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We used custom-designed acuity tests to compare the
magnitude and extent of crowded letter recognition in
children and adults. Visual acuity (logMAR) was
measured monocularly in children and adults using five
custom-designed letter tests with varying degrees of
crowding: single letter, single letter surrounded by four
flanking bars, single letter surrounded by four flanking
letters, line of five letters surrounded by flanking bars,
and line of five letters surrounded by flanking letters.
The tests were constructed using Sloan letters and
presented on an iPad (Apple Incorporated, Cupertino,
CA) at 4 m using a standardized endpoint and
instructions. Crowded logMAR was normalized to
unflanked logMAR and results were analyzed in three
groups: younger children aged 4–6 (n ¼ 32), older
children, aged 7–9 (n ¼ 30), and adults (n ¼ 27). Both
groups of children showed a greater extent of crowding
than the adults. The adult participants showed no
difference in performance between single or linear
presentation and letter or bar flankers. Letter flankers
and linear presentation individually resulted in poorer
performance in the younger children p , 0.001 and p¼
0.003, respectively (mean normalized logMAR 0.17 in
each case) and together had an additive effect (mean
0.24), p , 0.001. Crowding in the older children was
adult-like except in the linear presentation with letter
flankers, p , 0.001. These results indicate that both
target-flanker similarity and linear presentation
contribute more to foveal crowding in young children
than in adults.

Introduction

Measuring visual acuity accurately in children is
important in screening for amblyopia, refractive error,
and other ocular abnormalities. The use of crowded
acuity tests for children increases the sensitivity of

amblyopia detection (Hilton & Stanley, 1972; Song,
Levi, & Pelli, 2014; Youngson, 1975), but commercially
available crowded tests use different interoptotype
spacing, flanker type (line, box, or letter), and optotype
arrangement (single or linear), which affect the amount
of crowding present (Huurneman, Boonstra, Cox,
Cillessen, & Van Rens, 2012; Norgett & Siderov, 2011).

In a clinical sense, crowding is the reduction in visual
acuity in the presence of nearby flanking bars or
optotypes. Crowding is sometimes used interchange-
ably with contour interaction, which is the more
specific reduction in visual acuity caused by the
proximity of nearby contours (Flom, Weymouth, &
Kahneman, 1963b). Here we consider crowding in the
aggregate to include contour interaction, imprecise
gaze control (Kothe & Regan, 1990), and attentional
influences (Flom, 1991; Leat, Li, & Epp, 1999).

Recent theories of crowding argue for a two-stage
process in object identification, where features are first
detected, independent of each other and then integrated
to allow object recognition to occur (Levi, 2008; Pelli,
Palomares, & Majaj, 2004). Flanking contours or
optotypes present within the zone of integration may be
inappropriately integrated with the target features
(substituted or pooled), causing a misperception of the
object. Although such theories have been developed to
account for crowding in the periphery, they may also
apply to foveal crowding in children. Alternative
theories based on antagonistic receptive field interac-
tions that occur in early stages of visual processing
(Bedell et al., 2013; Latham & Whitaker, 1996), or
mechanisms based on a form of overlap masking have
also been proposed to account for foveal crowding
(Song, Levi, & Pelli, 2014).

Although visual acuity develops rapidly in the first 6
months of life, it does not mature until between about 4
and 6 years of age, (for reviews, see Braddick &
Atkinson, 2011; Fern & Manny, 1986; Leat, Yadav, &
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Irving, 2009). As the optical quality of the eyes of such
children is at least as good as adults (Carkeet, Leo,
Khoo, & Eong, 2003), limitations to children’s visual
acuity probably reflect retinal or cortical immaturity.
However, the developmental course of crowded visual
acuity appears slower than that of uncrowded letter
acuity (Drover et al., 2008; Langaas; Morad, Werker,
& Nemet, 1999; Norgett & Siderov, 2011; Pan et al.,
2009; Sonksen, Wade, Proffitt, Heavens, & Salt, 2008),
(although others have proposed parallel developmental
courses [Kothe & Regan, 1990]). The maximum
distance from optotype to flanker where recognition of
the optotype is impaired, is referred to as the ‘‘critical
spacing.’’ For foveal crowding, the critical spacing
appears to be up to twice as large in young children
than in adults, reaching adult levels between 9 and 12
years of age or older (Bondarko & Semenov, 2005;
Jeon, Hamid, Maurer, & Lewis, 2010; Semenov,
Chernova, & Bondarko, 2000).

Differences in the depth of crowding between
children and adults are less certain and results are
conflicting (Atkinson, Anker, Evans, Hall, & Pimm-
Smith, 1988; Manny, Fern, & Loshin, 1987; Zhang,
Zhang, Xue, Liu, & Yu, 2009). Variation in targets and
flankers may play an important part in contributing to
the different results noted, as differently sized and
shaped targets may not be processed by the same
cortical receptive fields (Danilova & Bondarko, 2006)
or may reflect differences in the attentional demands
required (Desimone & Duncan, 1995).

In the adult periphery, there is more crowding when
the flankers and target are similar rather than dissimilar
(Bernard & Chung, 2011; Freeman, Chakravarthi, &
Pelli, 2012; Leat et al., 1999; Nazir, 1992), but such
dependence does not appear for adult foveal crowding
(Leat et al., 1999; Song et al., 2014). On the other hand,
the similarity of target and flankers may increase foveal
crowding in children because of a greater attention
demand needed to separate the target from the flanking
elements (Atkinson, 1991).

Immature development of eye movement control
may also contribute to foveal crowding in children
(Kothe & Regan, 1990), a notion supported from direct
measurement of children’s fixational eye movements
that show an increase in the variability of fixational eye
movements in young children (Aring, Grönlund,
Hellström, & Ygge, 2007; Kowler & Martins, 1982).
However, it is not clear whether such fixational
instability is sufficient to interfere with visual acuity
(Flom, 1991).

In summary, foveal crowding in children displays a
larger critical spacing than in adults, which becomes
adult-like possibly as late as the early teen years (Jeon
et al., 2010; Semenov et al., 2000), target-flanker
similarity may have an effect on foveal crowding in
children that is not present in adult foveal viewing

(Atkinson, 1991), and linear presentation of optotypes
requiring multiple fixations may produce poorer visual
acuity in young children than single, similarly crowded
optotypes due to an increase in fixational instability, or
relatively poorer saccadic accuracy (Aring et al., 2007).
Therefore, the aim of the current study was to
determine the effects of foveal crowding on visual
acuity in normally sighted children at various ages as a
function of target-flanker separation, single versus
linear presentation of optotypes and target-flanker
similarity.

Methods

Participants

Seventy-five children were recruited from a local
elementary (primary) school in Cambridge, UK, and a
control group of 27 adults was recruited from the local
community. Written, informed consent was obtained
from the children’s parents or guardians and from the
adult participants and verbal assent from the children,
after all the procedures were explained to them. Ethical
approval for the study was obtained from the
University Research Ethics Panel and the study
followed the tenets of the Declaration of Helsinki. All
participants were screened and excluded from the study
if any one of the following criteria were met: visual
acuity worse than 6/9 (20/30) on the Snellen chart;
significant hyperopia, defined as visual acuity of 6/12
(20/40) or better when viewing through aþ2.00D lens;
presence of strabismus on cover test or no stereopsis
measured on the Lang II Stereotest (Lang-Stereotest,
Küsnacht, Switzerland), and an inability to cooperate
with the experimental protocol. Four children who
failed the screening were referred to an optometrist for
a full eye examination and four other children did not
complete all of the tests. None of these children were
included in the study. A further five children were not
available on the test days.

For analysis, participants were grouped into three
age bands, 4–6 years (32 participants, mean age 5 years,
9 months), 7–9 years (30 participants, mean age 8 years,
7 months) and adults over 18 years (27 participants,
mean age 25 years, 0 months). The number of
participants in each group was sufficient to obtain a
power of 80% at the 5% level (two-tailed) for an effect
size of 0.1 logMAR.

Tests

A series of letter tests was produced comprising
single letters and lines of letters, with bar and letter
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flankers to create a number of conditions where the
influence of contour interaction, eye movements and
attention could be inferred (Table 1). The tests used the
Sloan letter set, constructed in a 5 · 5 format, with the
height and the width of each letter five times the stroke
width. Individual relative legibility of each Sloan letter
differs by no more than 12% from the mean relative
legibility of the set (Sloan, Rowland, & Altman, 1952).
The tests were produced using Adobe Illustrator CS5
(Adobe Systems Incorporated, San Jose, CA). Non-
Sloan letters, except the letter ‘‘I,’’ were used as flanking
letters and were constructed in the same way using the
same software (Pelli et al., 1988).

Tests were displayed, black letters on a white
background, on an iPad 2 (Apple Incorporated,
Cupertino, CA) with a resolution of 1024 · 768 at 132
pixels per inch, so 1 pixel subtended 0.170 of arc at a
test distance of 4 m. The iPad’s auto-brightness
function was disabled and the brightness set to

maximum. Background luminance of the display was
310 cd/m2, resulting in a letter Weber contrast of�99%.

The acuity range of the tests was logMAR 0.4 to
logMAR�0.4 in steps of 0.05 logMAR and for each
level of acuity, five letters were scored on each test. In
the single letter presentations, five different letters of
the same size were shown consecutively. Each set of five
letters was selected to have a similar combined relative
legibility of 4.9 (Strong & Woo, 1985). Tests were
constructed with edge-to-edge separations between
flankers and optotypes ranging from 0.25 to 1.5 letter
widths and including an unflanked condition (Table 1).
The length of the bar flankers was 0.6 times letter
height, or three stroke widths, based on maintaining a
constant average length of flanking edge nearest to the
target. The line tests were constructed so that letters
broadly composed of straight lines (e.g., H, N, V, K, Z)
alternated with round-shaped letters (O, D, C, S, R).

Test      Letter target    Flanker type        Flanker 
spacing 

Example 
display 

SB0.25 single bars 0.25  

SB0.5 single bars 0.5  

SB1.0 single bars 1.0 

SB1.5 single bars 1.5  

LB0.5 linear bars 0.5 

SC0.5 single characters 0.5  

LC0.5 linear characters 0.5 

Table 1. Test chart configurations. Tests used in the study are shown, with an example presentation of each. Letters were presented in
single (S) or linear (L) format with bar (B) or character(C) flankers. The edge-to-edge separation measured as a proportion of letter size
is denoted by the subscript.
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Baseline data using test S0 (unflanked logMAR),
were used to normalize subsequent results to minimize
any potential confound between letter size and inter-
letter spacing for different acuity sizes (Levi, 2008).

The following between test comparisons were made:

1. SB0.25, SB0.5, SB1.0 and SB1.5 to determine the
magnitude and extent of contour interaction

2. SB0.5 with LB0.5 and SC0.5 with LC0.5, to determine
the effect of linear presentation, with controlled
contour interaction

3. SB0.5 with SC0.5 and LB0.5 with LC0.5 to determine
the effect of letter rather than bar flankers (increased
attention demand), with controlled contour interac-
tion

In LB0.5, the bar flanker between letters was retained
so that the next nearest contour to each letter would
always be a bar at 0.5 letter widths separation from the
target letter, as in SB0.5.

Procedure

Children were tested in a school classroom with
lighting adequate for visual acuity testing (National
Academy of Sciences, National Research Council
Committee on Vision, 1980), approximately 100 lux.
The experimental tests were viewed by the right eye of
eligible participants and spectacles were worn if
habitually used. Participants sat 4 m from the iPad,
which was mounted on a tripod stand directly in front
of them in a position where reflections from the screen
were not evident (Black et al., 2013). Participants held a
card showing the 10 Sloan letters. Where children were
unable to name a letter, they pointed to it on the card.
The experimental tests were shown in a random order
and participants were allowed unlimited viewing time.
Testing began using a letter size 0.1 logMAR larger
than the acuity found from initial screening. Smaller
letter sizes were presented in steps of 0.05 logMAR
until the termination point was reached, at which three
or more letters of one size were named incorrectly. If
any letters at the starting level were named incorrectly,
the next largest size was presented until a size was
found where all five responses were correct. When a
participant was not sure of a letter, they were
encouraged once to guess. For the single-letter test with
letter flankers, SC0.5, participants were asked to read
the middle letter only. For the line test with letter
flankers, LC0.5, participants were asked to read all the
letters on the middle row but only the central five letters
were scored. A red line on the left hand side of the two
line tests, LB0.5 and LC0.5, indicated the side where
reading should commence. Pointing at the letters by the
examiner was not used under any test condition.

All responses were recorded on a spreadsheet by the
examiner and letter-by-letter scoring was used. For the
line tests, LB0.5 and LC0.5, if a participant read the
incorrect number of letters in a line, without indicating
that they were leaving one out, the responses were
recorded in the order and position they were read. The
procedure for testing the adults was the same as for
children except testing was carried out in our labora-
tory with equivalent illumination. For comparison
adult participants also had their visual acuity measured
using an internally illuminated Early Treatment Dia-
betic Retinopathy Study chart (ETDRS chart) (Preci-
sion Vision Inc, La Salle, IL; Ferris, Kassoff, Bresnick,
& Bailey, 1982).

Data Analysis

Data were analyzed using a repeated-measures
ANOVA with a Greenhouse-Geisser correction for
violation of sphericity applied, when necessary (Kep-
pel, 1982). Post-hoc analyses with Tukey HSD correc-
tion were also performed as required (Statistica
StatSoft, Ltd, Tulsa, OK). Letter naming errors were
also analyzed in the two line tests, LB0.5 and LC0.5, to
investigate any difference in pattern between the age
groups and tests. Errors were defined as either
‘‘adjacent’’ if the response letter was adjacent horizon-
tally to the target letter (either left or right), or
‘‘random’’ if any other letter was named. In the line test
with bar flankers, LB0.5, errors pertaining to just the
central three letters were analyzed, as the end letters
only had one possible adjacent option. In the line test
with letter flankers, LC0.5, errors pertaining to the
central five letters were analyzed. Two analyses were

Figure 1. This figure shows logMAR plotted as a function of

target and flanker separation for the single letter flanked tests

for the three age groups; younger children (4–6 years): diamond

symbols, dotted line; older children (7–9 years): square

symbols, dashed line and adults: triangle symbols, solid line. The

horizontal dotted line shows logMAR 0, or 6/6 (20/20). Error

bars represent 61 SE.
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carried out. The first one looked for a difference in
proportion of adjacent and random errors between the
two line tests and the second looked for a difference in
the proportion of right and left errors. Chi-square tests
were performed to assess statistical significance.

Results

Mean unflanked acuity was better than 6/6 (log-
MAR 0.0) in all three age groups (Figure 1). There
was no significant difference in acuity in the adults
between the ETDRS chart and our single-letter test
with bars at one letter-width from the target (SB1.0)
indicating that potential reflections from the iPad did
not interfere with the acuity measurements (Black et
al., 2013). Mean unflanked logMAR was worse in the
younger children (4–6 years) than in the other two
groups (p ¼ 0.048).

Extent of foveal contour interaction

Figure 1 plots logMAR using the single-letter
flanked tests (SB 0.25–1.5) as a function of letter and
flanker separation for the younger children (dia-
monds and dotted line); older children (squares and
dashed line) and adults (triangles and solid line). For
each of the age groups, maximum contour interaction
occurs at the nearest letter-flanker separation (0.25
letter widths). For all groups, and consistent with
previous results, (Fern & Manny, 1986; Jeon et al.,
2010; Manny et al., 1987; Semenov et al., 2000),
logMAR improves as letter-flanker separation in-
creases.

A separate one-way ANOVA (repeated measures)
comparing logMAR as a function of letter-flanker
separation was performed for each age group and
showed a significant effect of separation in each: 4–6
years F(4, 124)¼ 84.7, p , 0.001; 7–9 years F(4, 120)
¼ 96.2, p , 0.001, adults F(4, 104) ¼ 73.1, p , 0.001.
Post-hoc testing (Tukey test) showed that unflanked
logMAR was not significantly different to the widest
letter-flanker separation of 1.5 in both groups of
children: 4–6 years p¼ 0.066, 7–9 year olds p¼ 0.668,
indicating no contour interaction at this separation.
For all other letter-flanker separations, contour
interaction was evident as the logMAR was signif-
icantly greater than the unflanked condition (4–6
year olds p , 0.001, 7–9 year olds p ¼ 0.001). In
contrast, the adults’ results showed that unflanked
logMAR was not significantly different to the
flanked conditions for the 1.5 (p ¼ 1.000) and 1.0
letter-flanker ( p ¼ 0.096) conditions, consistent with
previous results of the extent of foveal contour

interaction in adults (Flom et al., 1963b; Simmers,
Gray, McGraw, & Winn, 1999). This shows the
extent of contour interaction to be less in adults than
in children.

The data from the single letter tests with bar flankers
(SB0.25–1.5) were normalized to the uncrowded condi-
tion S0. On average the depth of crowding for the single
letter, bar surround condition was significantly greater
in the younger children (4–6 years) than in the adults (p
¼ 0.034).

Effect of flanker type and single versus linear
letter targets on foveal crowding

Figure 2 shows mean logMAR for each group,
normalized to the unflanked acuity, for the four
crowding conditions: single letter with bar or letter
flankers and line of letters with bar or letter flankers.
Dotted bars show younger children (4–6 years), cross-
hatched bars show older children (7–9 years), and solid
bars show adults.

A 3 (age) · 4 (tests) ANOVA (repeated measures)
yielded a significant main effect of age, F(2, 87)¼ 18 (p
, 0.001), a significant main effect of test, F(2.76, 240.6)
¼ 22.38 (p , 0.001), and a significant interaction
between age and test, F(5.53, 240.6) ¼ 13, p , 0.001.
Crowding varied across tests in the two groups of
children, but not in the adults, for whom there was no
significant difference in logMAR across the tests.

Further analysis of the interaction showed that
similar to the adult group, the group of older children
(7–9 years) showed no significant difference in logMAR
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Figure 2. This figure shows mean logMAR for each group,

normalized to the unflanked acuity, for the four crowding

conditions: single letter with bar or letter flankers and line of

letters with line or letter flankers. Dotted bars show younger

children (4–6 years), cross-hatched bars show older children (7–

9 years), and solid bars show adults. Edge-to-edge target-flanker

separation was 0.5 letter-widths. Error bars represent 61 SE.
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between the single letter tests with bar or letter flankers,
SB0.5 or SC0.5, or the line of letters with bar flankers,
LB0.5. However, a significant difference in logMAR
was found for the most complex test, the line test with
letter flankers, LC0.5 (p , 0.001), with acuity around
0.05 logMAR poorer in this test than in the other three
tests.

The younger children (4–6 years), in the single letter
condition, showed more crowding (0.05 logMAR) with
letter flankers (SC0.5) than bar flankers (SB0.5), p ,
0.001. They also showed more crowding (0.05 log-
MAR) in the linear test with bar flankers (LB0.5) than
in the single letter test with bar flankers (SB0.5), p ¼
0.003. These results show that using letter rather than
bar flankers and using a linear rather than single
optotype presentation both present a similar level of
increased crowding for the younger children. In
addition, for the linear test with letter flankers (LC0.5),
there is a further increased level of crowding, resulting
in a mean worsening of visual acuity of 0.12 logMAR
compared to the single letter with bar flankers (SB0.5), p
, 0.001.

Error analysis

Figure 3 shows the relative percentages of the
different error types in the line tests, LB0.5 and LC0.5,
for the three age groups. Light gray shading shows
random errors, dark shading shows adjacent left errors
and diagonally striped shading shows adjacent right
errors.

Two error analyses were conducted comparing LB0.5

and LC0.5. As expected, most of the errors made were
random errors. The first analysis compared the
proportion of adjacent and random errors between the
two line tests. On average, more adjacent errors were

made in the test with letter flankers (LC0.5), compared
to the test with bar flankers (LB0.5), (v2 ¼ 14.0, p ,

0.001).
The second analysis examined the frequency of right

and left adjacent errors in the line tests. In the line test
with bar flankers, LB0.5, the numbers of right and left
errors were not different (v2 ¼ 2.22, p¼ 0.329).
However, when letter flankers were used (LC0.5), there
were more right than left errors in each age group and
the proportion of right: left increased with age (v2¼
46.09, p ,0.001).

Discussion

We used a series of custom designed visual acuity tests
to infer the relative influence of target-flanker distance,
linear versus single presentation and target-flanker
similarity on visual acuity (logMAR) in children and
adults. Unflanked acuity was on average, better than
logMAR 0.0 (6/6) in each of the three groups although a
developmental trend was evident. Averaged unflanked
acuity was worse in the 4–6 year old group than in the 7–
9 year olds and adults, consistent with reports that have
showed maturation of unflanked acuity between 4 and 6
years of age (Leat et al., 2009; Simons, 1983). The
slightly poorer acuity in the youngest age group may
reflect continuing development of the retinal mosaic
(Yuodelis & Hendrickson, 1986). In a previous study
(Norgett & Siderov, 2011) we reported no change in
unflanked acuity in a different sample of children, but
over the same age groups, which may reflect a sampling
issue in the age bands used, or the greater variance in the
7–9 year olds in our previous study as a result of
different inclusion criteria.

Consistent with previous reports (Bondarko &
Semenov, 2005; Jeon et al., 2010; Semenov et al., 2000),
contour interaction was greater in extent in both
groups of children than in the adults. On average, our
results suggest that the age at which the critical spacing
becomes adult-like is at least beyond 9 years. Although
retinal changes are potentially ongoing in the younger
children (Simons, 1983; Yuodelis & Hendrickson,
1986), the larger zone of contour interaction we
observed in both groups of children probably reflects
underlying cortical rather than retinal development, as
crowding is known to reflect cortical processes (Flom,
Heath, & Takahashi, 1963a; Pelli, 2008). Kozma
showed that integration of contours is probably
mediated by long-range neuronal connections and that
visual spatial integration is still developing between 5
and 14 years of age (Kozma, Kovács, & Benedek,
2001). In addition, Huttenlocher, De Courten, Garey,
and Van Der Loos (1982) showed changes in synaptic

Figure 3. This figure shows the relative percentages of the

different error types in the line tests, LB0.5 and LC0.5 for the

three age groups. Light gray shading shows random errors; dark

shading shows adjacent left errors and diagonally striped

shading shows adjacent right errors. Error bars represent 61

SE.
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density in the cortex which continued until around 11
years.

In the normalized single letter bar surround condi-
tion (SB0.5–1.5), we found the depth of contour
interaction, on average, to be larger in the children than
the adults. This difference, albeit small, was significant
between the youngest children (4–6 years) and the
adults.

Effect of attention

Our findings support the view that in young children,
crowded visual acuity is determined not only by the
resolution potential of the eye and by the distance of
nearby objects to the target, but also by the attention
demand in disregarding the nearby objects in favor of
the target.

Comparing single letters flanked by letters, (SC0.5),
to single letters flanked by bars, (SB0.5), observers were
required to preferentially process the target letter while
ignoring the flanking letters; the young children (4–6
years) had more difficulty ignoring the letter flankers
than bar flankers at the same distance from the target
(SB0.5), resulting in a logMAR reduction of 0.05, or
half a line of letters. The letter flankers were
categorically similar to the target, so selecting the target
letter and ignoring the flanking letters represents a
greater demand on attention than naming a letter with
bar flankers. This stronger crowding where there is
more similarity of the target and flankers is consistent
with the results of Atkinson (1991), and is similar to
findings in the adult periphery (Bernard & Chung,
2011; Kooi, Toet, Tripathy, & Levi, 1994; Leat et al.,
1999; Nazir, 1992; Zhang et al., 2009), but not in adult
foveal viewing (Atkinson, 1991; Leat et al., 1999; Song
et al., 2014).

Theories of visual attention propose competition for
processing of information in the visual system where
there is limited capacity, a ‘‘bottom up’’ mechanism,
coupled with a ‘‘top-down’’ selection of the target
(Desimone & Duncan, 1995). Studies that explore the
development of visual attention show children to be less
efficient at allocating attentional resources than adults
rendering them less able to ignore task irrelevant
stimuli (Enns & Akhtar, 1989; Pastò & Burack, 1997).

A recent study using a tracking paradigm with a
target and distractors at varying distances showed that
young children were able to process relevant informa-
tion in the presence of competing stimuli as effectively
as adults, until the separation of target and nearby
objects became small (Wolf & Pfeiffer, 2014). It was
shown that the spatial extent of this ‘‘attentional focus’’
decreased significantly between 7 and 9 years, but was
not yet mature at 13 years.

Letter strings

Our results show that in the youngest children (4–6
years), recognizing a string of five letters with
surrounding bar contours (LB0.5) is harder than
similarly flanked single letters (SB0.5), resulting in a
logMAR reduction of 0.05, or half a line of letters. At
this age, children are learning to read, but are not
sufficiently practiced to have reached their maximum
reading speeds (Aghababian & Nazir, 2000; Curtis,
1980), so development of line acuity could be linked to
learned patterns of reading. Unpracticed readers could
make less accurate saccades, or poor fixation could lead
to loss of positional information. Beginning readers
have also been shown to make more ‘‘regressions’’ or
refixations when reading (Rayner & Duffy, 1986). This
behavior could contribute to the younger children
losing their place when reading along the line tests in
our study. Even in adults, Popple and Levi (2005)
showed that compared to widely spaced letters,
crowded letters lead not only to recognition errors, but
also to loss of position information in the periphery. A
similar mechanism may operate to a lesser extent in
foveal viewing in children. Furthermore, looking at a
line of letters rather than a single, flanked letter
represents more information in the respective cortical
receptive field, so poorer performance in children may
also be as a result of divided visual attention.

In older children (7–9 years), neither linear presen-
tation nor increased letter-flanker similarity alone was
sufficient to make mean, normalized logMAR different
from adults. However, in the linear test with letter
flankers, LC0.5, the resulting increased crowding caused
logMAR for this test to be significantly poorer than the
mean adult logMAR. We suggest that, reading along
the line of letters, the letter flankers caused more
difficulty than the bar flankers in children because of
the requirement for accurate eye movements and the
increased attention demand, described above.

It is difficult to separate visual attention and eye
movements as they are very closely linked (Flom, 1991;
Hoffman & Subramaniam, 1995). Nevertheless, our
analysis of errors made when reporting the letters,
showed that when bar flankers are used, the resulting
naming errors have a similar pattern across the age
groups causing a combination of common letter
confusions, and random guessing. However, when
letter flankers are used, more adjacent errors occurred,
suggesting that participants were at times losing their
place as they read the line of letters. Furthermore, the
way in which participants lost their place in the line
changed with age. In adults, the majority of the
adjacent errors were ‘‘right’’ errors, caused presumably
by omitting a letter on reading from left to right. In the
younger children, although there were more ‘‘right’’
than ‘‘left’’ errors, the proportion of right: left errors
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was lower, suggesting that the younger children were
also getting lost on reading the line, but as well as
missing letters they also made refixations in the right to
left, or backwards direction. We infer that this is
evidence in support of an immature control of gaze in
the younger children, as previously suggested (Kothe &
Regan, 1990). Although the nearest contour to the
letter being read was the same in both line tests (LB0.5

and LC0.5), the center-to-center separation of letters
was less in the test with letter flankers (LC0.5), putting a
greater demand on accurate fixation of the letters near
threshold. Of the two differences in the line tests: the
interletter separation and the flanker type (letter or
bar), we consider the flanker type to be the more
significant. The difference in logMAR using letter
rather than bar flankers found in the single letter
condition (0.05 logMAR) accounts for most of the
difference observed between the two linear tests (0.07
logMAR).

An alternative explanation for errors in the line tests
could be that the participants became muddled in the
stage of rehearsing the letters mentally after visualizing
them and before speaking them. We do not consider
this explanation to be the primary cause of errors, as
participants were given unlimited time to read the lines
of letters and there was no requirement to look at all
five letters before naming them.

The ability to subitize, or know the number of
objects in an array without counting them, increases
throughout childhood (Halberda & Feigenson, 2008).
This may be linked to a child’s ability to accurately
read longer strings of letters; a child may struggle to
find their place if they are unsure how many letters are
in the line they are reading. In the linear test with letter
flankers (LC0.5), seven letters were read, while in the
linear test with bar flankers (LB0.5), only five letters
were read. This difference gives more opportunity for
placement errors in the seven-letter test.

Conclusions

Our results show a greater extent of contour
interaction in children than adults, which is still not
mature by 9 years of age. Two other factors are also
likely to contribute to the overall crowding effect in
children younger than 7 years: the greater attention
demand of increased letter-flanker similarity and the
more precise eye movement control required to read a
string of letters. Our data suggest that both attention
and eye movement factors mature individually by
around 7 years of age, but can have a cumulative effect
which extends beyond age 7. Our results have
implications for the design and use of vision tests for
screening of vision in young children.

Keywords: crowding, children’s vision, visual develop-
ment
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