
SOM neural network design - a new Simulink library based approach targeting

FPGA implementation

Alin Tisan, Marcian Cirstea

Abstract - The paper presents a method for FPGA implementation of Self- Organizing Map (SOM) artificial neural networks with on-chip learning

algorithm. The method aims to build up a specific neural network using generic blocks designed in the MathWorks Simulink environment. The main

characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability and operation under real time

constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOM network, as well as each

individual component block.

Keywords – self organizing map, artificial neural network, FPGA, Simulink library, ANN modelling

1. Introduction

The high parallelism, modularity and dynamic adaptation properties of an Artificial Neural Network (ANN) demand a hardware

implementation circuit with similar characteristics. The perfect match, in terms of parallel processing and reconfigurability, is the

Field Programmable Gate Array (FPGA) circuit. This is demonstrated by the numerous applications in vary domains like:

implementing complex control algorithms for high-speed robot movements [21], efficient generation of multi-point distributed

random variables [1], designing hardware/software platforms for automotive [20], or power generation applications [2]. Other papers

combine the massive parallelism computation capability of a FPGA with the possibility of implementing highly complex algorithms

offered by the embedded processors as in [2] and [18]. More cases have been discussed in [3] and [12], where different embedded

system-based industrial applications are presented or in [14] where a state of the art of FPGA technologies and their contribution in

industrial control applications are given. The hardware implementation of the artificial neural network has quite a long history, over

20 years by now [13], but it is still in the centre of attention of many researchers [23,24], while its FPGA implantation remains a

challenge [4,8,11]. To tackle this, various methods to develop hardware implemented ANNs have been reported in the literature,

exploiting the learn ability of ANNs. For example paper [7] presents an adaptive low-speed-damping controller for a stepper motor,

whereas paper [10] shows a self-tuning PID FPGA-based motion controller using RBF NN for an X-Y table. An interesting approach

has been made in [16], where the NN is implemented into a FPGA circuit which is embedded into a NI CompactRio system,

combining the data acquisition capabilities of a NI board with the reconfigurability of a FPGA. Paper [19] is proposing a novel

approach to simulating complete variable-speed drive systems using specialized tools (Power System Blockset, System Generator) in

Simulink. The design of FPGA based applications has improved dramatically over the last decade, considering that, at the beginning,

everything had been crafted using hardware description languages (VHDL or VERILOG) [9]. IP cores were then introduced, opening

the door for Electronic System Level (ESL) design, by pushing the abstraction of the description further. This approach enhances the

probability of a successful implementation of the application in a more cost-effective manner than a hand-written code design used to

do, [15]. This trend has increased the popularity the FPGA design and has driven forward the usage of the FPGA which, just a few

years ago, could not be touched without hard-core FPGA skills. From this perspective, the FPGA design methodology adopted in this

paper aims to achieve an even higher order of abstraction, which can be reached by using a hardware implementable library of

reconfigurable components. The targeted application refers to building a hardware implementable neuronal network topology, more

precisely a Self-Organizing Map (SOM) one, with on-chip learning. Therefore, the following chapters present an extendable digital

architecture for the FPGA implementation of the SOM networks. In order to achieve this, a new Simulink block set library has been

developed, which comprises predefined Xilinx System Generator blocks and VHDL blocks. With these newly created blocks, the

designer will be able to develop the entire neural network simply by parameterizing the ANN topology as number of neurons or

layers, and then link together the selected blocks. One of the targeted applications is a pattern recognition system for an electronic

nose. Different neural network types have been previously analysed in [5,22,23], but a SOM network could theoretically mimic more

naturally the brain behaviour implied in a smell recognition process.

2. Libraries design approach

The strategy used to design the neural network library relies on building up a Simulink integrated hardware-software platform,

using Simulink Xilinx blocks, MCode blocks (Matlab files) and Black Box blocks (VHDL files).

2.1. The SOM algorithm

The SOM network belongs to the intelligent pattern analysis techniques capable to cope with non-linear data, with advantages over

the conventional methods (like linear discriminate technique, principal component analysis or cluster analysis), such as learning

capabilities, self-organising, generalisation and noise tolerance. An SOM networks consist of one or two-dimensional output layer of

neurons (rare multidimensional layers) in addition to an input layer of branched nodes, mimicking more closely the neural structures

of the human brain than other neural networks. The basic principal in training the SOM network is the weights adjustment of only

those neurons from a specific neighbourhood area, given by the neighbourhood function (Gaussian or Mexican hat, Fig. 1). In this

way, the network constructs an internal representation of the environment (application), [17].

2

Fig. 1. Interaction around the winning neuron as a function of distance

The algorithms followed to develop the appropriate block set of the SOM neural network are described in the following section

The SOM algorithm used is based on the modified Gaussian - neighbourhood, Euclidean distance rectangular topology. The

mathematical modelling of the SOM behaviour is schematically shown in the following and comprises roughly two major steps, [6]:

1. identification of the winning neuron based on modified Gaussian distance function:

  min 2
arg min () ()i

i
d p t w t  (1)

2. followed by the weights updating of those neurons which are counted as neighbours of the winning neuron:

 , _(1) () () ()[() ()]i i i n win iw t w t t h t p t w t    (2)

The neighbour selection is made using the following function:

a. the neighbourhood function, h(t

, _

1 if (, _ 0

() 0.5 if (, _ ()

0 otherwise
i n win

d i n win)

h t d i n win) t



 


 (3)

b. the learning rate function t)

(0) ((0) ())(1) if

(1)

() if

t
t

t

t
t

    



  


   

  
 


 (4)

c. the neighbourhood size computing function,(t)

 (0) ((0) ())(1) if
(1)

() if

t
t

t

t

    
 

  


    

  
 

 (5)

where: p(t) is the presented pattern at epoch t, wi(t) is the weight vector of neuron i at epoch t,
2

 is the 2-dimensional Euclidian

distance, d is the smallest Euclidian distance between the pattern and neurons,  is the number of epochs in phase 1 (default: 1000),

(0) is predefined (default: 0.9) and (0) is calculated based on the network size (for two dimensional case (0) is given by (6)). 

is predefined (default: 0.02) and is 1.00001.

    
2 2

(0) 1 1row col     (6)

where row is the number of the neurons on horizontal direction and col is the number of the neurons on vertical direction.

2.2. SOM library’s blockset design

Choosing the optimal network parameters and training procedures for a given application is always a challenge, and developing

customizable blocks for a neural network capable to work under real time constraints could lead to auto-reconfigurable intelligent

systems. The blocks used to build-up the libraries are designed in the Simulink environment and use basic computing Xilinx blocks

and VHDL (Very High Speed Integrated Circuit Hardware Description Language) code implemented as “black box HDL”. The SOM

implemented consists of 7 neurons in the input layer and a bi-dimensional map with 25 neurons. The parallelism adopted is a node

one, which requires managing of all the neurons at the same time (Fig. 2).

In order to emulate in hardware the SOM architecture, the following computing blocks have been developed: a map control block

designed to control the neurons behaviour, a customizable neuron map block that comprises the neurons from the bi-dimensional

map, a winner select block that selects the winning neuron, a neighbour select block that decides if a neuron is or not into the

neighbourhood of the winning neuron, a we generator block that sets which neuron’s weight will be updated and an alpha beta gen

block that generates the learning rate and neighbourhood size coefficient according to the actual epochs.

3

Fig. 2. The hardware architecture of neural network

2.2.1 The “map control” block

The block is written in VHDL code and implemented through a Black box block. The role of this block is to manage the signals that

control the neurons processing elements and the winner select block. It is a customizable block, thus is able to auto reconfigure

according to the neurons number of a layer. The neurons number is set as a generic parameter into VHDL code. It determines the

upper value of the counter that commands, according to the controlled processing element, the accumulator (reset and enable control)

and the RAM block (address control). These processing elements are comprised in each neuron structure.

2.2.2 The neuron’s architecture

The architecture of the neurons has been chosen to cover both types of the neuron behaviour: the learning phase (in which the

weights are updated according to the presented pattern) and the propagation phase (in which the neural network acts as a pattern

recognition machine). It consists of a RAM block used to store the updated weights, a multiply and accumulate unit (MAC), Fig. 3, or

a DSP bloc, Fig. 4, two multiplexers and an adder block. The multipliers or the DSP modules are implemented either using dedicated

blocks: XtremeDSP slices (where the units are available: Spartan 3 and 6, Virtex 4 to 7) or dedicated multipliers or distributed logic,

[24][27]. Therefore, the architecture adopted will depend on the hardware resources available in the targeted FPGA.

In order to make the SOM design more user-friendly, every neuron’s parameters like its weights, memory depth and rank in the map

are initialized using a user created pop-up window (Fig. 5).

Fig. 3. The architecture of the neuron with multipliers

Fig. 4. The architecture of the neuron with DSP block

Fig. 5. The popup window for parameters

setting

Consequently, for a specific FPGA circuit, if the needed resources exceed the number of XtremeDSP/dedicated multiplier blocks

available the neurons will be implemented using the XtremeDSP/dedicated multiplier architecture within the limit of 192 DSPs (for

4VSX35) and for the rest of the neurons a distributed logic resources implementation will be used.

Table 1.

Hardware resources used for the neuron implementation

Architecture type / data resolution DSP / 8 bits Multiplier / 8 bits DSP distributed / 8 bits Total distributed / 8 bits Available resources

Slices 24 28 76 80 15360
LUTs 34 16 113 129 30720

Ramb16s 1 1 1 0 192

DSP48s
Total equivalent logic gates

2
66447

2
66571

0
67983

0
3583

192
3,5M

Max. Freq. (MHz) 158.228 134.372 118.10 136.500

Latency (ns) 6.32 7.44 8.47 7.33
Power (mW) 609 609 609 609

4

To determine the necessary resources for each type of architecture/type of implementation, it has been implemented neurons that use

multipliers, XtremeDSP blocks, distributed logics instead of the DSP blocks and distributed logics instead of the RAMB16 and DSP

blocks (Table 1). It can be seen that using distributed logic instead of the XtremeDSP increases the Slices usage with more than 300%

and the computation speed decreases with 40 MHz. Therefore, in the following, if the available resources permit, the neuron

architecture with XtremeDSP blocks will be used.

2.2.3 The “neuron map” block

The neuron map block consists of a user customizable number of neurons with a node parallelism processing mode, (25 neurons in

this case). These are arranged in a square bi-dimensional structure of identical neurons Fig. 6. The necessary commands for the

neuron management are: the accumulator reset command (rst_acc: resets the acc when a new computation is made), enable

accumulator (en_acc: enable acc when in use), RAM address (addrW: provide the address of the updated weight), input data (x:

applied input pattern), RAM write enable (weW: write enable signal for those neurons which are in a winner’s neighbourhood),

weights adjustment function (alpfa*h: weight adjustment factor) and the ANN behavioural setting signal (learn/propag: sets the

learning or pattern recognition behaviour).

Fig. 6. Node parallelism processing mode of the neuron map

The resources utilized by the neuron map block function of its size (number of neurons) and precision (number of bits used to

represent data) are presented in Table 2.

Table 2.
Hardware resources used to implement the neuronal map block

Architecture type / data resolution 25 neurons /16 bits 25 neurons /32 bits 50 neurons /16 bits 50 neurons /32 bits Available resources

Slices 425 425 872 872 15360

LUTs 800 800 1600 1600 30720
Ramb16s 25 25 50 50 192

DSP48s 50 50 100 100 192

Total equivalent logic gates 1659133 1659133 3318258 3318258
Max. Freq. (MHz) 139.60 139.60 137.81 137.81

Latency (ns) 7.16 7.16 7.26 7.26

Power (mW) 705 705 797 797

2.2.4 The “winner select” block

Another important block is the “winner select” block. This block finds the neuron with the most similar weights as the presented

input. This similarity is measured as Euclidian distance between the corresponding inputs vector and the weights vector. The “winner

select” block consists of “winner finder” block and a block named “1to2dim” that transforms the rank of the winning neuron from

one-dimensional state into a two-dimensional state. The conversion is necessary because the neighbourhood area is set into a planar

space and the computations are made considering the neurons arranged in a single dimension. The “winner finder” block will compare

all the Euclidian distances between the input pattern and the neuron weights, in order to find the smallest one (Fig. 7). The “1to2dim”

block is implemented using Xilinx Blockset components and its role is to determine the bi-dimensional indexes of the wining neuron.

The proposed architecture is presented in Fig. 8.

Fig. 7. The architecture of the “winner select” block

Fig. 8. The architecture of “1to2dim” block

Table 3.
Hardware resources used to implement the “winner select” block

No of neurons / data resolution 25 neurons / 32 bits 100 neurons / 32 bits 25 neurons / 16 bits Available resources

Slices 51 29 37 15360

LUTs 79 45 57 30720
Ramb16s 0 0 0 192

DSP48s 1 1 1 192

Max. Freq. (MHz) 129,87 144.65 139.70
Latency (ns) 7.70 6.91 7.16

Power (mW) 648 633 633

5

The power consumed, the maximum processing frequency and the resources used to implement in FPGA the “winner_finder” block

considering different numbers of neurons and precisions are presented in Table 3.

2.2.5 The “neighbours select” block

This block deals with finding of all the neurons within the winning neuron neighbourhood. The neighbourhood area is calculated as

a circle centred on the winning neuron. This means that the distance from each neuron within the circle to the winning neurons is

smaller than the circle radius (D1, ..., Dk ≤ Dmax), Fig. 9. The block calculates the n(ki,kj) indices of the neurons that belong to the

winning neuron neighbourhood, meaning:

 2 2 2
maxi jk k D (7)

where ki and kj are the row and column indices of the neurons position related to the circle centre in which the winning neuron is

situated.

Fig. 9. Setting the neighborhood area

Because the square map is highly symmetrical, the distance is calculated only in one quarter of the circle. The radius value is set by

another block (alpha beta gen) and decreases with the increasing of the epochs. The algorithm of the neighbourhood selection is

hardware implemented with Xilinx logic blocks and it is presented in Fig. 10

The “neighbours select” block provides also the values of the “j-kj”, “j+kj”, “i-ki” and “i+ki” in order to be compared with the

number of neurons from the square map side, i.e. “kmax = (total number of neurons)
1/2

” and respectively the “truth state” of the

following arithmetic relational operations “ki=kj=0”, “j>=kj”, “kj+j<=kmax”, “ki^2 + kj^2 <= Dmax^2”, “ki+i<=kmax” and

“i>+ki”. All these values are used in the next block, we generator block, that finally allows or not the changing of a neuron weight.

The power consumed, the maximum processing frequency and the resources used to implement in FPGA the neighbours select

block are presented in Table 4.
Table 4.
Hardware resource used to implement the neighbours select block

No of neurons / data resolution 25 neurons / 32 bits 100 neurons / 32 bits 25 neurons / 16 bits 100 neurons / 16 bits Available resources

Slices 158 51 29 37 15360
LUTs 199 79 45 57 30720

Ramb16s 0 0 0 0 192

DSP48s 3 1 1 1 192
Max. Freq. (MHz) 128.54 129,87 144.65 139.70

Latency (ns) 7.78 7.70 6.91 7.15

Power (mW) 645 648 633 633

Fig. 10. Hardware implementation of the “neighbors select” block

2.2.6 The “alpha beta gen” block

The alpha beta gen block generates the learning rate and the neighbourhood radius function of the set epochs. For an optimal

implementation of the equation (4), the 1/τ function is approximated with a piecewise linear function (Fig. 11). The errors introduced

6

by the adopted approximation are related to the number of the pieces considered for a certain number of epochs (Fig. 12). As seen in

Table 5, the error ratio decreases with the number of the linear pieces used to approximate the function, but leads to the increasing of

the hardware resources. Table 5 presents the errors function of number of pieces introduced at 10,000 epochs.

Fig. 11. The approximation function

Fig. 12. The errors introduced by the approximation function

Table 5.

Errors at 10,000 epochs

Pieces
Max. relative

error (%)
Max. absolute
error (x10-4)

Average absolute
error (x10-4)

1 202,5 94 59

2 92,04 66 22

3 38,94 40 7,8
4 14,88 20 3,27

5 9,20 7,98 2,07

6 9,20 3,47 1,83
7 9,20 3,44 1,79

8 9,20 3,44 1,78

Therefore, for 10,000 epochs, the closest piecewise linear function approximation consists of 5 pieces and the learning rate function

for t >  can be described using equation (8), leading to a hardware implementable structure as described in Fig. 13. The resources

used to implement the learning rate block do not depend on the neurons number but the number of pieces used to approximate the

function, presented in Table 6.

4

4

4

4

4

0,0328 0,1280 10 , for [1000, 1562)

0,0222 0,0603 10 , for [1562, 2125)

() 0,0156 0,0290 10 , for [2125, 3250)

0,0098 0,0112 10 , for [3250, 5500)

0,0056 0,0036 10 , for [5500,

t t

t t

t t t

t t

t t













   

   

    

   

    10000]











 (8)
Fig. 13. The learning rate block for t > 

Table 6.

Hardware resources for (8) implementation

Hardware resources

Slices 30

LUTs 42

Ramb16s 0
DSP48s 1

Max. Freq. (MHz) 460.40

Power (mW) 606

 The learning rate and the neighbourhood size functions, (5) and (6), are implemented by mean of an epochs number related

customizable computing blocks. As SOM network learns in two phases (the ordering and the tuning phase), the architecture uses a

comparator block to compare the current epoch with epoch  (the  epoch represents the epoch at which the learning is switched

from the ordering phase to the tuning phase and has a predefined value of 1,000), Fig. 14. In order to implement (5), the

neighbourhood size function is implemented by mean of two computing blocks that treat each of the following cases: t >  and t < ,
as shown in Fig. 15. The equation (6) is implemented using Xilinx blocks and its architecture is presented in Fig. 16

Fig. 14. Learning rate and the

neighborhood computing

blocks

Fig. 15. The learning rate computing blocks

Fig. 16. Hardware implementation of the “beta block”

The hardware resources used to implement the alpha beta gen block are presented as a function of network neurons number and the

maximum number of epochs, Table 7. Analyzing the results, we can say that the hardware resources used to implement the alpha beta

gen block do not depend on the neurons number or the epochs’ number.
Table 7.

Hardware resources used to implement the “alpha_beta_gen” block

No of epochs / No of neurons
 = 1000, tmax= 10000

25 neurons
= 1000, tmax= 10000

100 neurons
= 1000, tmax= 5000

25 neurons
Available resources

Slices 116 116 117 15360

LUTs 174 174 171 30720

Ramb16s 0 0 0 192
DSP48s 8 8 8 192

Max. Freq. (MHz) 171.35 171.35 172.53

Latency (ns) 5.83 5.83 5.79
Power (mW) 613 613 613

7

2.2.7 The “we generator” block

The we generator block compares the distances calculated by the neighbours select block with the current neighbourhood size and

sets or resets the write enable of the corresponding weights RAM addresses according to the position of each neuron in the map (the

write enable is set, we = ‘1’, if the neuron is in the winning neuron’s neighbourhood and reset if it is not). In order to make the

calculus in a one-dimensional way, the planar indexes (ki, kj) are convert into a linear one, k, using the formula stated in (9):

 maxi jk k k k   (9)

where, i is the raw index, j is the column index and kmax is the neurons number per raw (or column).

The block verifies if the control signals are 0 or 1 logic (1 logic means that the corresponding index is in the winner’s neighbourhood).

The outcome is a signal bus n bits wide, where n is equal with the number of neurons from the square map (Fig. 17). An ISE report

about the utilized resources has been presented in Table 8. These values are used for the overall resource estimation given in Table 9.

Fig. 17. Write enable (WE) signal bus

Table 8.

Hardware resources used for we_gen

block implementation

Hardware resources (% used)

Slices 30 (0.2%)

LUTs 42 (0.13%)

Ramb16s 0 (0%)

DSP48s 1 (0.5%)

Max. Freq. (MHz) 460.40

Power (mW) 606

A

Fig. 18. Simulink library of SOM
network

3. The overall hardware implementation

The SOM network with 7 input neurons and 25 output neurons (SOM 7_25) was implemented into DS-KIT-4VSX35MB-G

development board featuring the Xilinx Virtex-4 SX XC4VSX35-FF668 FPGA. The report of the overall device utilization was made

with the Xilinx Integrated Software Environment (ISE) software and it is presented in Table 9.

Table 9.

The hardware resources breakdown of the SOM 7_25 network implementation

Resources Available
SOM

7_25 (% used)
we gen
block

alpha_beta
block

neighbours select
block

winner select
block

map control
block

neuronal map
block

Slices 15360 1174 (7.6%) 245 116 98 29 146 425

LUTs 30720 1736 (5.6%) 314 174 130 45 262 800
Ramb16s 192 25 (13%) 0 0 0 0 0 25

DSP48s 192 62 (38%) 0 8 3 1 0 50

Max. Freq. (MHz) 101.54 120,96 171,35 210,65 154,01 121,50 139.60
Latency (ns) 9.85 8.27 5.84 4.75 6.49 8.23 7.16

Power (mW) 724 605 613 633 609 607 705

By analyzing the hardware implementation reports (Table 2 and Table 9) the following equations have been developed:

 2 12

32 + 925

o

o

o

RAMs N

DSPs N

LUTs N



 



 (10)

These equations give the possibility to make an aprioristic estimation of the utilized resources in terms of RAMs, LUTs and DSP

blocks for a specific topology or to estimate the maximum number of the neurons that can be implemented into a specific FPGA circuit.

For example, in 4VSX35 FPGA circuit with 15,360 Slices, 30,720 LUTs, 192 RAMB16s and 192 DSPs can be implemented

approximately 135 neurons: 95 neurons implemented with DSP architecture, utilizing 3965 LUTs from 30720 available and 42 other

neurons with their architecture implemented using distributed logics, using the remaining 26755 LUTs. The created Simulink library is

presented in Fig. 18. Using the created blocks can be developed in a very short time and flexible manner a customized, hardware

implementable on-chip learning SOM network.

4. Application

The created ANN is targeted to be used as a pattern recognition module of an artificial olfactory system capable to recognize four

different brands of coffee. The system used for data acquisition includes: seven gas sensors chosen to react to a wide spectrum of

odours (TGS - family), a temperature and humidity sensor (LM35, SY-HS-230), a test chamber (where all the sensors are mounted),

three gas pumps, circuits for sensors conditioning and pumps command, data acquisition board (PCI-MIO-16E-1), pattern recognition

module hardware implemented in FPGA (Virtex-4 SX MB - 4VSX35) and a user interface developed in Labview 8.2, Fig. 19.

8

Fig. 19. The architecture of the adopted artificial olfaction system

The data to be used for training the ANN has been obtained considering three stages: i) the baseline calculation (the average voltage

drop on sensors’ resistance when the reference gas-air is applied); ii) and iii) involve a regular absorption / desorption operation

measured at a fixed sampled frequency over a defined time when the odorant is applied (Fig. 20).

Fig. 20. Voltage variation with baseline time, baseline calculation time,

absorption time and desorption time

Fig. 21. Matrix representation of the selected features

After the raw extraction, the data was dimensionally reduced using the feature extraction technique. Usually, this is performed by

extracting a single parameter from each sensor (e.g. steady-state, final or maximum response), disregarding the initial transient

response, which may be affected by the dynamics of the odour delivery system. In this case, the extracted features for each gas sensor

are: average value, maximum value, maximum slope of the desorption function, time at value, function integral, integral of the

absorption time function, maximum slope of the absorption function, which maximum slope of absorption function occurs and the time

at which maximum slope of desorption function occurs. The resulting matrix is presented in Fig. 21 and constitutes the batch data for

the pattern recognition system.

5. Conclusions

A novel neural network Simulink based design strategy has been developed, which benefits of reduced design time over classical field

orientation approaches, leading to a low complexity and easy to implement pattern recognition module. The hardware architecture of a

SOM network with on-chip learning controlled by a generic control unit, described in VHDL code, has been presented.

The method uses minimal hardware resources for SOM implementation and confers a high modularity and versatility in neural

network design. The designed network is a generic one and can be used to design neural networks with the following features: on-line

training, on-chip learning and a SOM network topology set by the user.

At opposed to the classical methods, where the network training is made offline, and therefore the implemented designs cannot be

changed in real time, a pattern recognition platform implemented in FPGA with learning capabilities, self-organizing and noise

tolerance will be able to auto reconfigure in order to obtain the best performance for a given application. A sample case study for an

implemented design is presented in [22],[23], based on artificial olfaction systems.

A possible drawback of the method consists of its relatively limited portability. Given that, a SOM library is embedded into the

System Generator/Simulink/Matlab environment, a design can be implemented only in a Xilinx FPGA family. In order to overcome

this impediment, all library components should be redesigned using stand-alone software like VHDL, Handel-C or C. However, in

such cases the main expectance of a user-friendly design environment could be lost.

References

[1] N. Bruti-Liberati, F. Martini, M, Piccardi, E. Platen, A hardware generator of multi-point distributed random numbers for Monte Carlo simulation, Math.
Comput. Simul. 77 (2008) 45–56.

[2] E. J. Bueno, Á. Hernández, A DSP and FPGA-based industrial control with high speed communication interfaces for grid converters applied to distributed power

generation systems, IEEE Trans. on Industrial Electronics 56 (3) (2009) 654-669l.
[3] P. Conmy, I. Bate, Component-Based Safety Analysis of FPGAs, IEEE Trans. Ind. Informatics 6 (2) (2010) 195-205.

[4] A. Gomperts, A. Ukil, F. Zurfluh, Development and implementation of parameterized FPGA-based general purpose neural networks for online applications,

Trans. Ind. Informatics 7 (1) (2011) 78-89.

[5] D. Hammerstrom, R. Waser, A survey of bio-inspired and other alternative architectures, Nanotechnology: Information Technology II 4 (2008) 251–285.

[6] T. Kohonen, Self-Organizing Maps, Springer-Verlag, 1997.

9

[7] Ying-Shieh Kung, Ming-Shyan Wang, Tzu-Yao Chuang, “FPGA-based self-tuning PID controller using RBF neural network and its application in X-Y table”,

IEEE International Symposium on Industrial Electronics (2009) 694 – 699.

[8] W. Kurdthongmee, A novel hardware-oriented Kohonen SOM image compression algorithm and its FPGA implementation, Journal of Systems Architecture 54
(2008) 983–994.

[9] J. Larsson, Monte Carlo implementation of financial simulation on Cell/B.E. multi-core processor, Math. Comput. Simul. 81 (2010) 578–587.

[10] Q. N. Le, J.W. Jeon, Neural-network-based low-speed-damping controller for stepper motor with an FPGA, IEEE Transactions on Industrial Electronics 57 (9)
(2010) 3167–3180.

[11] Cheng-Jian Lin, Hung-Ming Tsai, FPGA implementation of a wavelet neural network with particle swarm optimization learning, Mathematical and Computer

Modelling 47 (2008) 982–996.
[12] A. Malinowski, Y. Hao, Comparison of embedded system design for industrial applications, Trans. Ind. Informatics 7 (2) (2011) 244-254.

[13] J. Misra, I. Saha, Artificial neural networks in hardware: A survey of two decades of progress, Neurocomputing 74 (2010) 239-255.

[14] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, M. W. Naouar, FPGAs in industrial control applications, IEEE Transactions on Industrial
Informatics 2 (2) (2011) 224-243.

[15] P. Neil, Combining a hardware neural network with a powerful automotive MCU for powertrain applications, Industrial Embedded Systems,

http://www.industrial-embedded.com/pdfs/Axeon.Oct05.pdf (2005) 88-89.
[16] T. Orlowska-Kowalska, M. Kaminski, An implementation of the multilayer neural network for the speed estimation of the two-mass drive system, Trans. Ind.

Informatics 7 (3) (2011) 436-445.

[17] A. R. Omondi, J. C. Rajapakse, "FPGA Implementations of Neural Networks" Publisher: Springer, ISBN: 1399396961, (2006).
[18] A. Quagli, D. Fontanelli, L. Greco, L. Palopoli, A. Bicchi, Design of embedded controllers based on anytime computing, Trans. Ind. Informatics 6 (4) (2010)

492-502.

[19] F. Ricci, H. Le-Huy, Modeling and simulation of FPGA-based variable-speed drives using Simulink, Math. Comput. Simul. 63 (2003) 183–195.
[20] F. Salewski, S. Kowalewski, Hardware/software design considerations for automotive embedded systems, IEEE Trans. Ind. Informatics 4 (3) (2008) 146-166.

[21] X. Shao, D. Sun, Development of a new robot controller architecture with FPGA based IC design for improved high-speed performance, IEEE Trans. Ind.

Informatics 3 (4) (2007) 312-321.
[22] A. Tisan, (2009), Contributions to the analysis, synthesis and implementation of applications with intelligent sensorial systems: The electronic nose, Unpublished

PhD thesis, Technical University of Cluj Napoca, Romania.

[23] A. Tisan, M.N. Cirstea, S. Oniga, A. Buchman, Artificial olfaction system with hardware on-chip learning neural networks, Proc. of IEEE Int. Conference on
Optimisation of Electrical and Electronic Equipment (2010) 884-889.

[24] Virtex-4 FPGA User Guide, http://www.xilinx.com/support/documentation/user_guides/ug070.pdf (2011).

[25] B. Wilamowski, H. Yu, Improved computation for Levenberg-Marquardt training, IEEE Trans Neural Netw. 21 (6) (2010) 930-937.
[26] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar, Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks, IEEE Trans.

on Ind. Electronics 55 (10) (2008) 3784-3790.

[27] XtremeDSP for Virtex-4 FPGAs, http://www.xilinx.com/support/documentation/user_guides/ug073.pdf (2011).

