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Abstract: We have successfully designed and measured a unique polarisation splitting lens 
which focuses the orthogonal linear polarisations side-by-side in the lens focal plane. This 
concept can find application in situations where there is limited space for the beam splitters 
and focusing optics that are required for incoherent detectors. 
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1. Introduction 

It has been recently shown that metal mesh technology can be used to create a flat lenses [1–
3]. In general, these types of lens offer a viable alternative to traditional dielectric 
counterparts with the advantage of having reduced thickness and hence mass for a lens of 
comparable focal length. Metamaterial lenses can be divided into two classes; those using a 
periodic structure to provide a variable phase [2,3] across the aperture and those using a stack 
of meshes [1] to vary the refractive properties of the material. The phase approach can be 
used as single surfaces as outlined in the review by Yu et al. [3] or as stacks of phased 
surfaces as demonstrated by Pisano [2]. An issue with the phase approach is that the chosen 
unit cell design has to be able to generate the entire required phase change, which usually 
leads to a design that is resonant, thus narrow band, and has un-wanted polarisation effects. In 
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contrast, Savini’s approach was to use a stack of meshes with radially varying geometry to 
create a graded-index material that mimics the behaviour of dielectric lenses used at THz 
frequencies. The attractive property of this design is that the material refractive properties are 
constant over a broad frequency range rather than being tuned for a particular band. 

In this paper we extend the Savini design by exploiting the more exotic properties of the 
metal mesh structures, with the aim of producing a lens which spatially separates the two 
orthogonal polarisation states by imaging them side-by-side on the same focal plane. To avoid 
confusion with the existing flat lenses, we referrer to this new device as a pol-lens. 

The advantage of such a device is that two polarisation-insensitive detectors could be 
placed adjacently in the focal plane to directly measure the linear polarisation state of the 
incoming beam. Currently, to determine the state of polarisation, beam splitters and polarizers 
must be used, which open additional ports in a system and enlarge the overall volume of the 
detecting system. This novel device could thus offer a compact polarimetric detecting unit. 

2. Theory and modeling 

The lens described by Savini et al. was achieved by adopting a periodic square mesh structure 
with a given size unit cell which is much smaller ( / 5L λ≤ ) than the smallest wavelength of 
interest [1]. The desired operation of the lens was based on the principle that an incoming 
wave can see a refractive index which decreases radially from its centre which is achieved by 
making the metalized squares smaller within a fixed periodicity for the mesh. The analytical 
link between the capacitive nature of such a structure and its geometry has been detailed 
accurately in [4–6] whilst its relation in close packed form to an equivalent refractive index 
material is detailed in Zhang (2009) [7] where the manufacture of an artificial dielectric is 
described. 

The design of the pol-lens is based on the same principle except that we now introduce 
rectangular elements which modify the refractive index along the orthogonal axes. Thus, an 
incoming wave can now see two distinct refractive indices depending on its linear 
polarisation state, similar to that of a birefringent crystal. Furthermore, the dependencies of 
the refractive indices on mesh geometry can be analytically modelled relatively accurately by 
the use of two parameters; the cell periodicity, gx or gy, and the size of the metalized surface 
within the cell, (gx-2ax) or, (gy-2ay) as shown in Fig. 1a along each axis. The polarisation 
dependencies, as described in [7], can thus be transformed in a spin-like quantity (i.e. a 
refractive index for each polarisation axis of Fig. 1a). This gives four independent variables 
that can control the transmission properties of the mesh across the lens surface. 

To reduce complexity in the lens design, the outer unit cell size is kept constant (g = gx = 
gy) and square. This makes placing the elements for the final design simpler. Furthermore, 
fine tuning of the effective refractive index of a stack of meshes is controlled by the number 
of meshes and their spacing (as in Zhang, 2009 [7]) and is used to reduce the complexity of a 
design for manufacture. Thus, in this design the geometry of the rectangular patches and the 
ratios (ax/g) and (ay/g) control the effective orthogonal refractive indices across the lens 
similar to a spin quantity. 

To design a lens with a specific focal length and diameter, the design parameters are its 
thickness (number of layers), and its radial geometry profile as specified by the ratios (ax/g) 
and (ay/g), which determine the radial refractive indices. 
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Fig. 1. a) The rectangular unit cell used for designing the pol-lens. b) Example of complete 
artificial dielectric mesh stack. 

2.1 Modelling parameters 

Previous work (Zhang, 2009) has shown that the effective refractive index is achieved with 
only five mesh layers [7]. To reduce the computational time, a single unit cell stack of this 
minimal structure, as shown in Fig. 1, was modelled in HFSS to verify the polarisation 
sensitivity of a rectangular patch. Figure 2 shows the transmission of this artificial dielectric 
for orthogonal linearly polarised waves (x and y). It can be seen that there are two different 
Fabry-Pérot resonances, thus two different effective indices. For comparison, the fringe 
pattern expected for a material with uniform refractive index is shown by the dashed curves 
respectively. The overlap is good for frequencies below 250 GHz and demonstrates that 
broadband response is achievable. There is also no evidence of cross polarisation occurring in 
the structure, which is a requirement for the lens. 

 

Fig. 2. Typical spectral response of the structure in Fig. 1. g = 200 µm, spacing = 100 µm, ax/g 
= 0.05, ay/g = 0.35. The red curve corresponds to x Polarisation and the green is y polarisation. 
For comparison, the fringe pattern expected for a material with uniform refractive index is 
shown by the dashed curves respectively. 
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Interestingly, the orthogonal nature of the refractive index variations leads to a unique 
situation in which we can modify the lens’s behaviour for linearly polarised inputs which 
leads to the possibility of changing their respective focal lengths. Alternately, we also 
perceived that the radial variation of the patch geometry could be designed such that there is a 
displacement of the lens centre for orthogonal polarisations and hence obtain two focal points 
which appear side-by-side on the focal plane. We chose the latter design to prototype since it 
has interesting practical applications. 

To design the complete lens, a large array of rectangular patches which vary in size 
radially is required. The computing time to do this in HFSS was prohibitive so a quicker and 
hence less accurate model was devised using transmission line (TL) formalism. For this 
approach, the mesh is represented by an inductive impedance which is related to the mesh 
geometry as input to an equivalent circuit model. 

Previously, for the case of a square patch, we used known impedance relationships [5,6,8]. 
Since we now require solutions for rectangular patches we used the approach of Zarrillo et al. 
which is capable of modelling a rectangular patch [9]. Unfortunately, this model does not 
provide good accuracy but it is able to show the approximate variation of refractive index 
with geometry and proved sufficient for our demonstration. Further work is needed to find a 
better equivalent circuit representation. 

The design of rectangular mesh stack is chosen such that the effective index is constant 
over the frequency band of interest, as shown in Fig. 2. However, due to the capacitive nature 
of the structure used it will reach a cut-off frequency. As this cut-off frequency approaches, 
the structure starts to change in a way that is similar to a dispersive material, which is that the 
refractive index increases with frequency as seen in the HFSS model in Fig. 2. This behaviour 
was seen in the original graded index lens which caused the focal length of the lens to slightly 
change. For the rectangular patch, there are two different refractive index profiles associated 
with each side of the rectangle, with each index profile having a different frequency cut off. 
To address this a rectangular stack representative of a patch used at the centre of the lens has 
been simulated using the TL code for both orthogonal polarisations. As is evident in Fig. 2, 
both polarisations have only a slight variation in the Fabry–Pérot fringes when compared to 
an ideal material of the same index. As the frequency increases, the Fabry–Pérot fringes tail 
off which is equivalent to an increase in effective refractive index. What is important to note 
is that both the rate of change in index and the cut-off frequency are different for each 
polarisation. This means that for higher frequencies the graded index profiles will change 
slightly which could affect the overall performance of the lens. Although the lens is 
inherently broadband, its usage should be limited to frequencies below a threshold where the 
refractive index deviation is non-negligible. 

2.2 Exploring the parameter space 

The parameter space is explored by using the TL method to determine the refractive index 
variations for a particular geometry of rectangular patch. This was performed using the 
existing TL matrix approach to model the behaviour of a stack of 20 meshes, with 100 µm 
spacing and a cell size of 200 µm. The calculated effective refractive index values for a given 
incident polarisation as a function of parameters (ax/g) and (ay/g).is shown in Fig. 3. 
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Fig. 3. Parameter space of available refractive index values for one polarisation. 

An important conclusion from Fig. 3 is that the refractive index at a specific point on the 
lens is dependent on both the values of (ax/g) and (ay/g) and although there are many possible 
combinations which fulfil a specific requirement, once chosen there will be a limitation in 
range for the orthogonal axis. A contour plot of the same data, Fig. 4a, identifies the 
parameter pairs that give rise to a specific refractive index value for one polarisation. The 
black line highlights selected pairs which give a refractive index of n = 2.5 for this 
polarisation. With the refractive index of this axis fixed Fig. 4b then shows the corresponding 
range of index values which are available to the orthogonal polarisation as we move 
incrementally along the black line (for the plot we use ax/g as a reference for position on the 
line). This relationship is fundamental to the lens design process. 

 

Fig. 4. a) The black line represents the combinations of (a/g)x and (a/g)y that lead to a constant 
index. b) The line shows the range of index vales that are possible for the orthogonal 
polarisation with same pairs of values. 

HFSS was used to test the accuracy of the TL model by using a coarse parameter-space 
map to limit the computational time. Figure 5 shows the comparison between the two models. 
The HFSS plot has been interpolated from the original data points and shows that TL model 
does follow a similar surface profile. This similarity means that the TL model can be used for 
iterating on an initial design before using HFSS parameter space to populate the final pol-lens 
design. 

                                                                                          Vol. 25, No. 21 | 16 Oct 2017 | OPTICS EXPRESS 25367 



 

Fig. 5. a) Parameter space realized using a TL b) Interpolated parameter space from HFSS 
simulations. 

3. Lens design and fabrication 

The refractive index radial profile, n(r), used for a Woods-type flat lens [10] is given by Eq. 
(1) where 0n  is the maximum value of n at the lens centre, r is the radial distance from the 

centre, d  is the thickness of the lens and f  is its focal length. As discussed in section 2.1, 

we chose to manufacture a prototype with a displacement of the lens centres for orthogonal 
polarisations and hence obtain two focal points which appear side-by-side on the focal plane 
about its central symmetry axis. To minimize the number of unknown variations in this 
design, the two gradient index (GrIn) profiles for each lens are designed similarly to [1] to 
have a common focal length of 25 cm, a diameter of 7 cm, and a thickness of 2 mm. 

 
2
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The overall refractive index distribution of the complete lens is be constructed around a 
common reference frame. At each point in this reference frame a vector, n, is defined which 
can take two values nx and ny corresponding the refractive index that each polarisation will 
see at that point. 

 

Fig. 6. a) Radial distribution of refractive index for one polarisation. b) The combined 
refractive index distributions for both polarisations. The physical device boundary is 
highlighted in blue. 
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Since each lens has a radially-varying index, there are lines of constant index which form 
concentric circles around the centre of the lens as shown in Fig. 6a. When the two refractive 
index profiles are overlapped, as shown in Fig. 6b, the circle of constant index for one 
polarisation intersects the constant index circles for the other polarisation. The polarisation 
image separation in the focal plane is simply determined by the separation of the orthogonal 
polarisation centres. In practice the maximum image separation is partly determined by the 
range of refractive index as given in Fig. 4b and by the required external diameter. 

With the refractive index distribution for the lens defined, it is now possible to use these 
to determine the mesh geometry (g, a/g) and mesh layer spacing to design the lens. The 
results of this comparison are shown in Fig. 7. This design is for a lens with a polarised image 
separation of 10 mm and shows the corresponding values of a/g that produce the required 
refractive index profiles and thus confirms that manufacture of the lens is viable. 

 

Fig. 7. Maps showing the spatial variation in a/g over the area of the lens for each axis. 

One limitation to this design is that any area where the effective index of one GrIn lens 
falls below that of the substrate (effectively mimicking the flat ring-like slab surrounding a 
classical convex or planar-convex lens) will not allow for any GrIn behaviour of the other 
lens, thus breaking the overall cylindrical symmetry of the device at its perimeter. Future 
studies will investigate potential aberrations, if any, that are induced because of this. 

This design was fabricated by hot pressing the mesh layers together with appropriate 
polypropylene spacers between them as described in Ade & Zhang et al. [7,11]. Only a single 
mask is required since all the mesh layers are identical; the polarisation asymmetry resides in 
the distribution profile of the rectangular patches. Like the previous un-polarized design, the 
lens has not been impedance matched to free space, meaning that there will be reflection 
losses. This could be addressed by using an anti-reflection coating (ARC) on the surface of 
the lens. However, since the purpose of this prototype is to test the basic polarisation 
properties, ARC was not applied. 

Care was taken in assembling the pol-lens to ensure that there was minimal rotational 
misalignment between the meshes as this could introduce unwanted cross-polarisation terms. 
The completed pol-lens is shown in Fig. 8 with a portion of the mesh pattern highlighted. 
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Fig. 8. Image of the pol-lens as built with a zoomed in portion shown. 

4. Measurements 

4.1 Experimental configuration 

The primary goal of the measurement was to validate the lens properties by observing a shift 
in the focus positon when changing between the orthogonal linear polarisation states. In 
addition, we also wanted to confirm that the lens was achromatic over a broad spectral range. 

To combine both of these measurement requirements we used a Martin-Puplett Fourier 
Transform Spectrometer (FTS) [12], to provide a polarised radiant source. For our 
experiment, the output optics of the FTS was coupled to a bolometric detector via a 
collimating and re-condensing lens system which generates a parallel beam section as shown 
in Fig. 9. This was convenient because it allowed for a simple spectral and spatial 
comparisons to be made between a standard polyethylene (PE) lens used as the final 
condensing optic in this system and the pol-lens by swapping between them. It also ensures 
that the lens is tested with a collimated input allowing its focal length (distance between lens 
and detector) to be determined. Differences between the focal length of the PE and pol-lenses 
where taken into account by re-focusing the detector along the optical axis. Spatial cuts across 
the focused beams were made by moving the detector orthogonally to the optic axis using a 
translation stage. 

Care was taken to ensure that the pol-lens was aligned such that the optical axis passes 
through its symmetry centre such that the orthogonal polarisation foci lie on either side of this 
axis, whilst the PE lens at the same position will focus on axis. This configuration has the 
advantage that the same amount of power is constantly incident on the lens for both 
polarisations and both lens types. To measure the lens profiles the detector was mounted on a 
translation stage which stepped it along the y-axis (see Fig. 9) across the optical axis at the 
nominal focus position. A full interferometric scan of the FTS was taken at each detector 
position as it was incremented along the y axis. Thus we can extract transverse beam cuts for 
any frequency in the spectral range measured (100 – 300 GHz) for either polarisation. The 
output polarisation state can be selected by rotating the final polarising analyser in the FTS. 
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Fig. 9. Experimental setup for measuring the spectral spatial response of the Pol-lens. The 
output PE lens in a re-imaging telescope at the output of a FT spectrometer is replaced by the 
pol-lens for comparative measurements. Beam cuts through the final focus are made by 
scanning the detector transversely across the beam. 

An initial reference measurement was taken using the PE lens with the output polarisation 
orthogonal to the optical bench (S-pol). Full spectral scans (3 GHz resolution) were recorded 
at each detector position as it was moved ± 50 mm around the optical axis in 1 mm steps. The 
pol-lens was then inserted and the same scan range repeated. Without any changes in 
alignment, the output polarisation of the FTS was rotated so that it was perpendicular to the 
bench (P-pol) and the measurement repeated. Finally, the PE lens was re-inserted and another 
reference scan taken for the orthogonal polarisation as a systematic check. 

4.2 Measured performance 

A sequence of scans at different focal positions showed that the optimal focal length of the 
pol-lens was 230 mm, which is slightly less than the TL design one of 250 mm. A comparison 
of the orthogonal polarised beam profiles taken at this optimum focus are given in Fig. 10. 
The data here were normalised for comparison. It can be seen that from fitting the data the 
focus separation is 8.2 mm, again slightly less than the 10 mm design width. 

Because the pol-lens has a longer focal length than the PE lens, its diffraction limited spot 
size is larger at the detector which has a fixed aperture diameter. 

 

Fig. 10. Cross section of beam profiles for both polarisations at 150 GHz. Vertical polarisation 
red curve, Horizontal polarisation green curve. 
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In Fig. 11 we have shifted and overlaid the measured orthogonal beam cuts for the pol-
lens to show the symmetry between the polarised outputs. We have also over plotted data 
from the PE lens and added the diffraction modelling expectations for the measured profiles 
of both lenses to show the good agreement with expectation. The beam widths of the PE lens 
and the pol-lens are entirely explained by their different focal lengths (175 mm compared to 
230 mm). 

 

Fig. 11. The orthogonal beam scans at 200 GHz are shifted and overlaid to show the symmetry 
between the polarisations outputs. Vertical polarisation is red triangles, Horizontal are green 
inverted triangles. The profile of the polyethylene lens used as a reference is also shown in 
blue circles. In addition the diffraction model beam cuts are given for the pol-lens red curve 
and for the PE lens blue dashed curve. 

The good agreement between the symmetry for the orthogonal components and the 
diffraction model is important for practical applications of the lens. Major differences 
between polarisations would introduce extra systematic errors into a polarimetric 
measurement whilst departure from the Airy profile would indicate significant issues with the 
lens form. 

The simple diffraction model also allows a comparison of the detected power between the 
PE and pol-lens as a function of frequency. The beam patterns for each lens, as seen in the 
detector focal plane, are integrated over the detector aperture to determine the power 
coupling. By taking the ratio of these as a function of frequency we can remove unknown 
factors in the source emittance and spectral throughput of the FTS and determine a direct 
comparison between the lens types as shown in Fig. 12. We have over plotted the measured 
intensity ratio for the pol-lens/PE lens to show that the spectral behaviour follows the model 
expectation but is reduced in magnitude at all frequencies. The difference in magnitude seen 
here is an indication of the excess reflection loss of the pol-lens which is expected because of 
its higher refractive index over its central area. The difference is surprisingly small, ~9%, 
which we attribute to the fact that most of its area has an index close to that of PP (n = 1.48) 
which is slightly lower than that of PE (n = 1.52) at these wavelengths. Future iteration of the 
pol-lens will be anti-reflection coated which is relatively easy to implement on the flat lens 
surfaces with mesh technology. 
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Fig. 12. Comparison of measured on-axis intensity ratio pol-lens/PE lens (blue curve, with a 
best fit given by blue dash-dotted curve) and the diffraction model power calculations (red 
dash curve). 

5. Conclusion 

We designed a novel polarisation splitting lens which is capable of separating the orthogonal 
linear polarisations and imaging them side by side in its focal plane. This lens thus combines 
the action of a Wollaston prism and a pair of lenses in a single 2-mm-thick device and is ideal 
for usage in mm-wave receivers. The measured results show that the prototype lens performs 
close to expectation over a broad band from 100 to 300 GHz. These results also demonstrate 
that rectangular meshed patches can be used to separate and steer orthogonal polarisations 
over a broad frequency range which will assist in the design of other polarisation sensitive 
meta-material devices. 

The size and frequency coverage of the lens demonstrated here was chosen for practical 
reasons. Future investigation is needed to explore the polarisation separation achievable and 
the improvement in efficiency achievable with the addition of anti-reflection coated layers. 
The mesh filter technology has been proven for diameters up to 30 cm allowing usage for a 
range of applications where large refracting optics are required [13]. 
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