (0.02)

Amblyopic eyes 0.09 (0.03) 0.27 (0.07) 0.35 (0.09) 0.24 (0.06) 0.29 (0.07) 0.43 (0.10)

Table 3. Mean, normalized logMAR (standard error) for the six test conditions for the fellow and amblyopic eyes of the participants
with strabismus.
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p¼ 0.56). However, in the line test with letter flankers
(LC), there were more right than left adjacent errors for
both amblyopic (v2¼ 6.24, p , 0.05) and fellow eyes (v2

¼ 5.14, p , 0.05).
The third analysis examined whether the frequency

of adjacent errors using the single-letter test with Sloan
letter flankers (SCsl) was anything other than random.
Figure 4 depicts the relative proportions of adjacent
and random errors occurring with test SCsl. Here,
adjacent errors corresponded to one of the surrounding
four letters, while any other error was deemed random.
The probability of an adjacent error occurring by
chance was therefore higher than before at 4/9, or 0.44.
On average, there were more adjacent errors than
would be expected from chance for both amblyopic (v2

¼ 9.97, p , 0.05) and fellow eyes (v2¼ 4.00, p , 0.05).
The fourth analysis looked for a difference in the

frequency of adjacent and random errors between
amblyopic and fellow eyes in the single-letter test SCsl.
There was no difference in the proportion of random
and adjacent errors in the amblyopic (v2 ¼ 0.19, p ¼
0.67) or fellow eyes (v2 ¼ 0.23, p ¼ 0.63)—that is,
amblyopic and nonamblyopic eyes did not differ in
relative proportion of adjacent versus random errors.

Discussion

A series of custom-designed visual acuity tests was
used to infer the relative influences of linear versus
single-letter presentation and target–flanker similarity
on visual acuity (logMAR) in the amblyopic and fellow

eyes of a group of adults with strabismic and mixed
strabismic/anisometropic amblyopia. In common with
other reports, we found marked variability of crowding
among participants (Bonneh et al., 2004; Polat, Ma-
Naim, Belkin, & Sagi, 2004; Regan et al., 1992). On
average, there was a greater elevation of crowding seen

Figure 4. Relative percentages of error types—adjacent

(horizontal and vertical) and random—for amblyopic and fellow

eyes of the participants with strabismic amblyopia for test SCsl,

an example presentation of which is shown on the right. Light-

gray shading shows random errors and dark-gray shading shows

adjacent errors. Error bars represent 61 standard error. The

total number of errors analyzed for each condition is shown

above the bars.

Figure 3. Relative percentages of the different error types in the linear tests (LB, LB7, LC) for the amblyopic and fellow eyes of the

participants with strabismic and mixed strabismic/anisometropic amblyopia. Light-gray shading shows random errors, dark shading

shows adjacent left errors, and diagonally striped shading shows adjacent right errors. Error bars represent 61 standard error. The

total number of errors analyzed for each condition is shown above the bars.
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in amblyopic eyes with letter rather than bar flankers
and with linear rather than single-letter presentations.
There was also an additive effect, with most crowding
occurring in the linear presentation with letter flankers.

In a previous study, we used similarly constructed
tests to investigate the effect of test-chart configuration
on logMAR in children ages 4–6 and 7–9 and in a
control group of adults with normal or corrected-to-
normal vision (Norgett & Siderov, 2014). The pattern
of crowding in the current study (in a sample of
strabismic and mixed strabismic/anisometropic ambly-
opic eyes) shows a similar pattern to the results arising
from young children in our previous study (Figure 5).
This similarity between performance of strabismic
amblyopic eyes and that of the young children lends
strength to the view of amblyopia as a poorly matured
visual system. Levi & Carkeet (1993) compared a range
of visual functions in people with strabismic amblyopia
and in young children. They found that some functions
which develop early, such as peak contrast sensitivity,
were unimpaired in the individuals with strabismic
amblyopia, whereas vernier acuity and grating acuity,
which develop later, were impaired. Thus the timeframe
in which strabismus exerts its influence on the
developing visual system can be inferred. The findings
of our study suggest that in strabismic amblyopia, the
visual system is affected before the maturation of
crowding is complete, at around 6–12 years, depending
on the study design (Bondarko & Semenov, 2005;
Doron et al., 2015; Jeon, Hamid, Maurer, & Lewis,
2010).

Mean logMAR in test SB—single letters surrounded
by flanking bars—was significantly higher than un-
flanked logMAR in the amblyopic (0.09 logMAR) and
fellow eyes (0.05 logMAR), showing the effect of
contour interaction on visual acuity with simple bar
flankers (Figure 2). The mean normalized logMAR
using test SB was not significantly different between the
amblyopic and fellow eyes. This result shows that on
average, the magnitude of contour interaction scaled
with acuity in our participants with amblyopia.
Nevertheless, as reported by others (Hess et al., 2001),
some individuals showed more contour interaction with
their amblyopic eye than their fellow eye (e.g.,
participants PG and MOL in Figure 1), while for
others, elevated contour interaction was not seen (e.g.,
participants JB and MP), and flanked acuity scaled
with unflanked acuity (Figure 1; Flom et al., 1963).

Crowding has been shown to be greater in typical
peripheral vision when the flanker and target are from
the same perceptual group—that is, all letters rather
than a target letter with bar flankers (Kooi et al., 1994;
Nazir, 1992). In the amblyopic eyes of our participants,
poorer mean logMAR was found in the tests with letter
flankers compared to those with bar flankers, implying

a similar process operating in foveal or extrafoveal
viewing in strabismic amblyopia.

Possible mechanisms which may increase crowding
in amblyopia include abnormal long-range lateral
interactions (Bonneh et al., 2004; Polat et al., 1997),
excessive feature integration (Levi et al., 2002; Pelli,
Palomares, & Majaj, 2004) and extended pooling
(Hariharan et al., 2005). The current findings are

Figure 5. Crowded logMAR of children and adults with normal

vision from our previous study (Norgett & Siderov, 2014; top

panel) and adults with strabismic and mixed strabismic/

anisometropic amblyopia from this study (lower panel) for four

crowding conditions for the same test charts. Example

presentations of the conditions are shown above the graphs.

Top panel: Mean logMAR, normalized to the unflanked acuity,

for each of the conditions for younger children (4–6 years;

dotted bars), older children (7–9 years; crosshatched bars), and

adults (black bars). Bottom panel: Mean logMAR, normalized to

the unflanked acuity, for the same four crowding conditions for

amblyopic (gray bars) and fellow eyes (black bars) of adults with

strabismic and mixed strabismic/anisometropic amblyopia.

Error bars represent 61 standard error.
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consistent with the theory that target and flankers are
integrated within a receptive field, and where letter
flankers are used, the target cannot be isolated for
selection as easily as when bar flankers are used. The
error analyses of the tests with letter flankers (Figures 3
and 4) provide evidence that in amblyopic eyes, a
neighboring letter is selected in favor of the target letter
at a level greater than would be expected by chance.
The specific interaction of the flanker identity with the
target could be the reason for more crowding with
letter than bar flankers (Dakin et al., 2010). When bar
rather than letter flankers are used, the bar may be less
likely to change the percept of the target letter because
the bars do not provide an anchor or similar feature to
confuse with the target letter (Bernard & Chung, 2011),
nor do they form part of a meaningful group with the
target (Reuther & Chakravarthi, 2014). There is also
evidence that the number of flanker features within a
receptive field contributes to crowding, particularly if
they are sufficiently similar to the target to be grouped
with it perceptually (Bernard & Chung, 2011; Manassi,
Sayim, & Herzog, 2012; Saarela, Sayim, Westheimer, &
Herzog, 2009). This idea could help explain the greater
crowding found in our single-letter tests with letter
rather than bar flankers. The former test contains more
features overall than the equivalent test with bar
flankers.

A further explanation for the increased crowding in
the amblyopic eyes could stem from the findings of Lev
et al. (2014), where crowding was shown to be greater
where larger perceptive fields are used. In foveal
viewing in amblyopic eyes, similar to with young
children, larger processing units may be used (Doron et
al., 2015).

Most participants showed poorer mean logMAR in
their amblyopic eyes in the linear tests than in the
corresponding single-letter tests (Figure 1), and the
same was true for the group means (Figure 2). This
finding is not surprising, given the extra oculomotor
demand required to complete the linear tests and the
fact that both oculomotor deficits and positional
uncertainty have been shown to be present in strabis-
mic amblyopia (Chung, Kumar, Li, & Levi, 2015;
Ciuffreda, Kenyon, & Stark, 1980; Hess & Holliday,
1992; Levi et al., 1987). In a study which tracked eye
movements in nonamblyopic and amblyopic eyes
during a reading task, Kanonidou, Gottlob, and
Proudlock (2014) showed that individuals with stra-
bismic amblyopia made more saccades per line when
reading small print with their amblyopic eye, showing
poorer control of eye movements during reading.

The results of the error analysis of linear tests
showed that more adjacent errors (i.e., left or right
errors) occurred in the amblyopic eyes of participants
in all of the linear tests than would be expected by
chance only (Figure 3). This result supports the view

that increased positional uncertainty or oculomotor
demands in amblyopic vision led to poorer perfor-
mance in these tests. In addition, in the tests where
seven letters were read (LB7, LC), more rightward than
leftward errors were made, which suggests that as
observers completed the longer letter-string tests, they
were missing a letter or letters. Such results are
consistent with findings in observers with typical vision,
in which more errors were made when participants read
longer rather than shorter letter strings (Bedell et al.,
2015).

It was not possible with the experimental conditions
used in this study to distinguish whether positional
uncertainty or oculomotor errors caused the partici-
pants to lose their place more frequently when reading
the line of letters with their amblyopic eyes. Because
positional uncertainty can lead to a degraded sensory
signal, causing increased saccadic drift (Chung &
Legge, 2009; González et al., 2012), it may be that a
combination of the two factors is present.

Positional uncertainty could also cause more
crowding in the amblyopic eyes by increasing the
likelihood of misbinding of features from flanking
elements with the target, leading to excessive feature
integration (Bernard & Chung, 2011; Chung & Legge,
2009). The error analysis of test SCsl (Figure 4) showed
that near threshold, participants were naming the
flanking letters at a frequency greater than predicted by
chance—but crucially, the proportion of adjacent
errors was not greater in amblyopic eyes than fellow
eyes. If it is assumed that the fellow eyes of people with
strabismic amblyopia are not prone to positional
uncertainty or fixational errors any more than eyes with
typical vision, then it follows that a factor other than
positional uncertainty or poor fixation in the amblyopic
eyes is responsible for the greater crowding measured in
the single-letter test with letter flankers than in the
equivalent test with bar flankers. This finding is
consistent with that of Bonneh et al. (2007), who used
briefly presented stimuli and concluded that unsteady
fixation could not be the only cause of increased
crowding in amblyopia.

Participants in our study were given unlimited time
to view the charts, and our observation was that most
took longer to complete the testing with their
amblyopic than fellow eyes. Previous studies have
shown a temporal element to crowding in typical vision
(Lev & Polat, 2015; Lev, Yehezkel, & Polat, 2014;
Tkacz-Domb & Yeshurun, 2017) and in strabismic
amblyopia (Bonneh et al., 2007). It takes longer to
isolate targets from flanking elements in strabismic
amblyopia, possibly because of a slower or more
sustained inhibition. Had we limited the time given to
read the charts, this would most likely have produced
an even greater difference in crowding between
amblyopic and nonamblyopic eyes.
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Clinical implications

Our results lend support to the recommendation that
letter flankers, not bars, be used in visual-acuity
screening tests (Lalor, Formankiewicz, & Waugh, 2016;
Song, Levi, & Pelli, 2014). In addition, use of a linear
test could help identify children with poor gaze control.
Persistent amblyopia has been linked to poor gaze
control (Birch, 2013), so treatment for children showing
poor performance on a linear test could focus on
strategies which minimize the disruption to binocular
input (Subramanian, Jost, & Birch, 2013).

Conclusions

Our results show that similar to young children,
crowding in adults with strabismic and mixed strabis-
mic/anisometropic amblyopic eyes is dependent on
stimulus and task demands. The more precise eye-
movement control required to read a string of letters or
positional uncertainty and the increased target–flanker
similarity of letter flankers increase crowding in this
group. These two factors can have an additive effect,
with the poorest performance being in the test with
linear presentation with letter flankers.

Keywords: amblyopia, visual crowding, visual acuity

Acknowledgments

The authors are grateful for the suggestions of two
anonymous reviewers.

The Sloan font was downloaded from http://psych.
nyu.edu/pelli/software.html (Pelli et al., 1988).

Commercial relationships: none.
Corresponding author: Yvonne Norgett.
Email: yvonne.norgett@anglia.ac.uk.
Address: Anglia Vision Research, Department of
Vision and Hearing Sciences, Anglia Ruskin
University, Cambridge, UK.

References

Asper, L., Crewther, D., & Crewther, S. G. (2000).
Strabismic amblyopia. Part 1: Psychophysics.
Clinical and Experimental Optometry, 83, 49–58.

Astle, A. T., Mcgovern, D. P., & McGraw, P. V.
(2014). Characterizing the role of disparity infor-
mation in alleviating visual crowding. Journal of

Vision, 14(6):8, 1–14, doi:10.1167/14.6.8. [PubMed]
[Article]

Barrett, B. T., Bradley, A., & McGraw, P. V. (2004).
Understanding the neural basis of amblyopia. The
Neuroscientist, 10, 106–117.

Bedell, H. E., Siderov, J., Formankiewicz, M. A.,
Waugh, S. J., & Aydin, S. (2015). Evidence for an
eye-movement contribution to normal foveal
crowding. Optometry & Vision Science, 92(2), 237–
245.

Bernard, J. B., & Chung, S. T. L. (2011). The
dependence of crowding on flanker complexity and
target-flanker similarity. Journal of Vision, 11(8):1,
1–18, doi:10.1167/11.8.1. [PubMed] [Article]

Birch, E. E. (2013). Amblyopia and binocular vision.
Progress in Retinal and Eye Research, 33, 67–84.

Bondarko, V. M., & Semenov, L. A. (2005). Visual
acuity and the crowding effect in 8- to 17-year-old
schoolchildren. Human Physiology, 31, 532–538.

Bonneh, Y. S., Sagi, D., & Polat, U. (2004). Local and
non-local deficits in amblyopia: Acuity and spatial
interactions. Vision Research, 44, 3099–3110.

Bonneh, Y. S., Sagi, D., & Polat, U. (2007). Spatial and
temporal crowding in amblyopia. Vision Research,
47, 1950–1962.

Carpineto, P., Ciancaglini, M., Nubile, M., Di Marzio,
G., Toto, L., Di Antonio, L., & Mastropasqua, L.
(2006). Fixation patterns evaluation by means of
MP-1 microperimeter in microstrabismic children
treated for unilateral amblyopia. European Journal
of Ophthalmology, 17, 885–890.

Chung, S. T., Kumar, G., Li, R. W., & Levi, D. M.
(2015). Characteristics of fixational eye movements
in amblyopia: Limitations on fixation stability and
acuity? Vision Research, 114, 87–99.

Chung, S. T., & Legge, G. E. (2009). Precision of
position signals for letters. Vision Research, 49,
1948–1960.

Chung, S. T. L., Levi, D. M., & Legge, G. E. (2001).
Spatial-frequency and contrast properties of
crowding. Vision Research, 41, 1833–1850.

Ciuffreda, K. J., Kenyon, R. V., & Stark, L. (1980).
Increased drift in amblyopic eyes. British Journal of
Ophthalmology, 64, 7–14.

Ciuffreda, K. J., Levi, D. M., & Selenow, A. (1991).
Amblyopia: Basic and clinical aspects. Oxford, UK:
Butterworth-Heinemann.

Dakin, S. C., Cass, J., Greenwood, J. A., & Bex, P. J.
(2010). Probabilistic, positional averaging predicts
object-level crowding effects with letter-like stimuli.
Journal of Vision, 10(10):14, 1–16, doi:10.1167/10.
10.14. [PubMed] [Article]

Journal of Vision (2017) 17(13):5, 1–14 Norgett & Siderov 11

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936571/ on 11/10/2017

http://psych
http://nyu.edu/pelli/software.html
mailto:yvonne.norgett@anglia.ac.uk
http://dx.doi.org/10.1167/14.6.8
https://www.ncbi.nlm.nih.gov/pubmed/25424981
http://jov.arvojournals.org/article.aspx?articleid=2213001
http://dx.doi.org/10.1167/11.8.1
https://www.ncbi.nlm.nih.gov/pubmed/21730225
http://jov.arvojournals.org/article.aspx?articleid=2120999
http://dx.doi.org/10.1167/10.10.14
http://dx.doi.org/10.1167/10.10.14
https://www.ncbi.nlm.nih.gov/pubmed/20884479
http://jov.arvojournals.org/article.aspx?articleid=2121066


Doron, R., Spierer, A., & Polat, U. (2015). How
crowding, masking, and contour interactions are
related: A developmental approach. Journal of
Vision, 15(8):5, 1–14, doi:10.1167/15.8.5. [PubMed]
[Article]

Drover, J. R., Felius, J., Cheng, C. S., Morale, S. E.,
Wyatt, L., & Birch, E. E. (2008). Normative
pediatric visual acuity using single surrounded
HOTV optotypes on the Electronic Visual Acuity
Tester following the Amblyopia Treatment Study
protocol. Journal of the American Association for
Pediatric Ophthalmology and Strabismus, 12, 145–
149.

Farzin, F., Rivera, S. M., & Whitney, D. (2009).
Holistic crowding of Mooney faces. Journal of
Vision, 9(6):18, 1–15, doi:10.1167/9.6.18. [PubMed]
[Article]

Flom, M. C. (1991). Contour interaction and the
crowding effect. Problems in Optometry, 3, 237–
257.

Flom, M. C., Weymouth, F. W., & Kahneman, D.
(1963). Visual resolution and contour interaction.
Journal of the Optical Society of America, 53, 1026–
1032.

Formankiewicz, M. A., & Waugh, S. J. (2013). The
effects of blur and eccentric viewing on adult acuity
for pediatric tests: Implications for amblyopia
detection. Investigative Ophthalmology & Visual
Science, 54, 6934–6943. [PubMed] [Article]

Freeman, J., Chakravarthi, R., & Pelli, D. G. (2012).
Substitution and pooling in crowding. Attention,
Perception, & Psychophysics, 74, 379–396.

Giaschi, D. E., Regan, D., Kraft, S. P., & Kothe, A. C.
(1993). Crowding and contrast in amblyopia.
Optometry & Vision Science, 70, 192–197.
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