
Smart Interfaces for
Granular Synthesis of Sound
by Fractal Organization

Paul Rhys
Department of Music and Performing Arts
Anglia Ruskin University
East Rd, Cambridge CB1 1PT, UK
paul.rhys@anglia.ac.uk

Abstract: This article describes software for granular synthesis of sound. The software features a graphical interface
that enables easy creation and modification of sound clouds by deterministic fractal organization. Output sound clouds
exist in multidimensional parameter–time space, and are constructed as a micropolyphony of statements of a single
input melody or group of notes. The approach described here is an effective alternative to statistical methods, creating
sounds with vitality and interest over a range of time scales. Standard techniques are used for the creation of individual
grains. Innovation is demonstrated in the particular approach to fractal organization of the sound cloud and in the
design of a smart interface to effect easy control of cloud morphology. The interface provides for intuitive control and
reorganization of large amounts of data.

Mandelbrot’s pioneering work in fractal geometry
(1977, 1982) inspired composers such as Charles
Dodge and Larry Austin to explore musical fractals
using the computer (Dodge 1988). Around the same
time various composers started to use the logistic
map and other nonlinear dynamic systems to control
granular synthesis and event generation (Waschka
and Kurepa 1989; DiScipio 1990; Truax 1990).
These musical explorations were also stimulated
by the discovery that the power spectra of pitch
and loudness in a wide range of musical styles
approximate a 1/ f spectral density, and much music
is therefore statistically self-similar (Voss and Clarke
1975). Melodies generated by Brownian noise with
density 1/ f 2 have too little variation and those
generated by white noise with constant density
(1/ f 0) vary too widely (Voss and Clarke 1978). More
recent work finds a spectral density of 1/ f 1.5 as the
best generator of natural-sounding melody (Beauvois
2007).

Based on Mandelbrot’s work, Barnsley (1988,
2006) developed an elegant description of fractal ge-
ometry by iterated function systems (IFS), which has
been adopted as the basis for musical explorations
by many others (Gogins 1991; Harley 1995; Worrall
1996).

Although powerful, Barnsley’s approach privi-
leges two-dimensional plane geometry. By contrast,
sonic phenomena are conveniently described by a
collection of perceptual parameters unfolding in
time: pitch or frequency, amplitude, timbre, spatial
location, etc. Though pitch–time space may be used

Computer Music Journal, 40:3, pp. 58–67, Fall 2016
doi:10.1162/COMJ a 00374
c© 2016 Massachusetts Institute of Technology.

to describe the evolution of a melody or note com-
plex, it is not a genuine two-dimensional space but
rather a linking of distinct one-dimensional spaces.
In general, the need to distinguish between the time
dimension and each parametric dimension demands
an approach towards fractal organization that differs
from the standard IFS description of Barnsley. From
among the geometric transforms used in fractal
construction, the approach described here permits
two-way stretches and shears, but avoids rotations.

Deterministic construction is used to create
sound clouds as a polyphony of statements of a
single input melody or note-group, freely chosen
by the user; a carefully designed graphical interface
permits intuitive control over morphology of the
output cloud and details of the input. Clouds have
sufficiently high density that individual note events
or melodic lines cannot normally be discerned in
the sonic output, and thus the structure of the
output is best described as a “micropolyphony.” But
a proper understanding of this structure demands a
preliminary explanation at the note-by-note level,
for which we will use traditional score notation. As
we shall see later in the article, as the density of the
output cloud increases and the sonic output acquires
genuine interest, a graphical display becomes clearer
than score notation.

Preliminary Concepts

At a preliminary stage, input to the software is a
melody in pitch–time space with no rests or overlaps
between each of its N note events. A first iteration
of the output is obtained by replacing each event i
of the input with a miniature version of the input

58 Computer Music Journal



Figure 1. Input melody
(with r0 = 1/4, r1 = 1/2,
r2 = 1/4) and output
melodies after one and two
iterations. Addresses of

events in the first iteration
are 00, 01, 02, 10, 11, 12,
20, 21, 22; in the second
iteration 000, 001, 002,
010, 011, etc.

melody, scaled equally in both dimensions by a ratio
ri so that it has the same duration as event i. A sec-
ond iteration replaces each event of the input with
scaled versions of the first iteration (see Figure 1). A
third iteration replaces each event of the input with
scaled versions of the second iteration, and so on. As
one proceeds, ever-finer detail is added. In the limit,
the output comprises N segments, each related
to the whole by a similarity transformation, and
thus the output melody is described as self-similar.

In practice, construction ceases after a finite
number of iterations k, yielding an output of
Nk+1 events that are conveniently counted in
base N, starting from zero. Digits of this base N
representation yield an address n0n1 . . . nk for each
output event, whose pitch and start time are given
by the following recurrence relations:

p(n0n1 . . . nk) = pn0 + rn0 (p(n1n2 . . . nk) − p0), (1)

t(n0n1 . . . nk) = tn0 + rn0 (t(n1n2 . . . nk) − t0), (2)

where

pi is the pitch of input event i,
ti is the start time of input event i,
ri = (t′

i − ti)/T is the ratio of the duration of input
event i to the total duration,

t′
i is the end time of input event i,
T is the total duration of the input melody, and
i = 0, 1, 2 . . . (N − 1).

An output event in iteration k with address
n0n1 . . . nk is obtained from the event in iteration
(k− 1) with address n1n2 . . . nk by a scaling of rn0

relative to origin (p0, t0) followed by translation

to the point (pn0 , tn0 ). After several iterations most
output melodies are microtonal, moving by intervals
smaller than a semitone. But with few iterations
and an input with sufficiently wide pitch range,
traditional staff notation can be used to illustrate
the process of construction (as in Figure 1).

The visual perception of self-similarity in the
plane rests on our facility for recognizing similar
figures—a facility that is exercised whenever we look
at identical objects situated at varying distances in a
three-dimensional field. Within carefully prescribed
limits, there is no doubt that we perceive similarity
in the time dimension: A rhythm played back at
different tempi is still understood as the same
rhythm. At very high tempi, uneven rhythms are
smoothed out in our perception (Abel 1972; Van
Noorden 1975), and as we cross the 20-Hz threshold,
rhythm starts to be perceived as timbre. At very low
tempi, durations exceed the “perceptual present” of
around 3 seconds (Pöppel 1997) and rhythm evolves
into form (Stockhausen 1962).

The perception of similarity, or scaling, in
the pitch dimension is much less certain. For
example, most listeners would not understand the
arpeggios (C–D�–E�), (C–D–F�), and (C–E�–A) as
fundamentally the same. But if such arpeggios were
played with identical rhythm and dynamics, we
would understand them as closely related.

Basic Model

The foregoing, preliminary model yields an ornate
melodic line rather than the cloud of events required

Rhys 59



Figure 2. Input melody,
with r0 = r1 = r2 = 1/3.

for granular synthesis. A more advanced model is
obtained by the following simple modification of
the recurrence relations from Equations 1 and 2:

p(n0n1 . . . nk) = pn0 + rα
n0

(p(n1n2 . . . nk) − p0), (3)

t(n0n1 . . . nk) = tn0 + rβ
n0

(t(n1n2 . . . nk) − t0). (4)

This has far-reaching consequences: it yields
sound clouds constituted as a polyphony of state-
ments of the input melody and it mitigates concerns
regarding the perception of self-similarity in pitch.
At each stage of this new construction a scaling of
rα

i is applied to the pitch dimension and rβ

i to the
time dimension. Convergence to a limit requires
α > 0 and β > 0, yet this is of little concern because
construction always ceases after a finite number
of iterations and corrective scaling of the output is
usually applied prior to synthesis. When the limit
does exist, independent scaling of each dimension
(α �= β) ensures that it is self-affine rather than
self-similar, since the output is now the union of
N subsets, each related to the whole by a two-way
stretch (an example of an affine transformation).
For this reason, α and β are referred to as affine
exponents. Equations 3 and 4 lead, in turn, to the
closed forms

p(n0n1 . . . nk) = pn0 +
k∑

i=1

(pni − p0)
i−1∏

j=0

rα
nj

, (5)

t(n0n1 . . . nk) = tn0 +
k∑

i=1

(tni − t0)
i−1∏

j=0

rβ
nj

, (6)

which also hold for the preliminary model above,
with α = 1 and β = 1.

A wide variety of output morphologies result
from the interplay of exponents α and β on a given
input melody. Some feeling for this behavior can be
gained by studying the score examples in Figures
2–4. When α or β takes a noninteger value, however,
score notation cannot represent the irrational output

Figure 3. Outputs after one
iteration based on the
input of Figure 2, with α

set to 2, 1, 0, and −1 (β = 1
throughout).

values generated and a graphical display is required
instead (for example, Figures 5 and 6).

The value of α influences the pitch structure
of the output (see Figure 3). When α > 1, profiles
become progressively smoother and output pitches
cluster ever more closely around the input. For
α < 1, pitch profiles become rougher, a trend that
continues for α < 0 as output pitches are “repelled”
from input values and the magnitude of local change
exceeds long-term change. The effect of α on output
profiles is analogous to the influence of an exponent
α on time series generated by noise with a power
density spectrum 1/ f α (Voss and Clarke 1978;
Beauvois 2007).

The value of β influences the time structure of
the output (see Figure 4). When β = 1, the output
melody, like the input, has no gaps or overlaps
between events. When β > 1, the output breaks
apart into individual statements of the input melody
separated by silences. And as β rises further, output
events cluster ever more closely around start times
of the input. When β < 1, individual statements
of the input melody start to overlap one another
to create a polyphony. It is typically under such
conditions that sound clouds suitable for granular
synthesis are obtained (for example, Figures 5 and
6). For β < 0, overlaps increase and the durations of
output events become large compared to the input.

60 Computer Music Journal



Figure 4. Outputs after one
iteration based on the
input of Figure 2, with β

set to 2, 1, 0, and −1 (α = 1
throughout).

Figure 4

Figure 5. Graphical
interface, showing the
input melody of Figure 2,
and an output cloud after
three iterations, α =
−0.075, β = 0.34. Vertical
lines clarify the polyphonic
structure of the output.

Figure 5

In the special case α = 0 there is no scaling of
input pitches, and when β = 0 there is no scaling
of input durations. Under such circumstances
Equations 5 and 6 specify repeated convolution of
the input with itself, or autoconvolution, and if the
input sits on a given lattice, so too does the output.
Concerns regarding our perception of self-similarity
in the pitch domain are thus dispelled when α = 0.

Extending the Model

The preceding model may be extended and gen-
eralized. A first generalization allocates multiple

parameters to input events and a second general-
ization allows linear change of such parameters
over time. Finally, gaps and overlaps between input
events are permitted.

First Generalization: Multiple Parameters

A first generalization of the model allocates multiple
parameters to each input event: pitch, amplitude,
timbre, spatial location, etc. For each parameter, the
adoption of a scale that is perceived as linear when
associated with a corresponding synthesis definition
ensures that the graphic display bears a close

Rhys 61



Figure 6. The same output
as in Figure 5, after six
iterations. Vertical lines
are omitted from the
display.

Figure 6

Figure 7. The same cloud
as Figure 6, showing
amplitude versus time for
α = 0.813, β = 0.34.

Figure 7

relationship to the sonic result, thereby facilitating
close control over design of the output sound. It is
for this reason that pitch–time space rather than
frequency–time space has been adopted. But for
many parameters, linearization is fraught with
difficulty. Despite the pioneering work of Stevens
(1957, 1972) and Fletcher and Munson (1933), this is
certainly the case for perceived loudness. For many
other parameters, especially those governing timbre,
linearization may be unattainable and in such cases
aesthetic criteria will guide the choice of a metric.
Currently, the software permits up to ten different
parameters to characterize events, but this can be
extended. To create the output, each parameter is
associated with its own value of an affine exponent α

and its own number of iterations—but a single value
of β still governs organization of time (see Figures 6
and 7).

Second Generalization: Linear Change
of Parameters

In a second generalization, individual events of
the input melody are permitted linear change of
each parameter over time. Given an input event
i with parametric gradient mi, the transformation
associated with this event entails scaling by rα

i and
rβ

i , followed by a shear parallel to the parameter axis
that transforms an event of zero parametric gradient
into one with gradient mi. The new recurrence
relations are given by the following equations:

p(n0n1 . . . nk) = pn0 + rα
n0

(p(n1n2 . . . nk) − p0)

+ rβ
n0

mn0 (t(n1n2 . . . nk) − t0), (7)

t(n0n1 . . . nk) = tn0 + rβ
n0

(t(n1n2 . . . nk) − t0), (8)

62 Computer Music Journal



Figure 8. Input melody
comprising four events,
and output after two
iterations, α = 0.55,
β = 0.45.

Figure 8

Figure 9. Output based on
the same input, after seven
iterations, α = 0.55,
β = 0.45.

Figure 9

where

m= (p′
i − pi)/(t′

i − ti) is the parametric gradient of
each input event,

p′
i is the end parameter value of input event i, and

t′
i is the end time of input event i.

The final term of Equation 7 is responsible for the
shear. The closed form for t(n0 n1 . . . nk) remains as
in Equation 6, but the closed form for p(n0 n1 . . . nk)
is cumbersome and is not shown here. Still, it is
worth noting that the parametric gradient of each

output event is given by:

m(n0n1 . . . nk) = mn0 +
k∑

i=1

mni

i−1∏

j=0

rα−β
nj

. (9)

With the introduction of nonzero gradients,
new output morphologies result: dendritic forms,
arborescences, and so on (see Figures 8 and 9; further
examples follow later in the article). If β = 1 and
the input melody is continuous, the output is a
fractal interpolation function (Barnsley 1986; Monro

Rhys 63



Figure 10. Input
comprising four
overlapping events, and
output cloud after four
iterations, α = 0.44,
β = 0.552.

1995) whose roughness is controlled by the value
of α.

Third Generalization: Gaps and Overlaps
between Input Events

A final generalization permits both gaps (silences)
and overlaps between input events. The input is no
longer restricted to being a melody, but may be any
arbitrary arrangement of note events (see Figure 10).
When overlapping events predominate, the user
may choose to define the scale values ri (Equations
1 and 2) as a proportion of the sum of durations of
all events, rather than a proportion of the bounding
duration. But apart from this, no new protocols are
required.

The Interface

The interface is shown in Figure 11 and its
use demonstrated in a video at http://www
.mitpressjournals.org/doi/suppl/10.1162/COMJ a
00374. Both the interface and the sound synthesis

routines have been coded in James McCartney’s Su-
perCollider environment. A wide variety of output
morphologies result from the interplay of exponents
α and β upon the input, and they are easily ex-
plored via the interface. A mouse drag in the output
window is tracked and vertical motion is mapped
to α, horizontal motion is mapped to β. By doing
so the user is afforded the impression that mouse

movement is controlling the morphology of the
cloud: stretching, skewing, or folding it.

Names of all the parameters used to define the
input and output are displayed across the top of
the screen. The value of α is displayed immediately
above each parameter name, and the number of
iterations immediately below. The value of β is
displayed top center of the screen, labeled as the
exponent associated with time, and the number of
iterations for time is shown immediately below (see
Figure 11). The user can view the input and output
in each parametric dimension versus time, using a
key press to move between parameters. Parameter
names wrap around so that the current parameter is
always located in the middle of the display, where a
small grid shows a point plotted in α–β space.

Optional color display of the output cloud shows
each grain colored according to the value of a second
parameter chosen by the user: blue represents
lowest values, red highest, and intermediate values
are mapped across the spectrum. Shift-drag in the
output window changes the value of α for this second
parameter, resulting in striking color changes of the
cloud.

Using the mouse, input events can be moved,
added, or deleted while display of the output is
instantly updated. If required, the input can also
be edited in a text file containing all the input
data. In addition to the standard operations of
inversion, retrograde, and retrograde inversion,
the software permits shear of the input in two
orthogonal directions. Shear parallel to the time
axis leaves parameter values unaffected but skews

64 Computer Music Journal



Figure 11. Screenshot of
the interface. In this
example input events start
and finish at 0, 1, 2, and 3
seconds. The output has
α = 1.0 for stereo position,

−0.75 for pitch, −1.0 for
amplitude, and β = 0.
Seven iterations are used
for pitch and time, and
four for stereo position and
amplitude.

events in time, so it transforms a chord comprising
simultaneous events of different pitch into a rising
or falling arpeggio. Shear parallel to the parameter
axis leaves time values unaffected but skews the
parametric gradient of every event, so transforming
events of fixed pitch into glissandi with identical
gradients. Operations within the interface are
carried out by some 80 distinct key commands that
are described in a Help file.

Linear scaling of the output cloud, both in time
and in each of its parametric dimensions, is usually
applied prior to synthesis via a secondary interface.
For example, the high density of events at the
start of Figure 10 may demand an overall reduction
in amplitude to avoid distortion, or the cloud in
Figure 9 may require a wider overall pitch range
in order for us to hear its detailed internal pitch
structure. When synthesis is complete, a vertical
cursor scrolls through the display of the cloud during
playback of the resulting sound.

Using buttons at the bottom right of the screen,
the user can navigate through a succession of output

sound files created during the current session; in
Figure 11 these files are named flutter 0 through
flutter 5. The name of the SuperCollider synthesis
definition used to create grains is displayed at
bottom left of the screen.

Discussion of Results

A wide range of sound clouds have been synthesized
by the author in two-, four-, and eight-channel
sound using a range of grain types, including short
sampled sounds and synthetic types. A selection
of stereo outputs is presented in the video at
http://www.mitpressjournals.org/doi/suppl/10.1162
/COMJ a 00374. Cloud morphologies inherit their
characteristics from the input and from the choice
of affine exponents. The sonic results have greater
interest across a range of time scales than similar
sounds created by stochastic granular synthesis.
There is a stronger sense of purpose in their unfolding
through time and more interest in their detail.

Rhys 65



Successful results are achieved by paying attention
to the pairing of grain type with cloud morphology,
design of the input profiles, allocation of affine
exponents to each parameter, and spatialization of
grains.

If input events are situated on a time lattice,
the output cloud manifests significant periodicity
when β takes integer values, and this periodic-
ity is particularly pronounced if β is 1, 0, or −1
(Figure 11). If such a periodic output cloud is syn-
thesized using grains with a percussive amplitude
envelope and the overall time scale adjusted so
that the output period is less than 1/20 sec, one
will hear a single pitched sound with a fluctuating
timbre that reflects internal characteristics of the
grains.

By contrast, when β takes noninteger values
the output cloud does not, in general, demonstrate
periodicity, even if the input is situated on a lattice
(Figures 5–10). Such aperiodic clouds are the more
common class of output and prove to be the most
useful musically. When synthesized, the internal
characteristics of grains (e.g., their pitch and timbre)
typically remain perceptible as part of an overall
sound mass in much the same way as clouds whose
time structure is stochastic.

The ability to specify a different number of
iterations for each parameter has rich compositional
potential. For the cloud shown in Figures 6 and
7, one might in addition define an input profile
for the stereo position of grains and specify just
one iteration for this parameter. The output will
then comprise 32 = 9 overlapping sub-clouds, each
characterized by its own stereo position and each
containing 35 = 243 grains. Color display of such a
cloud will reveal its structure.

Curtis Roads has drawn attention to the impor-
tance of parameter linkage in granular synthesis:
the dependency, whether direct or inverse, of one
grain parameter to another parameter (Roads 2004,
pp. 125–129). Such linkages have been explored by
(1) creating input profiles for different parameters
that are closely related, or that are inversions of one
another, and (2) direct coding within SuperCollider
synthesis definitions. Weaker, behavioral linkages
can be established by allocating the same affine
exponent to two or more parameters.

Granular synthesis has traditionally been used
to create gradually evolving sound textures, but
by choosing an input with many overlapping
events, as in Figure 10, this software can produce
an output cloud with a marked concentration
of amplitude at its start, yielding a powerful,
percussive sound. A short sound object created
with this software may also be used as a grain for
another, higher-level cloud with quite a different
structure, thereby creating complex sound objects
that are best described as “multifractals” (Harte
2001). Such a multifractal approach is one way of
managing the 20-Hz perceptual discontinuity, since
two independent time structures can be designed on
either side of the divide.

A much earlier version of this software was pub-
lished and distributed by the Composers’ Desktop
Project. It was used by the author to create the
acousmatic work Ebb and Flow, and to organize
rhythmic density in his String Quartet No. 1 and
Chicago Fall for acoustic and electronic instruments
(Rhys 1996).

Future Developments

Michael Barnsley (2006) introduced the concept of a
“V-variable fractal” as a hybrid between two or more
iterated function systems and a “superfractal” as the
collection of all such possible hybrids. These hybrid
forms possess a greater degree of irregularity than
those generated by a single IFS (see, for example,
Figure 5.27 in Barnsley 2006) and are proposed as a
better fit to many of the geometrical forms encoun-
tered in nature. The software and interface described
in this article can readily be developed to permit
generation of such hybrid sound clouds, and thereby
create hybrids between two or more sound objects.

Conclusion

Among the variety of approaches used for the
organization of grains in the granular synthesis of
sound, reviewed by Roads (2004), the technique
described here has rich compositional potential and
warrants further investigation. The sonic results

66 Computer Music Journal



have greater interest across a range of time scales
than do similar sounds created by stochastic granular
synthesis. They demonstrate greater purpose as they
unfold in time and more interest in their detail.
Despite the mathematical description presented
in this article, the graphical interface allows the
software to be used in an intuitive fashion and
constitutes a powerful tool for organization of
multidimensional grain data. The technique will
be refined and developed further in preparation for
more widespread use by the musical community.

Acknowledgments

Thanks are due to Rajmil Fischmann (University
of Keele, UK), who guided the earliest phase of
this work, Tom Hall (Anglia Ruskin University,
UK), who introduced me to the SuperCollider en-
vironment and provided valuable advice thereafter,
and to undergraduate researchers Alex Baldwin and
Joshua Brown, who helped develop the interface and
synthesis routines, supported by funds from Anglia
Ruskin University.

References

Abel, S. 1972. “Duration Discrimination of Noise and
Tone Bursts.” Journal of the Acoustical Society of
America 51(48):1219–1223.

Barnsley, M. 1986. “Fractal Functions and Interpolation.”
Constructive Approximation 2(1):303–329.

Barnsley, M. 1988. Fractals Everywhere. San Diego,
California: Academic Press.

Barnsley, M. 2006. Superfractals. Cambridge, UK: Cam-
bridge University Press.

Beauvois, M. 2007. “Quantifying Aesthetic Preference
and Perceived Complexity for Fractal Melodies.” Music
Perception 24(3):247–264.

DiScipio, A. 1990. “Composition by Exploration of
Non-Linear Dynamic Systems.” In Proceedings of the
International Computer Music Conference, pp. 324–
327.

Dodge, C. 1988. “A Musical Fractal.” Computer Music
Journal 12(3):10–14.

Fletcher, H., and W. Munson. 1933. “Loudness, Its
Definition, Measurement and Calculation.” Bell
System Technical Journal 12.4:377–430.

Gogins, M. 1991. “Iterated-Functions Systems Music.”
Computer Music Journal 15(1):40–48.

Harley, J. 1995. “Generative Processes in Algorithmic
Composition: Chaos and Music.” Leonardo Music
Journal 28(3):221–224.

Harte, D. 2001. Multifractals: Theory and Applications.
London: Chapman and Hall/CRC.

Mandelbrot, B. 1977. Fractals: Form, Chance, and
Dimension. New York: Freeman.

Mandelbrot, B. 1982. The Fractal Geometry of Nature.
New York: Freeman.

Monro, G. 1995. “Fractal Interpolation Waveforms.”
Computer Music Journal 19(1):88–98.

Pöppel, E. 1997. “A Hierarchical Model of Temporal
Perception.” Trends in Cognitive Sciences 1(2):56–
61.

Rhys, P. 1996. “Ebb and Flow, Chamber Concerto, Chicago
Fall, Mill Green Music, Three Songs, String Quartet
No1.” PhD dissertation, Keele University, Department
of Music.

Roads, C. 2004. Microsound. Cambridge, Massachusetts:
MIT Press.

Stevens, S. 1957. “On the Psychophysical Law.” Psycho-
logical Review 64(3):153–181.

Stevens, S. 1972. “Perceived Level of Noise by Mark VII
and Decibels (E).” Journal of the Acoustical Society of
America 51(2B):575–601.

Stockhausen, K. 1962. “The Concept of Unity in Electronic
Music.” E. Barkin, trans. Perspectives of New Music
1(1):39–48.

Truax, B. 1990. “Chaotic Non-Linear Systems and Digital
Synthesis: An Exploratory Study.” In Proceedings
of the International Computer Music Conference,
pp. 100–103.

Van Noorden, L. P. A. S. 1975. “Temporal Coherence
in the Perception of Tone Sequences.” PhD disserta-
tion, Technische Hogeschool Eindhoven, Institute for
Perception Research, Eindhoven, The Netherlands.

Voss, R., and J. Clarke. 1975. “1/ f Noise in Music and
Speech.” Nature 258(5533):317–318.

Voss, R., and J. Clarke. 1978. “1/ f Noise in Music: Music
from 1/ f Noise.” Journal of the Acoustical Society of
America 63:258–263.

Waschka, R., and A. Kurepa. 1989. “Using Fractals
in Timbre Construction: An Exploratory Study.” In
Proceedings of the International Computer Music
Conference, pp. 332–335.

Worrall, D. 1996. “Studies in Metamusical Methods for
Sound and Image Composition.” Organised Sound
1(3):183–194.

Rhys 67


