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Abstract: Ensuring that medicines are prescribed safely is fundamental to the role of healthcare
professionals who need to be vigilant about the risks associated with drugs and their interactions with
other medicines (polypharmacy). One aspect of preventative healthcare is to use artificial intelligence
to identify patients at risk using big data analytics. This will improve patient outcome by enabling
pre-emptive changes to medication on the identified cohort before symptoms present. This paper
presents a mean-shift clustering technique used to identify groups of patients at the highest risk of
polypharmacy. A weighted anticholinergic risk score and a weighted drug interaction risk score were
calculated for each of 300,000 patient records registered with a major regional UK-based healthcare
provider. The two measures are the input to the mean-shift clustering algorithm and this groups
patients into clusters reflecting different levels of polypharmaceutical risk. The results show firstly
that for most of the data the average scores are not correlated and secondly the high risk outliers
have one of the scores high but not both. These suggest that any systematic recognition of high risk
groups should consider both anticholinergic and drug-drug interaction risks to avoid missing high
risk patients. The technique was implemented into a healthcare management system that easily and
automatically identifies groups at risk far faster than the manual inspection of patient records. This
is much less labour intensive for healthcare professionals who can focus their assessment only on
patients within the high-risk group(s), enabling more timely clinical interventions where necessary.

Keywords: Cluster Analysis; Decision Making; Drug Interactions; Polypharmacy; Risk Factors;
Unsupervised Machine Learning
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medicines to counter the adverse effects of the drug which inadvertently may worsen the
problems [13]. Secondly, with aging, the risk of developing chronic diseases and thus ADRs
related to multiple drug prescription increases [14-18]. Indeed prolonged anticholinergic
and sedative medications are highly correlated with worsening cognition and decline in
physical functions among the elderly [19-21]. This issue is well known, with the absolute
risk of any single anticholinergic medicine described by the Anticholinergic Cognitive
Burden (ACB) scale [22] with a later supplement by [23] and [24]. According to different
studies, the prevalence of polypharmacy ranges from 34% to 65% in older patients result-
ing in increased hospital admissions [16,25,26]. One approach to mitigate this effect is
de-prescription [6,19,27,28] taking into account that older adults with co-morbidities may
benefit less from drugs due to the early medical harm prevaling over the later intended
positive effects [29].

The safe prescription of medicines is fundamental to the role of the healthcare pro-
fessional who in traditional practice needs to be knowledgeable and vigilant about the
risks associated with drugs and their interactions with other medicines at the individual
patient level. Research on polypharmacy has focused, in general, on de-prescription. The
aim of the current study is to present a method of identifying patients at high risk of
polypharmacy using big-data analytics according to their medication profile. Whilst drug
dose, patient weight, their age and other factors contribute to polypharmaceutical risk,
these are not the focus of the current study. The reason for using Artificial Intelligence
(AI) techniques is that they can handle large raw data (such as drug databases, patient
medication records) analysis. An Al-powered decision support systems can assist health
professionals in making informed decisions regarding polypharmacy.

This work contributes to scientific knowledge in two ways; firstly, groups of patients at
risk from drug-drug polypharmacy and polypharmacy within the anticholinergic medicine
group are identified using novel metrics and mean-shift clustering. Secondly, the automated
identification of the highest risk cluster(s) represents an efficient and significant reduction
in the data necessary for clinical manual appraisal, typically extracting tens from potentially
hundreds of thousands of patient records.

In a professional context the automated, easy and rapid recognition of patients at
high risk of polypharmacy has marked benefits for patient-outcome (more rapid interven-
tion) and for health management businesses (reducing the time intensive manual data
inspection).

This paper is organised as follows. Section 2 describes the dataset and the method-
ologies used in this research. Section 3 discusses the experiments performed and their
outcome. The comparison with the state-of-the art is presented is Section 4. Finally the
conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Drug interaction and patient data sources

The ePACT?2 online archive (https://www.nhsbsa.nhs.uk/epact2) allows authorised
users access to prescription data held by the UK-NHS prescription services. This archive
was consulted as it includes hospital admission data due to adverse drug reactions, and
so allows evaluation of which drugs may be most responsible. Some information for the
first quarter of 2019 is presented in Table 1. This data was the most recent available at
the time the current study commenced, and comparison with data from two randomly
selected quarters from the 3 years prior to this did not reveal any significant differences.
The table shows that, whilst polypharmacy caused by the interaction between different
medicine groups is important, multiple anticholinergic medication within that single group
is itself an important source of hospital admissions. Risk rate shown in column 2 represents
the number of patients admitted per 10,000 hospital admissions due to consequences of
prescription of single or multiple drugs. The present study therefore focuses on two aspects
of polypharmaceutical risk, one based on the interaction between multiple medication of
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anticholinergic drugs and the other one based on the interaction between different medicine
groups (irrespective of whether one group is anticholinergic).

Table 1. Some features associated with polypharmacutical UK hospital admissions.

Medicine measures Risk  Consequence Treatment Age
rate duration (years)
(months)
ici i 97 Confusion
2.or more mgdmmgs w1’Fh'moderate or N/A 218
high anticholinergic activity 8 Fracture
1 or more medicines for dementia + 1 316 Confusion
or more medicines with moderate or N/A >18
high anticholinergic activity 53 Fracture
NSAID + RAS + diuretic 16 Kidney Injury N/A >18
162 Fall
Z-drug for more than one month >1 >65
28 Fracture
benzodiazepine for more than one 181 Fall
h >1 >65
mont 32 Fracture
benzodiazepine and Z-drug (not 212 Fall
concurrently) for more than one >1 >65
month 35 Fracture
NSAID without gastro-protection 9 bleed N/A >65
NSAID + oral anticoagulant 33 bleed N/A >18
oral anticoagulant + anti-platelet without 31 bleed N/A >18
gastro-protection
aspirin + anti-platelet without gastro- 20 bleed N/A >18
protection
oral or transdermal opioid without alax- 8 constipation N/A >18
ative
oral or transdermal opioid for more than 18 respiratory >3 >18
three months depression,
overdose
poisoning or
confusion
inhaled Long Acting Beta-agonist 9 exacerbation  N/A N/A
(LABA) without an inhaled corticos- of asthma

teroid (ICS)

The ACB scale described earlier recognises three classes of anticholinergic risk where
medicines in class 1 have the lowest risk and those in class 3 have the highest risk. In
addition, the UK British National Formulary - National Institute for Health and Care
Excellence (BNF-NICE) website (https://bnf.nice.org.uk/interaction/) uses an Interaction
Severity (IS) score between any two medicine groups. The IS has also three risk levels from
1 (lowest) to 3 (highest), but unlike the ACB, the score is relative - measured against the

lowest risk of the two pairings.

2.2. Data, instruments and pre-processing

For the current study, access to a data set of 300,000 patient records registered with the
largest provider of primary care services to the NHS in England was utilised (AT Medics

88

89

920

91

92

93

94

95

926

97

98

29


https://bnf.nice.org.uk/interaction/

Version February 12, 2024 submitted to Journal Not Specified 4of 14

Ltd, London). The data that supports the findings of this study are available from NHS bulk
data repository. Restrictions apply to the availability of these data, which were used under
license for the current study. To ensure complete data, the AT Medics’s patient database
was parsed to identify only patient records whose prescriptions were active; those with
a historical prescription treatment that had ceased were excluded. These active patients
are then checked for an entry in [24], and their anticholinergic drug(s) and ACB scores(s)
extracted.

The cumulative effect of taking one or more anticholinergic drugs is measured by
use of a Weighted Anticholinergic Risk Score (WARS) calculated using equation 1 for each
patient.

WARS = n¢ * S¢1 + 1 % Sc2 + 13 * Sc3 1)

where n.q, np and ngs refer to the number of anticholinergic drugs prescribed to a patient
which belongs to classes c1, c2 and ¢3, respectively. S., Sc», and Sc3 are the related
anticholinergic risk scores associated with each class; i.e. S¢; =1, S» =2 and S3 =3.

With regards to one-to-one drug-drug interactions, a similar approach to that for
WARS can be taken where a Weighted Interaction Risk Score (WIRS) per patient can be
derived by using equation 2.

WIRS = ny; * Syyi + 1o * Sio + e * Sse )

where npj, Nme and nge refer to the number of drug pairs prescribed to a patient with mild,
moderate and severe interactions, respectively. Spyi=1, Smo=2 and Ss.=3 are the degrees to
which an interaction is severe.

Data pre-processing to derive WIRS values is more involved than that for WARS
because many prescription medicines are a mixture of drugs or can even have different
names for the same drug, so it is necessary for drug references to be standardised and IS
values to be combined so as to generate a WIRS score per patient. This WIRS pre-processing
was undertaken in three steps. Firstly, as with WARS, the AT Medics’s patient database was
parsed to identify those patients currently receiving a prescription. Secondly, for this subset
each patient’s prescribed medicines were compared with those listed in the BNF-NICE
database which, if present, lists the IS score for a number of drug-drug pairings. The
AT Medics’s database prescription data includes medicines and, where applicable, their
drug components referenced in a form that matches the BNF-NICE database, allowing
standardisation and cross-referencing between the two resources. Thirdly, the drug-drug
IS scores for the drugs prescribed to each patient were then combined to derive the WIRS
score per patient. This final step is undertaken by generating an interaction matrix per
patient. Each element of the matrix records the relevant pairing IS score (as listed in the
BNEF-NICE database) or defaults to 0; the overall WIRS score for that patient is then half
the sum of all the elements in the matrix (to avoid double-counting the paired values). As
an example, Table 2 shows the interaction matrix for a random patient that lists seventeen
severe interactions between the drugs listed, so the overall WIRS score is 51. Note that
there is no direct relation between WARS and WIRS. The WARS score reflects the risk of
polypharmacy specifically from anticholergenic medication and derived from absolute
ACB measures, whilst the WIRS score reflects the broader relative risk of all IS one-to-one
drug group pairings (which may or may not include an anticholinergic drug group as one
of the pairs).
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Table 2. Patient interaction matrix (0 = no interaction; 3 - severe interaction)

Q k=

- = 2 o £

T £ 2§ & = S 0§ & =

& 2 5§ & £ 28 % £ % & %

= EE 2 £ 2255 ¥ EEE

E 5 &8 & = 2 2 5 E 8§ 35 =
Drugs < m U0 U U AT O ~ O &
Amitriptyline 0 0 0 0 0 0 0 0 O 0 0 O
Betamethasone 0 0 0 3 3 0 3 3 0 0 3 3
Cetirizine o 0o 0 0 O 0 0 0 O 0 0 O
Citalopram o 3 0 0 3 0 0O 3 3 0 3 3
Clarithromycin 0 3 0 3 0 0 0 3 0 0 3 3
Codeine o o o0 0 o0 0 0 0 O 0 0 O
Diclofenac o 3 0 0 0 0 0 0O O 0 0 O
Hydroxyzine o 3 0 3 3 0 0 O O 0 3 3
Omeprazole o o 0 3 0o 0 0 0 0 0 0 O
Omeprazole o o 0o o0 o 0 0o 0 0 0 o0 O
Quinine o 3 0 3 3 0 0 3 0 0 0 3
Sildenafil o 3 0 3 3 0 0 3 0 0 3 0

2.3. Mean-shift clustering technique for polypharmaceutical risk identification

WIRS and WARS scores per patient were calculated as described in the previous
section excluding those with a risk score of 0, and grouped into 3 categories:

a)  WARS - a single vector of 18,568 patients (6.2%) flagged as medicated with one or
more anticholinergic drugs (mean age 46.93 +/- 22.10),

by  WIRS - a single vector of 8,856 patients (3.0%) flagged as medicated with one or more
medicine groups and therefore at interactive risk from polypharmacy (mean age
58.96 +/-17.50),

c) WARS and WIRS - a double vector of 4,318 patients (1.4%, mean age 59.02 +/-17.30),
representing the intersection between categories a) and b) (i.e. patients with both
WIRS and WARS).

All the medication records were extracted from the database in mid-March of 2020.

The risk metric for categories a) and b) are each based on a single risk score, either
WARS or WIRS and on viewing these values for a given patient the healthcare professional
would decide which of the two is the most significant one. However, it is not clear if a
patient with a higher WARS is at greater risk than a patient with a higher WIRS. Whilst
both scores could be combined into a single feature in some way, most health professionals
prefer to work with established clinically recognised measures so to have options for a
judgement call between different prioritization strategies. For this reason the category c)
data does not combine the scores but rather uses a two dimensional vector of two elements
per patient for the respective WARS and WIRS values.

Clustering is an unsupervised learning method used in this research to group together
patients with similar characteristics (here, similar risk scores). There are two algorithmic
approaches that can be used. One approach requires defining the number of clusters in
advance prior to processing (e.g. k-mean clustering) whilst the other approach estimates
the number of clusters based on the characteristics of the data. The latter can be divided
into hierarchical and density-based clustering. Whilst the hierarchical method requires
the researcher to determine the number of clusters based on the subjective inspection of
a derived dendrogram, the density-based method estimates the cluster centres based on
how data points are distributed without any user intervention. The rationale for using
this technique in the current study is its good record of use for data segmentation that can
recognise high-frequency groupings [30,31]. The mean-shift clustering technique used in
this work is a density-based approach in which the algorithm estimates a bandwidth (BW)
to merge all the data points in the vicinity of each other into a cluster (or group). The BW is
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based on a quantile of all the pairwise distances of the data points and affects the sensitivity
as to how many groups might be recognised.

All steps, displayed in Figure 1, were undertaken by various Python scripts developed
to automate the process, prior to the vectors for the three data categories a), b) and c) being
presented to the mean-shift clustering algorithm. The cluster analysis itself was carried out
in Python 3.7.4 using the Scikit-learn library and its default quantile value of 0.3.

NHS bulk data repository

Patient records

-

Refs ([26],[27],[28]) ATMedics patient database BNF-NICE archive

ACB scores 300,000 records IS scores

I 1 | il

Cross-referencing of ACB/ Cross-referencing of IS/patient
patient data data + interaction matrices
WARS calculated per patient WIRS calculated per patient
Cluster analyses

|dentification of groups at high-risk of polypharmacy

Figure 1. Data flow and processing.

2.4. Use Case

The process depicted in the second half of Figure 1 can be illustrated by a patient use
case. A random patient record from the riskiest WARS cluster with an anticholinergic risk
score of 11 has been selected. The list of all medicines extracted from their prescriptions is:
Betamethasone, Citalopram, Clarithromycin, Quinine, Sildenafil, Diclofenac, Omeprazole,
Amitriptyline, Hydroxyzine, Promethazine, Cetirizine and Codeine. The anticholinergic
drugs from this list are extracted, their severity scores noted down and the total score
summated (Table 3).
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Table 3. Anticholonergic medicines prescribed to a patient with WARS risk score 11

Anticholinergic Name Severity
Amitriptyline 3
Hydroxyzine

Promethazine 3
Cetirizine 1
Codeine 1

Total score 11

The software also calculates the interaction risk (WIRS) from the patient’s unique
interaction matrix of prescribed medicines, this being the example interaction matrix
described earlier (Table 2) for which the WIRS score is 51.

This example patient is picked up by the cluster analyses based on their high WARS

score and placed in the group recommended to be looked at by the healthcare professional.

3. Results

Outcomes based on clustering applied to the WARS and the WIRS cohorts as defined
by equations 1 and 2 are reported in this section. Applying mean-shift clustering to the
category a) data (WARS data vector) returns ten clusters (i.e ten risk groups) which are
presented in figure 2. The first cluster group of 15 patients represents the highest risk group
with an average WARS of 11.00 (range is 10 to 14). The population distribution of weighted
WARS values is shown in Fig. 4 (top panel). For this distribution the maximum weighted
risk is 14 and the highest risk cluster group of 15 patients is shown in expanded view.

Mean-shift clustering applied to the category b) data (WIRS data vector) also groups
the patients into ten risk groups with 27 patients in the first group at the highest risk with
an average WIRS of 41.59 (c.f. figure 3) with a range of 31 to 93. The corresponding
population distribution of the WIRS values is shown in Fig. 4 (bottom panel) and for this
distribution the maximum weighted risk is 93 and the highest risk cluster of 27 patients is
also shown in the expanded view.

® Average WARS per group
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Figure 2. WARS patients clustered into ten different risk groups.
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Figure 3. WIRS patients clustered into ten different risk groups
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Figure 4. Population distributions over the calculated weighted anticholinergic risk score (top panel)
and the calculated weighted interaction risk score (bottom panel). In both cases the respective
complete distributions are represented by the green-shaded histograms, whilst the embedded red
histograms represent an expanded view of the respective group 1 (highest risk) distributions. The
magnifying glasses of both the top and bottom panels schematically represent the approximate
location of these group 1 histogram subsets within their respective population distributions.

Clustering that takes into account both the WARS and WIRS features were also un-
dertaken to further stratify the risk. Category c) data (a two dimensional vector input of
WARS and WIRS values per patient) was presented to the mean-shift clustering algorithm
with the results presented in Figure 5 and table 4. The clustering identifies eleven risk
groups of which some statistics are provided (tabulated data) whilst the average WIRS
versus average WARS for each group are plotted on the graph and for which the radius
of each group (circle) reflects that groups’ population. The groups are colour coded from
red to amber and green in hierarchical risk order with red the highest and green the lowest
risk, which emphasises that patients in cluster outliers 1 and 3 are at high risk (57 and 40
patients, respectively).
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Figure 5. Population groups at risk to both multiple anticholinergic prescription and polypharmacy.
The circle location reflects the average risk scores within each group and the circle size reflects their
population. The circles are colour coded from red to amber and green in hierarchical risk order with
red the highest and green the lowest risks.

Table 4. The average, maximum and minimum WARS-WIRS risk scores and population size for each
population group at risk to both multiple anticholinergic prescription and polypharmacy.

Risk Average Average of Countof Maxof Maxof Min of Min of

Group of WIRS Patients WIRS  WARS WIRS  WARS
WARS
1 3 32.61403509 57 93 14 22 1
2 3 11.60809249 865 23 11 6 1
3 8 3 40 3 11 3 7
4 2 6.139405204 538 7 7 6 1
5 6 3 101 3 6 3 5
6 3 5 261 5 9 5 1
7 3 4 133 4 11 4 1
8 2 3 1517 3 4 3 1
9 2 2 672 2 9 2 1
10 3 1 50 1 3 1 2
11 2 1 85 1 6 1 1

4. Discussion

Comparable work to evaluate medication risk effects have used various cross-sectional
studies on relatively small samples (record sizes typically in the hundreds) as in [3,4,14,
15,20,32] and some also consider an Al approach [32]. Other approaches have focused
on patients with specific inclusion criteria such as heart related problems and diabetes
[7,32] but our technique is intended to identify patients at risk regardless of their medical
condition. The majorities of studies consider either anticholinergic or polypharmaceutical
risk effects whilst our study evaluates them together. Our current work utilises a much
larger dataset of 300,000 records using novel metrics (WARS and WIRS) and a clustering
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approach to group patients into different risk clusters in order to calculate new knowledge. 22s
Some studies have focused on a pharmaceutical audience utilizing a number of electronic 220
systems for managing polypharmacy [33] but unlike our approach none of these use 230
machine learning algorithms that can automate the process [34]. Our conclusion that =2s:
a clustering approach can successfully identify groups at high risk of polypharmacy is =232
consistent with other approaches taken to filter Big Data including records of patient =23
medication [3,15,20]. 234

For the data records used in our study the significance of the single risk clustering 2ss
is that a cohort of 42 patients from two groups (group 1 from WARS and group 1 from =236
WIRS) out of 300,000 patients are identified as being at a higher risk of polypharmacy 2
relative to the rest of this population. The automatic (and objective) recognition of this =zss
cohort presented to the healthcare professional(s) who are looking to control risks can  23e
hugely reduce their work load. Whether WARS or WIRS, it is also worth mentioning that 240
inspection of the groups need not be limited to the first (highest) risk group. 201

Two important observations can be made from our results; firstly for most of the data 242
the average WIRS is not correlated (or weakly correlated) with the average WARS, and 242
secondly the high risk outliers are high risk because they have either a high WIRS or a high 244
WARS, but not both. These observations suggest that any systematic recognition of high 2
risk groups should consider both polypharmaceutical and anticholinergic prescription risk 24
measures such as WIRS and WARS, not just one of the features otherwise, an important 247
number of high risk patients might be missed (potentially two clusters of 97 patients in this 24s
case). 249

The clustering approach presented here has been embedded as a medicine safety 2so
application tool within the AT Medics population healthcare management platform. An- s
ticholinergic and sedative medications are often used too often, and clinical pharmacists zs2
can significantly reduce their use using this approach. Whilst development of our solution  2ss
was based on a single time frame of the accessed patient records and risk data archives, in  2se
practice that information is constantly changing according to medical management and  2ss
updates to medicinal risk data. A tool for routine primary care use needs to provide results s
almost instantly whilst reflecting those changes. In order to avoid unacceptable delay s
in real-time usage caused by communication latency the intermediate pre-processing of 2ss
records and other data can occur at pre-determined intervals (each week for example) with  2se
only the actual clustering applied at the point of application usage (Figure 1, red arrows). zeo
This approach enables a healthcare professional to identify a subset of patients at risk (a 26
few dozen say) from a population database of hundreds of thousands in a few seconds - 262
an operation that manually could take hours or days and be dependent on the skill and  zes
knowledge of that professional. The ability of a provider to identify and subsequently zes
manage medication risk at a population scale markedly improves patient safety, reduces zes
the risk of medicine-related hospital admissions and reduces unnecessary drug budget zes
spend. 267

The main limitation of the present study is that patient risk is assessed based only on  zes
drug risk scores. Comorbidities, specific diagnoses and patients” histories are not consid- zes
ered, nor are environmental factors such as geography and demography. Another limitation 270
is that the dataset only contains unlabelled raw data, so classification techniques as an 27
alternative to clustering could not be used. Classification techniques could be considered 272
should the data be labelled in some way. 273

5. Conclusions 274

One aspect of preventative health care is to use Al-techniques for the identification of 275
patients at risk of polypharmacy. Our work presents novel patient metrics of medication 2
that reflect drug-drug polypharmaceutical risk (WIRS) and risk between drugs of the anti- =277
cholinergic drug group (WARS). These metrics are used as input to a mean-shift clustering 27s
(unsupervised learning) algorithm that groups the data into clusters reflecting different =7
levels of polypharmaceutical risk. Groupings based on the individual WIRS and WARS  2e0
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categories are returned as well as groupings based on their combined metrics. Unlike ze:
other work this new approach is demonstrated to work with Big Data, processing 300,000  2e2
patient records and identifying high risk groups, each a few tens of individuals in size. The 2.
approach is safer and faster than the manual inspection of patient records which requires s
up-to-date polypharmaceutical knowledge and time availability. 285

The clustering approach of this work has been embedded as a medicine safety appli- zs6
cation tool within the AT Medics population healthcare management platform called EZ  zs7
Analytics. It has allowed the primary care team to gain unique insights into anticholinergic zss
risk burdens across entire practice populations. The ability to easily identify high scoring 2ss
clusters has meant that individuals most at risk from medicine related harm can be priori- 200
tised for recall into planned structured medication reviews. These reviews are carried out ze:
by primary pharmacists with a focus on assessing patient understanding, adherence and 2.2
possible side effects (e.g. constipation, urinary problems, dizziness). A holistic approach 2.
is taken in partnership with the patient to jointly agree a personalised care plan. Where 204
appropriate, this may involve de-prescribing one or more medication(s) over an agreed 205
period with the aim of reducing the overall anticholinergic burden and its associated risks. 296

Future studies will incorporate other feature measures such as age, gender and location 207
so as to further refine the identification of high-risk patients, perhaps using hybrid Al- 208
approaches. 299
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