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Abstract: This paper primarily focuses on the chaos synchronization analysis of neural networks 1

(NNs) under a hybrid controller. Firstly, we design a suitable hybrid controller with saturated 2

impulse control, combined with time-dependent intermittent control. Both controls are low-energy 3

consumption and discrete, aligning well with industrial development needs. Secondly, the saturation 4

function in the chaotic neural network is addressed using the polyhedral representation method and 5

the sector nonlinearity method, respectively. By integrating the Lyapunov stability theory, Jensen’s 6

inequality, the mathematical induction method, and the inequality reduction technique, we establish 7

suitable time-dependent Lyapunov generalized equations. This leads to the estimation of the domain 8

of attraction and the derivation of local exponential stability conditions for the error system. The 9

validity of the achieved theoretical criteria is eventually demonstrated through numerical experiment 10

simulations. 11

Keywords: Chaos Synchronization, Neural Networks, Actuator Saturation, Hybrid Controller, Lya- 12

punov Stability Control 13

1. Introduction 14

In current scientific research, chaotic neural network holds significant importance, no- 15

tably within the burgeoning field of artificial intelligence and its associated methodologies 16

[1–3]. This includes nonlinear modelling and exploration of complex systems, information 17

processing and pattern recognition, analysis and control of dynamic behaviour, expansion 18

of neural network learning theory, and artificial intelligence [4–8]. The importance of 19

chaotic neural networks for research is not limited to the field of neural networks, but 20

also includes a variety of fields such as complex systems science, information processing, 21

dynamics and behaviour analysis, and computational science. Therefore, the study of 22

nonlinear modelling and dynamical behaviour of chaotic neural networks is an important 23

part of the foundation for the development of chaotic neural networks. 24

It must be mentioned that the synchronisation problem is unavoidable when studying 25

the dynamic behaviour of chaotic neural networks (CNNs). The analysis of synchronisation 26

of nonlinear systems is an important direction that has received much attention in the 27

current research field and academic discipline. In many cross-cutting research areas such 28

as biological neural networks [9], learning systems [10], and data processing [11]. The 29

study of synchronous phenomena not only contributes to a deeper understanding of the 30

intrinsic dynamical behaviour of the system, but also provides potential opportunities for 31

practical applications. As the name implies, synchronisation of a class of NNs under a 32

certain network topology focuses on the dynamic behaviour of a group of neural nodes 33

that can gradually achieve synchronisation in the presence of an information interaction or 34
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in the presence of a controller steering. Due to the wide range of industrial applications of 35

neural network synchronisation, many academic results on synchronisation of NNs have 36

emerged in the past decade [12–15]. 37

In the study of synchronisation problems in neural networks, the question of how to 38

achieve fast synchronisation and how to use less energy to do has become a hot topic for 39

researchers. Researchers and scholars have tried to solve the synchronisation problem of 40

neural networks using various control methods: Sliding mode control, impulse control, 41

intermittent control, etc. Among the many control methods, impulse control is generally 42

regarded as a simple, classical and highly manoeuvrable control method for synchronisa- 43

tiondue to its uniqueness and ease of implementation. In recent years, many meaningful 44

research results have also been obtained on the design of impulse control protocols or 45

impulse control gains for synchronisation of neural networks [16–20]. 46

On other hand, intermittent control has gained considerable importance over the last 47

decade, as it has the potential to solve complex control problems that cannot be adequately 48

tackled by traditional continuous control strategies. The significance of intermittent control 49

research lies in its ability to more effectively manage systems with uncertainties, constraints, 50

disturbances, and nonlinear dynamics. Intermittent control is used in various industrial 51

applications such as robotics, energy systems, biological systems, network systems and 52

transportation, and has produced a number of significant research results [21–25]. Wu [21] 53

studied the problem of fixed-time synchronization of nonlinear systems via intermittent 54

control. Zhong [22] focused on the hybrid mechanism for networked control systems. 55

However, very little research has been done on hybrid controllers. Utilizing the advantages 56

of impulsive and intermittent control for hybrid control of nonlinear systems is more useful 57

in engineering applications. 58

Finally, any physical actuator can be saturated with an upper power limit, due to 59

hardware problems. If the actuator saturation phenomenon is ignored when designing 60

a closed-loop industrial system controller, the performance of the controlled system will 61

decrease when the controller reaches saturation, and in extreme cases, the controlled system 62

may become unstable. Therefore, the phenomenon of actuator saturation is a factor that 63

should not be ignored when studying closed-loop control systems. Many interesting results 64

have also been obtained on actuator saturation [26–30]. Hu [26] takes full account of the 65

saturation phenomenon characteristics and uses the convex combination technique to 66

represent the saturation control as a series of convex packet forms. Li combined impulse 67

control with actuator saturation to obtain a number of columns of results on saturated 68

impulse control [31–34]. And two methods for solving the impulse saturation problem are 69

proposed: the dead-zone nonlinear method and the polyhedral representation. Besides, 70

many scholars have also applied impulse saturation control theory to multi-intelligent 71

body systems, complex networks and other related fields [35–38]. 72

Based on the above, this paper fully considers the effect of actuator saturation on 73

CNNs, and designs a hybrid controller containing impulse control and intermittent control 74

to study the synchronisation problem of CNNs. The main innovations are 75

• A hybrid controller containing impulse control and intermittent control is designed. 76

• The effect of saturation on the controller is fully considered, and the saturation function 77

is processed by two methods to obtain a synchronisation criterion that reflecting the 78

saturation characteristics. 79

• Using the linear matrix inequality (LMI) and some effective lemmas, a much less 80

conservative synchronisation criterion is obtained. 81

The main structure of the paper is: section 2 gives a series of lemmas, assumptions, 82

and definitions; moreover, establishes an accurate mathematical model and proposes the 83

controller. Section 3 gives the process of theoretical proof and presents two theorems. 84

Section 4 verifies the obtained theoretical results with experimental simulations. Section 5 85

gives the conclusion. 86
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2. Preliminary and Mathematical Modeling 87

We give the necessary lemmas, assumptions and definitions to support the theoretical 88

prove of the paper in this section. 89

2.1. Lemmas 90

Some Lemmas are given as follows. 91

Lemma 1 [39] Let m ⩾ 1 be a given integer value, u, v ∈ Rm denote two given vectors. If 92

∥v∥∞ ⩽ 1 holds. Then, for ∀u ∈ Rm, the follow equation hold. 93

Sat(u) ∈ co{Dıu +D−
ı v : ı ∈ I[1, 2m]}, (1)

where, co denotes the convex hull after the transformation of the saturation function, 94

Dȷ ∈ D , D−
ȷ = I −Dȷ, I[1, 2m] denotes {1, 2, 3, ..., 2m}. 95

Lemma 2 (Jensen’s Inequality) [40,41] There exist arbitrary constant matrices J = JT > 0 ∈ 96

Rn×n, and productable functions g(s), s ∈ [a, b] such that the inequality (2) holds: 97

(b − a)
∫ b

a
gT(s)Jg(s)ds ≥

(∫ b

a
g(s)ds

)T

J

(∫ b

a
g(s)ds

)
. (2)

98

Lemma 3 (Wirtinger Correlation Inequality) [42] There exists a symmetric matrix G and an 99

arbitrary differentiable function v(s), s ∈ [a, b], such that the following inequalities hold: 100

(b − a)
∫ b

a
v̇T(s)Gv̇(s)ds ≥ΣT

1

 4G 2G − 6G
∗ 4G − 6G
∗ ∗ 12G

Σ1,

∫ b

a

∫ b

υ
v̇T(s)Gv̇(s)dsdυ ≥ΣT

2

[
2G − 2G
∗ 2G

]
Σ2,

(3)

where Σ1 = col{v(b), v(a), 1
b−a

∫ b
a υ(s)ds} and Σ2 = col{v(b), 1

b−a

∫ b
a υ(s)ds}. 101

Lemma 4 (Schur Complement Lemma) [42] There exist three constant matrices Z1 = ZT
1 < 102

0, Z2 = ZT
2 < 0, Z3, Z1 − ZT

3 Z
−1
2 Z3 < 0 holds if and only if the following inequality exists. 103[

Z1 ZT
3

∗ Z2

]
< 0,

[
Z2 Z3
∗ Z1

]
< 0.

104

Lemma 5 (Generalized Sector Condition) [44] There exist two vectors γ = [γ1, γ2, ..., γn]T ∈ 105

Rn and µ = [µ1, µ2, ..., µn]T ∈ Rn satisfying the following condition |µi − γi| ⩽ µ̄0, µ̄0 > 0. 106

The following inequality holds for any diagonal matrix P ∈ Rn×n. 107

κ(µ)P[κ(µ)− γ] ⩽ 0,

where κ(µ) denote the nonlinear function. 108

2.2. Assumptions and Definitions 109

Assumption 1 There exists a nonlinear activation function fi(·) : R → R satisfying the 110

Lipschitz condition. In other words, there exists a constant α̂i > 0 such that ∀z1, z2 ∈ R, 111

one have 112

0 ⩽
fi(z1)− fi(z2)

z1 − z2
⩽ α̂i (4)

113

Assumption 2 Let TM, Tm be the constants,which TM ⩾ Tm > 0 such that the impulse 114

time sequence {tk} ∈ S(Tm, TM), where S(Tm, TM) denotes a class of time series {tk} and 115

satisfies 0 ⩽ tk+1 − tk = TK ∈ [Tm, TM], k ∈ N. 116

Assumption 3 Given the constant Tk, it is guaranteed that Tk exists in the impulsive 117
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interval (tk, tk+1) and has 0 < Tk < tk+1 − tk < ∞. 118

Definition 1 Let κ and τ be positive constants. And if every solution of v(t) in the error 119

system satisfied 120

∥v(t)∥ ⩽ κe−τ(t−t0)∥v(t0)∥, ∀t ⩾ t0.

Then, the error system is said to exponentially stable. 121

Definition 2 The region RA denotes the domain of attraction of the error system about the 122

origin, where 123

RA =

{
v ∈ Rn : lim v(t, v(t0)) = 0

t→∞

}
.

2.3. Model Description 124

In the paper, the following NNs is considered 125

ξ̇(t) = −Dξ(t) + EF(ξ(t)) + I(t), (5)

where, ξ(t) = {ξ1(t), ξ2(t), ..., ξn(t)}T ∈ Rn denotes the state variable of the ith neuron 126

node at time point t. D ∈ Rn×n and E ∈ Rn×n are denoted as connection weighting 127

coefficient matrices. F(ξ) ∈ Rn denoted as the activation function of each neuron node. 128

I(t) = [I1(t), I2(t), ..., In(t)]T ∈ Rn denoted as external inputs to the system. 129

Moreover, in order to explore the synchronization problem of NNs with intermittent 130

impulse control for the drive system (5), the following response system with intermittent 131

impulse saturation controllers is designed in this section. 132

ω̇(t) = −Dω(t) + EF(ω(t)) +U+ I(t), (6)

where U denotes for the designed intermittent saturation impulse controller. The ω(t) 133

denotes the state variable of the corresponding system. In addition, the matrices D, E, the 134

activation function F(ω(t)), and the external input I(t) satisfy the form described in the 135

system (5), respectively. 136

The primary objective of the paper is to propose an appropriate hybrid control strategy 137

consisted of saturation impulsive control and intermittent control to propel the system (6) 138

with the system (5) to be synchronized. 139

Based on the above considerations, the following hybrid controller is designed in this 140

paper 141

U = Û(t) + U(tk), (7)

for which 142

Û(t) = − exp{−α(t − tk)}Ŵ (t)(ξ(t)− ω(t)), (8)

And, the Û(t) denotes the term of intermittent control of the proposed hybrid controller 143

from paper [23]. Moreover, there are 144

Ŵ (t) =

{
W , tk ⩽ t < tk +Tk, k ∈ R0

0, tk +Tk ⩽ t < tk+1,
(9)

and the term of the saturation impulsive control in the hybrid controller is defined as 145

follows 146

U(tk) = Sat{u(t−k )}δ(t − tk), (10)

where α is the given scalar and Ŵ (t) is the control gain vector, where W ∈ R+ . {tk} 147

denotes the sampling time sequences and satisfies the following: 0 ≤ t0 < t1 < · · · < tk < 148

· · · , lim
t→+∞

tk = +∞. 149
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Suppose that Sat{u(t)} = [Sat{u1(t)}, · · · , Sat{un(t)}]T : Rn → Rn is the Standard 150

Vector-valued Saturation Function (SVSF) with saturation level ū0 > 0. 151

Sat{ui(t)} = sign((ui(t))min{ū0, |ui(t)|}

where ū0 denotes the saturation level of the saturation function, ui(t) = K{ξi(t)−ωi(t)}, K ∈ 152

Rn×n is the gain constants matrix of saturate impulsive. 153

Remark 1 The monitoring and measurement of the system state is performed at fixed sam- 154

pling points, and the instant of impulse occurrence is also performed at the above sampling 155

points in the hybrid controller (7). The presence of a state-dependent exponential variable 156

exp{−α(t − tk)} in the intermittent control allows the controller to be better controlled 157

according to the state of time, and only in the [tk, tk +Tk) region the intermittent controller 158

is activated. 159

Remark 2 The part of intermittent control (8) can be converted to periodic intermittent 160

control 161

Ûi(t) =


Ûi(t), t0 + kτ ⩽ t ⩽ t0 + (k + α)τ,

0, t0 + (k + α)τ < t < t0 + (k + 1)τ.

(11)

162

Obviously, the above intermittent control protocol (8) is a classical frame protocol that 163

can represent both periodic and non-periodic forms. 164

Remark 3 In response systems, a class of hybrid controllers consisting of two control 165

strategy is considered. Where the intermittent controller incorporates the exp{−α(t − tk)} 166

term, it can be seen that the gap control is related to the current time state and the pulse 167

moment, which can also be reflected in the saturated impulse intermittent controller 168

designed in this paper when the control amplitude is continuously adjusted based on the 169

feedback from the pulse state and the intermittent control state. 170

3. Main Results 171

Some sufficient criterion for the error system to converge to the origin are given 172

using linear matrix inequalities, Lyapunov-Krasovskii generalized methods and inequality 173

techniques in the section. Two main approaches to deal with the saturation term is utilised: 174

the first is the sector nonlinear modeling approach, which uses the dead zone nonlinearity 175

instead of the saturation term, and the second is for the polyhedral representation approach, 176

which represents the saturation function as a convex package. 177

3.1. Synchronization analysis based on PRs 178

Based on Lemma 1, it exist a matrix H ∈ Rn×n such that ω(t−k ) ∈ N = {ω ∈ Rn : 179∣∣∣H(i)ω
∣∣∣ ⩽ ū0},∀i ∈ [1, n].Then, one can claimed that Sat

{
V ω

(
t−k

)}
∈ co{DȷKω

(
t−k

)
+ 180

D−
ȷ Hω

(
t−k

)
}. Therefore, it can be obtained 181

Sat
{

Kω
(
t−k

)}
=

2n

∑
ȷ=1

ς ȷ

(
DȷK +D−

ȷ H
)

ω
(
t−k

)
(12)

for which ∑2n

ȷ=1 ς ȷ = 1, 0 ⩽ λȷ(t−k ), k ∈ N, ȷ ∈ [1, 2n]. νi(t, x) = ξi(t)− ωi(t), ϵ > 0 is the 182

error state variable of the driver system (5) and the response system (6). According from 183

the (7), we can definite the hybrid controller Ui. Substituting Ui into (6) yields that 184
ν̇(t) = −Dν(t) + EF̂(νi(t)) + exp{−α(t − tk)}W ν(tk), t ∈ [tk, tk +Tk),

ν̇(t) = −Dν(t) + EF̂(νi(t)), t ∈ [tk +Tk, tk+1),

∆ν(tk+1) =
2n

∑
ȷ=1

ς ȷ

(
DȷK +D−

ȷ H
)

ν
(

t−k+1

)
, t = tk+1,

(13)
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where ν(t) = [ν1(t), ν2(t), · · · , νn(t)]T ,F̂(ν(t)) = F(ξ(t))− F(ω(t)), 185

∆ν(tk+1) = ν(t+k+1)− ν(t−k+1), ν(tk) = ν(t+k ) = lim
t→t+k

ν(t, x), ν(t−k ) = lim
t→t−k

ν(t). 186

Let e(t) = exp{αt}ν(t). Then the error system converts into 187
ė(t) = (αI − D)e(t) + EF̂(ei(t)) +W e(tk), t ∈ [tk, tk +Tk),

ė(t) = (αI − D)e(t) + EF̂(ei(t)), t ∈ [tk +Tk, tk+1),

∆e(tk+1) =
2n

∑
ȷ=1

ς ȷ

(
DȷK +D−

ȷ H
)

e
(

t−k+1

)
, t = tk+1.

(14)

Remark 4 The whole error system (14) can be described as three parts: an intermittent 188

control part in the interval [tk, tk +Tk), a non-additive controller part in the interval 189

[tk +Tk, tk+1) and a saturated impulse control part in the time instants t = tk+1. 190

Theorem 1. For given constants TM > Tm ⩾ 0, ϖ > 0, π > 0, α > 0, ϵ ⩽ 0, ς ȷ ∈ [0, 1] 191

and ∑2n

ȷ=1 ς ȷ = 1 and given matrices H, K, W , D ∈ Rn×n. Suppose that exist diagonal matrices 192

P ∈ Rn×n, matrices G > 0, n × n matrices H1, H2, η1, η2, Ai, i = 1, ..., 6. Then, the LMIs hold 193

for any initial value condition ν(t0) ∈ E{G, ϖ}, Tk ∈ {Tm, TM}, j ∈ I[1, n], ȷ ∈ I[1, 2n]. 194

Q =

[
Q11 Q12
∗ Q22

]
≥ 0, (15)

195

Z1(Tk) =


Π11 Π12 Π13 Π14 Π15
⋆ Π22 Π23 Π24 Π25
⋆ ⋆ Π33 Π34 Π35
⋆ ⋆ ⋆ Π44 Π45
⋆ ⋆ ⋆ ⋆ Π55

 < 0, (16)

196

Z2(Tk) =


Γ11 Γ12 Γ13 Γ14 Γ15
⋆ Γ22 Γ23 Γ24 Γ25
⋆ ⋆ Γ33 Γ34 Γ35
⋆ ⋆ ⋆ Γ44 Γ45
⋆ ⋆ ⋆ ⋆ Γ55

 < 0, (17)

(1) If α > −ϵ, 0 < π < exp{2(ϵ + α)}Tm, LMIs (15)-(17) hold. 197[
G HT

(j)
⋆ ϖū2

0 exp{−2(ϵ + α)Tm}

]
≥ 0, (18)

198[
−πG ∑2n

ȷ=1 ς ȷ

(
I +DȷK +D−

ȷ H
)T

G
⋆ −G

]
≤ 0, (19)

Then the system (14) achieves stability at an exponential decay rate − ln π
2TM

+ ϵ + α. (2) If 0 < α < 199

−ϵ, 0 < π < exp{2(ϵ + α)}Tm, linear matrix inequality (15)-(17), (19) and the following LMIs 200

hold. Then the system (14) achieves stability at an exponential decay rate − ln π
2TM

+ ϵ + α. 201[
G HT

(j)
⋆ ϖū2

0 exp{−2(ϵ + α)Tm}

]
≥ 0, (20)

(3) If α + ϵ = 0, there exists a sufficiently small constant β ∈ (0, − ϵ) so that 0 < π < 202

exp{2(ϵ + α)Tm} holds. 203

Then, the system (14) achieves stability with an exponential decay rate (− ln π
2TM

,− ln π
2TM

+ ϵ). 204
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In other words, for all initial values in the ellipsoid E{G, ϖ}, the response system (6) is locally 205

exponentially synchronised with the driving system (5) under the hybrid controller. In addition the 206

estimated domain of attraction is RA = E{G, ϖ}. 207

Q11 =G + TMsym{η1}+H1, Q12 = −TMη1 − TMη2 −H1,

Q22 =TMsym{η1}+H1,

Π11 =4ϵG − 2sym(η1)−
8

TM
G1 − 4G2 + 2A1(αI − D) + 2A4(αI − D),

Π12 =2η1 + 2η2 −
4

TM
G1 + 2(αI − D)TA T

3 + 2(αI − D)TA T
6 + 2A1W ,

Π13 =2A1E + 2A4E + 2Φ̂P, Π14 =
12
TM

G1 +
4

TM
G2,

Π15 =4G − 2A1 − 2A4, Π22 = − 8
TM

G1 − 2sym(η2) + 2A3W ,

Π23 =2A3E + 2A6E, Π24 =
12
TM

G1, Π25 = −2A4 − 2A6, Π33 = −2P, Π34 = 0,

Π35 =2EA T
2 + 2EA T

5 , Π44 = − 24
TM

G1 − 4G2, Π45 = 0,

Π55 =
TMTk

2
H2 − 2A2 − 2A6, Γ11 = Π11 + 4ϵTk

[
sym(η1) +

4
TM

G1 + 2G2

]
,

Γ12 =Π12 + 4ϵTk

[
2

TM
G1 − η1 − η2

]
, Γ13 = Π13,

Γ14 =Π14 + 4ϵTk

[
6

TM
G1 − 2G2

]
,

Γ15 =Π15 + 4ϵTksym(η1), Γ22 = Π22 + 4ϵTk

[
sym(η2) +

4
TM

G1

]
,

Γ23 =Π23, Γ24 = Π24 + 4ϵTk

[
− 6

TM
G1

]
,

Γ25 =Π25 − 4Tk[η1 + η2]
T , Γ33 = Π33, Γ34 = 0,

Γ35 =Π35, Γ44 = Π44 + 4ϵTk

[
12
TM

G1 + 2G2

]
, Γ45 = 0,

Γ55 =Γ55 + ϵTk(2H1 +
TM
2

).

Proof of Theorem 1. Consider the Lyapunov-krasovskii functional consisting of three part 208

as follow 209

V(t) = V1(t) + V2(t) + VX , (21)

where, 210

V1(t) = eT(t)Ge(t), (22)
211

V2(t) = T2(t)
∫ t

tk

ėT(s)H1 ė(s)ds + T2(t)
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ, (23)

212

VX (t) = T2(t)χT
1 (t)Bχ1(t), (24)

for which T1(t) = t − tk, T2(t) = tk+1 − t, χ1 = cole(t), e(tk) and 213

B =

[
η1 + ηT

1 −η1 − η2
∗ η2 + ηT

2

]
.
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Firstly, when t ∈ [tk, tk+1), based on Lemma 2 and condition (15), it can be shown that 214

V(t) > 0 holds. When T1 + T2 ⩽ TM there are 215

V(t) ⩾eT(t)Ge(t) + T2(t)χT
1 (t)Bχ1(t) + T2

∫ t

tk

ėT(s)H1 ė(s)ds

⩾
T1

TM
eT(t)Ge(t) +

T2

TM
eT(t)Ge(t) + T2(t)χT

1 (t)Bχ1(t).

+
T2

TM

∫ t

tk

ėT(s)dsH1

∫ t

tk

ė(s)ds

⩾
T2

TM
eT(t){G + TMsym{η1}+H1}e(t)− T2

TM
eT(t){TMη1 + TMη2 +H1}e(tk)

+
T2

TM
eT(tk){TMsym{η1}+H1}e(tk)

⩾
T2

TM
χT

1 (t)Qχ1(t) > 0.

Next, state evolution trajectories are estimated for each interval: the intermittent 216

control interval t ∈ [tk, tk +Tk) and the uncontrolled interval t ∈ [tk +Tk, tk+1). 217

When t ∈ [tk, tk +Tk), 218

D+T2(t)
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ

=Ṫ2(t)
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ + T2(t)

∫ t

tk

[
d
dt

∫ t

τ
ėT(s)H2 ė(s)ds

]
+ T2(t){ṫ

∫ t

τ
ėT(s)H2 ė(s)ds − ṫk

∫ t

τ
ėT(s)H2 ė(s)ds}

=(t − tk)T2(t)ėT(t)H2 ė(t)−
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ.

(25)

Then, 219

D+V(t) =D+V1(t) + D+V2(t) + D+VX

=2eT(t)G ė(t) + T2(t)ėT(t)H1 ė(t)−
∫ t

tk

ėT(s)H1 ė(s)ds

+ T1(t)T2(t)ėT(t)H2 ė(t)−
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ

+ 2T2(t)χT
1 (t)Bχ̇1(t)− χT

1 (t)Bχ1(t).

(26)

It can be derived 220

D+V(t) + 2ϵV(t) =2eT(t)G ė(t) + 2ϵeT(t)Ge(t) + T2(t)ėT(t)H1 ė(t)

+ (2ϵT2(t)− 1)
∫ t

tk

ėT(s)H1 ė(s)ds

+ T1(t)T2(t)ėT(t)H2 ė(t)

+ (2ϵT2(t)− 1)
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ

+ 2T2(t)χT
1 (t)Bχ̇1(t) + (2ϵT2(t)− 1)χT

1 (t)Bχ1(t).

(27)

Divide the formula (27) into parts and estimate. 221

2T2(t)χT
1 (t)Bχ̇1(t) =2T2eT(t)(η1 + ηT

1 )ė(t)− 2T2eT(tk)(η1 + η2)
T ė(t). (28)
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According to the Wirtinger-type inequality of Lemma 3, one can obtained 222

(2ϵT2(t)− 1)
∫ t

tk

ėT(s)H1 ė(s)ds ⩽
(2ϵT2(t)− 1)

TM
χ2(s)TΛ1χ2(s), (29)

223

(2ϵT2(t)− 1)
∫ t

tk

∫ t

τ
ėT(s)H2 ė(s)dsdτ ⩽ (2ϵT2(t)− 1)χ3(s)TΛ2χ3(s), (30)

where χ2 = col{e(t),e(tk),ρ(t)} and χ3 = col{e(t), ρ(t)},ρ(t) = 1
T1(t)

∫ t
tk

e(s)ds. 224

The matrices Λ1 and Λ2 are transformed into 225

Λ1 =

4G1 2G1 −6G1
∗ 4G1 −6G1
∗ ∗ 12G1

, Λ2 =

[
2G2 −2G2
∗ 2G2

]
.

Using (28), (29) and (30), the equation (27) can be transformed into 226

D+V(t) + 2ϵV(t) ⩽2eT(t)G ė(t) + 2ϵeT(t)Ge(t)

+(2ϵT2(t)− 1)χT
1 (t)Bχ1(t) + T2(t)ėT(t)H1 ė(t)

+
TM
4

T1 ėT(t)H2 ė(t) +
TM
4

T2 ėT(t)H2 ė(t)

+2T2eT(t)(η1 + ηT
1 )ė(t)− 2T2eT(tk)(η1 + η2)

T ė(t)

+
(2ϵT2(t)− 1)

TM
χ2(s)TΛ1χ2(s)

+(2ϵT2(t)− 1)χ3(s)TΛ2χ3(s).

(31)

For any n × n matrix Ai, i = 1, 2, 3, one has 227

2[eT(t)A1 + ėT(t)A2 + eT(tk)A3]

×[(αI − D)e(t) + EF̂(ei(t)) +W e(tk)(t)− ė(t)] = 0
(32)

When t ∈ [Tk, tk+1), the following inequality is similarly obtained 228

D+V(t) + 2ϵV(t) ⩽2eT(t)G ė(t) + 2ϵeT(t)Ge(t)

+(2ϵT2(t)− 1)χT
1 (t)Bχ1(t) + T2(t)ėT(t, x)H1 ė(t, x)

+
TM
4

T1 ėT(t)H2 ė(t) +
TM
4

T2 ėT(t)H2 ė(t)

+2T2eT(t)(η1 + ηT
1 )ė(t)− 2T2eT(tk)(η1 + η2)

T ė(t)

+
(2ϵT2(t)− 1)

TM
χ2(s)TΛ1χ2(s) + (2ϵT2(t)− 1)χ3(s)TΛ3χ3(s).

(33)

For any n × n matrix Ai with i = 4, 5, 6, the following is established 229

2[eT(t)A4 + ėT(t)A5 + eT(tk)A6]

×[(αI − D)e(t) + EF̂(ei(t))− ė(t)] = 0.
(34)

By assumption 1, there exists an arbitrary adapted dimensional diagonal matrix P2 > 0 230

such that the inequality is established: 231

2F̂T(e(t))P2[Φ̂e(t)− F̂(e(t))] ⩾ 0. (35)

According to the equation (31)-(35), the following is established 232

D+V(t) + 2ϵV(t) ⩽ χT(t)
[

T1(t)
Tk

Z1(Tk) +
T2(t)

Tk
Z2(Tk)

]
χ(t). (36)
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where χ(t) = col{e(t), e(tk), F̂(ei(t)), ρ(t), ė(t)}. 233

From the linear matrix inequalities (LMIs) (16) and (17), it can be obtained 234

D+V(t) + 2ϵV(t) < 0, (37)

where 235

V(t) < exp{−2ϵ(t − tk)}V(tk), t ∈ [tk, tk+1), (38)

and 236

eT(tk+1)Ge(tk+1) < exp{−2ϵTk}eT(tk)Ge(tk). (39)

It is estimated that at the saturation impulse moment t = tk+1, by ei(t) = eαt{ξi(t)− 237

ωi(t)}. 238

νT(tk+1)Gν(tk+1) < exp{−2(ϵ + α)Tk}νT(tk)Gν(tk). (40)

The stability analysis of the system (14) is discussed in three areas,accordingly. 239

Case 1. When ϵ + α > 0, the following can be obtained: 240

νT(t−1
)
Gν

(
t−1

)
⩽ exp{−2(ϵ + α)Tk}νT(t0)Gν(t0)

⩽ϖ exp{−2(ϵ + α)Tm}.
(41)

where ν
(
t−1

)
∈ E{G, ϖ exp{−2(ϵ + α)Tm}}. 241

Based on the Schur complement theory obtained from the condition (18), it can be 242

shown that 243

HT
(j)H(j) ⩽ ϖ−1ū2

0 exp{−2(ϵ + α)Tm}G. (42)

The trajectory of the error-system is 244

V(t1) =eT(t1, x)Ge(t1, x)

=eT(t−1 , x
) 2n

∑
1

ς ȷ

(
I +DȷK +D−

ȷ H
)T

G
2n

∑
1

ς ȷ

(
I +DȷK +D−

ȷ H
)

e
(
t−1

)
≤πeT(t1, x)Ge(t1, x) = πV(t−1 ).

(43)

Since e(t) = exp{αt}ν(t) and the condition (19), the following holds 245

νT(t1)Gν(t1) < πνT(t−1
)
Gν

(
t−1

)
. (44)

Using the same method, when tk = t−2 is obtained: 246

νT(t−2
)
Gν

(
t−2

)
≤ exp{−2(ϵ + α)T1}νT(t1)Gν(t1)

≤ exp{−2(ϵ + α)Tm}πνT(t−1
)
Gν

(
t−1

)
≤ϖ exp{−2(ϵ + α)Tm}.

(45)

Using mathematical induction,one can be drawn: 247

V(tk−1) ≤ πV
(
t−k

)
. (46)

From (18), it is possible to derive the 248

V(tk) ≤ πV
(
t−k

)
. (47)

Furthermore, based on the assumption 3, we can get: 249

t − t0

TM
− 1 ⩽ k ⩽

t − t0

Tm
, k ∈ N0. (48)
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Finally, from equations (38) and (47), it follows that 250

V(t) ≤ exp{−2ϵ(t − tk)}V(tk)

≤π exp{−2ϵ(t − tk)}V
(
t−k

)
≤ · · ·

≤πk exp

{
−2ϵ

[
(t − tk) +

k−1

∑
s=1

Ts

]}
V
(
t−k

)
=πk exp{−2ϵ(t − t0)}V(t0)

≤π
t−t0
TM

−1 exp{−2ϵ(t − t0)}V(t0).

(49)

In summary, based on equations (48) and (49), this means that 251

V(t) ≤ π̃ exp
{(

ln π

TM
− 2ϵ

)
(t − t0)

}
V(t0), (50)

where π̃ = max{π−1, 1, π
TM
Tm }. 252

Generally speaking, 253

∥ν(t)∥ ≤

√
π̃λmax(G)
λmin(G)

exp
{(

ln π

2TM
− ϵ − α

)
(t − t0)

}
∥νi(t0)∥. (51)

Case 2. When ϵ + α < 0, we can easily get: 254

νT
(

t−k+1

)
Gν

(
t−k+1

)
⩽ exp{−2(ϵ + α)TM}νT(tk)Gν(tk). (52)

Thus, for ∀νi(t0) ∈ E{G, ϖ}, it follows that 255

νT(t−1
)
Gν

(
t−1

)
⩽ exp{−2(ϵ + α)TM}νT(t0)Gν(t0). (53)

Using the Schur complement theory with the condition (17), we have that 256

HT
(j)H(j) ⩽ ϖ−1ū2

0 exp{−2(ϵ + α)TM}G. (54)

Similar to the proof process for case 1, using mathematical induction, we can conclude 257

the following 258

V(t) ≤πk exp{−2ϵ(t − t0)}V(t0)

≤π−1 exp
{(

ln π

TM
− 2ϵ

)
(t − t0)

}
V(t0).

(55)

In summary, it can be concluded that 259

∥ν(t)∥ ≤

√
λmax(G)

πλmin(G)
× exp

{(
ln π

2TM
− ϵ − α

)
(t − t0)

}
∥νi(t0)∥. (56)

Case 3. When ϵ + α = 0, based on equation (37), there exists a very small constant 260

β ∈ (0, − ϵ) which, due to the continuity of (37), makes the following hold 261

D+V(t) + 2(ϵ + β)V(t) < 0,

this means 262

V(t) ≤ exp{−2(ϵ + β)(t − tk)}V(tk), t ∈ [tk, tk+1). (57)
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Thus, similar to case 1, one can infer that 263

V(t) ≤ πV(tk), t ∈ [tk, tk+1). (58)

Since (57) and (58), it follows that 264

∥ν(t)∥ ≤

√
π̃λmax(G)
λmin(G)

× exp
{(

ln π

2TM
− ϵ

)
(t − t0)

}
∥ν(t0)∥.

265

Remark 5. In the proof process, a Lyapunov-Krasovskii generalised function re- 266

lated to the time state is devised, and the B matrix term is widely used in existing 267

proofs in the literature. In addition, we set two integral terms T2(t)
∫ t

tk
ėT(s)H1 ė(s)ds 268

and T2(t)
∫ t

tk

∫ t
τ ėT(s)H2 ė(s)dsdτ to get more relaxed conditions. 269

When the input saturation term is ignored, the error system (14) can be rewritten as 270
ėi(t) =(αI − D)e(t) + EF̂(ei(t)) +W e(tk), t ∈ [tk, tk +Tk),

ėi(t) =(αI − D)e(t) + EF̂(ei(t)), t ∈ [tk +Tk, tk+1),

∆e(tk+1, x) =Ke
(

t−k+1

)
, t = tk+1.

(59)

Corollary 1. For a given constant TM > Tm ⩾ 0, ϖ > 0, ϵ > 0, α > 0, 0 < π < e2TM(ϵ+α), 271

and a given n × n dimensional matrix K, W and D. Suppose that for TK ∈ {Tm, TM}, there 272

exist diagonal matrices P2 ∈ Rn×n, matrices G > 0, n × n matrices H1,H2, η1, η2 ∈ Rn×n, 273

Ai, i = 1, ..., 6, linear matrix inequality (15)-(17), the following inequality is established 274[
−πG (I + K)TG
⋆ −G

]
≤ 0. (60)

Then, the trajectory of the dynamical system (59) achieve stability at − ln π
2TM

+ α + ϵ decay 275

rate exponentially. 276

3.2. Synchronisation analysis based on SNA 277

By Lemma 4, the dead-zone nonlinearity R(U(tk)) = U(tk)− Sat{U(tk)} is defined, 278

where R(U(tk, x)) = [R(U1(tk, x)), R(U2(tk, x)), · · · , R(Un(tk, x))]. Thus, the error 279

system is transformed into 280
ėi(t) =(αI − D)e(t) + EF̂(ei(t)) +W e(tk), t ∈ [tk, tk +Tk),

ėi(t) =(αI − D)e(t) + EF̂(ei(t)), t ∈ [tk +Tk, tk+1),

∆e(tk+1) =Ke(t−k+1)−R(Ke(t−k+1)), t = tk+1.

(61)

If e(t−k ) ∈ £(KH), based on Lemma 4, the following condition establishes with respect to 281

nonlinear functions 282

RT(Ke(t−k+1))P1

[
R(Ke(t−k+1))− He(t−k+1)

]
≤ 0. (62)

Theorem 2. Given the constants TM > Tm ⩾ 0, ϖ > 0, π > 0, α > 0, and ϵ ⩽ 0, and 283

given the matrices H, K, W , D ∈ Rn×n. Suppose that there exist dimensional diagonal matrices 284

P1 ∈ Rn×n > 0 and P2 ∈ Rn×n > 0, matrices G > 0, n × n dimensional matrices H̄1, H̄2, η1, 285

and η2, Ai, i = 1, . . . , 6. 286

Then, for any of initial value v(t0) ∈ E{G, ϖ}, Tk ∈ {Tm, TM} the following conditions 287

hold: 288
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(1) if α > −ϵ, 0 < π < exp{2(ϵ + α)Tm}, linear matrix inequality (15)-(17), the following linear 289

matrix inequality holds 290[
G (K(j) − H(j))

T

⋆ ϖ−1ū2
0 exp{−2(ϵ + α)Tm}

]
≥ 0, (63)

O =

[
O1 O2
⋆ O3

]
≥ 0. (64)

The error system (61) would achieve stability with an exponential decay rate − ln π
2TM

+ ϵ + α. 291

(2) If 0 < α < −ϵ, 0 < π < exp{2(ϵ + α)Tm}, linear matrix inequality (15)-(17), (64), and the 292

following linear matrix inequality holds 293[
G (K(j) − H(j))

T

∗ ϖ−1ū2
(0) exp{−2(ϵ + α)TM}

]
≥ 0. (65)

The error system (61) would achieve stability at an exponential decay rate − ln π
2TM

+ ϵ + α. 294

(3) If α + ϵ = 0, there exists a sufficiently small constant β ∈ (0, − ϵ) such that 0 < π < 295

exp{2(ϵ + α)Tm} holds. Then the error system (61) would achieve stability with an exponential 296

decay rate (− ln π
2TM

,− ln π
2TM

+ ϵ). 297

That is, for all initial errors E{G, ϖ} in the ellipsoid, the response system (6) and the driving 298

system (5) are locally exponentially synchronised under hybrid control. Therefore, the estimated 299

domain of attraction is RA = E{G, ϖ}. 300

Proof of Theorem 2. The above part of the proof is similar to Theorem 1 and is omitted. If 301

the linear matrix inequalities (16) and (17) hold. 302

Then, since e(t) = exp{αt}ν(t) when 303

νT
(

t−k+1

)
Gν

(
t−k+1

)
< exp{−2(ϵ + α)Tk}νT(tk)Gν(tk). (66)

Case 1. When ϵ + α > 0, it can be obtained: 304

νT(t−1
)
Gν

(
t−1

)
≤ exp{−2(ϵ + α)Tk}νT(t0)Gν(t0)

≤ϖ exp{−2(ϵ + α)Tk},
(67)

Furthermore, from the Schur complement theory of Eq. (63), it follows: 305(
K(j) − H(j)

)T(
K(j) − H(j)

)
⩽ ϖ−1ū2

0 exp{−2(ϵ + α)Tm}G. (68)

Then, for ∀ν(t0) ∈ E{G, ϖ}, there exists ν(t−1 , x) ∈ £(KH) that holds. 306

This can be obtained from the linear matrix inequalities (64) and (62) 307

V(t1) =eT(t1)Ge(t1)

≤[(I + K)e(t−1 )−R(Ke(t−1 ))]
TG[(I + K)e(t−1 )−R(Ke(t−1 ))]

−RT(Ke(t−1 ))P1
[
R(Ke(t−1 ))− He(t−1 )

]
=χT

4 (t
−
1 )Oχ4(t−1 ) + πeT(t−1 )Ge(t−1 ) ≤ πeT(t−1 )Ge(t−1 ).

(69)

where χ4(t, x) = col{e(t), R(Ke(t))}. 308
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Using mathematical induction, from the linear matrix inequalities (64) and (62), it 309

yields that 310

V(tk) =eT(tk)Ge(tk)

≤[(I + K)e(t−k )−R(Ke(t−k ))]
TG[(I + K)e(t−k )−R(Ke(t−k ))]

−RT(Ke(t−k ))P1
[
R(Ke(t−k ))− He(t−k )

]
=χT

4 (t
−
k )Oχ4(t−k ) + πeT(t−k )Ge(t−k ) ≤ πeT(t−k )Ge(t−k ).

(70)

When t ∈ [tk, tk+1), the following inequality establishes according to equations (38) and 311

(70) 312

V(t) ≤ exp{−2ϵ(t − tk)}V(tk)

≤π exp{−2ϵ(t − tk)}V(t−k )

≤...

≤πk exp{−2ϵ(t − t0)}V(t0).

(71)

Similarly to Theorem 1, one obtains 313

V(t) ≤ π̃ exp
{(

ln π

TM
− 2ϵ

)
(t − t0)

}
V(t0), (72)

where π̃ = max
{

π−1, 1, π
TM
Tm

}
. 314

Thus, one can obtain 315

∥ν(t)∥ ≤

√
π̃λmax(G)
λmin(G)

exp
{(

ln π

2TM
− ϵ − α

)
(t − t0)

}
∥νi(t0, x)∥. (73)

Case 2. When ϵ + α < 0, it is obtained that 316

νT(t−1
)
Gν

(
t−1

)
< exp{−2(ϵ + α)TM}νT(t0)Gν(t0). (74)

Furthermore, from the Schur complement theory of Eq. (63), we have that 317(
K(j) − H(j)

)T(
K(j) − H(j)

)
⩽ ϖ−1ū2

0 exp{−2(ϵ + α)Tm}G. (75)

Thus, for ν(t0) ∈ E{G, ϖ exp{−2(ϵ + α)TM}}, there are 318

νT(t−1 )
(

K(j) − H(j)

)T(
K(j) − H(j)

)
νT(t−1 )

≤ϖ−1ū2
0 exp{−2(ϵ + α)Tm}νT(t−1 )GνT(t−1 )

≤ϖ−1ū2
0νT(t0)GνT(t0)

≤ū2
0,

and 319

RT(Ke(t−k ))P1
[
R(Ke(t−k ))− He(t−k )

]
≤ 0. (76)

Same as case 1, which gives 320

V(tk) ≤ πV(t−k ), (77)

It can be concluded that 321

∥ν(t)∥ ≤

√
λmax(G)

πλmin(G)
exp

{(
ln π

2TM
− ϵ − α

)
(t − t0)

}
∥ν(t0)∥. (78)
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Figure 1. Driven system with initial value ξ0 = [1.7, 2.4, − 3.3] (5) Chaotic behaviour

Case 3. When ϵ + α = 0, the analysis is similar to Theorem 1. Omitted. 322

4. Numerical Simulation 323

Consider a CNNs model of three neuron nodes (5) with the following parameter 324

settings 325

D = I3, E =

 1.2 −1.6 0
1.25 1 0.9

0 2.2 1.5

(5)

And the activation function F(ξi) = [F1(ξ1), F2(ξ2), · · · , Fn(ξn)]T ∈ Rn, Fi(ξi) = 326

0.5(ξi + 1| − |ξi − 1|), then Fi(ξi) satisfies Assumption 1. 327

Setting the initial state of the system as ξ0 = [1.7, 2.4, − 3.3], we can get the chaotic 328

behaviour of the driving system (5) as shown in Fig. 1 and dynamics trajectory of neuron 329

as shown in Fig. 2. 330

Next, in order to synchronise the drive system (5) with the response system (6), 331

consider the saturated pulse-interval controller (7), set the following parameters: α = 0.3, 332

K = −0.5I3. 333

Take α = 0.4, ϵ = −0.2, ϖ = 0.4, π = 0.9 and ς = 0.6. It can be introduced that 334

0 < α < ϵ, and according to Theorem 1 and the LMIs toolbox, it can be proved that the 335

linear matrix inequalities (15)-(17), (18), (19) are feasible solutions, and 336

G1 = 1.0 × 103 ×

 1.0497 −0.6549 0.7531
−0.6549 1.3659 −0.9377
0.7531 −0.9377 1.0417

,
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Figure 2. The ξi evolutionary trajectories with initial values of ξ0 = [0.8, 1.1, − 0.76]: (a) ξ1

evolutionary trajectory; (b) ξ2 evolutionary trajectory; (c) ξ3 evolutionary trajectory.
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Table 1. Comparison of control parameters in Figure 3.

Title Impulsive Gain Intermittent Gain Saturation Level

Fig3(a) -0.5 0.4 0.6
Fig3(b) -0.5 0.4 None
Fig3(c) -0.5 0.4 0.8
Fig3(d) 0 0.4 None

From Theorem 1, the synchronisation of the system (5) and the system (6) under 337

saturated impulse-intermittent control is shown in Fig. 3(a). In the case of an inter-pulse 338

controller without saturation, the driving system (5) and the response system (6) are 339

synchronised as presented in Fig. 3(b). When the saturation parameter is reduced, the 340

synchronisation of the drive system (5) and the response system (6) is shown in Fig. 3(c). 341

And the table(1) gives the details of the parameters to more clearly see the pattern of change 342

in the evolutionary trajectory of the error system when we fix a parameter and change 343

another parameter. This also better illustrates the feasibility of the controller we have 344

designed. At the same time, we can derive the estimation of the admissible set E1{G1, 2} 345

of the initial value conditions of the error system (14) as shown in red in Fig. 4. 346
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Figure 3. Evolutionary trajectories of the error system in the controller (7): (a) Evolutionary trajectory
of the error system with saturated impulse intermittent control; (b) Evolutionary trajectory of the
error system with impulse intermittent control (14); (c) Evolutionary trajectory of the error system
with varying saturation parameter impulse intermittent control. (d) Evolutionary trajectory of the
error system (14) without impulse action

Fixing the control parameters constant, by solving the LMIs (15)-(17), (63) and (63) in 347

Theorem 2, it can be seen that the linear matrix inequality has a feasible solution and the 348

initial value conditions of the error system (14) can be solved. (64) show that the linear 349
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Figure 4. Theorem 1 and Theorem 2 Initial Value Conditional Estimates of the domains of attraction
E1{G1, 2} and E2{G2, 2} where the red part represents the domain of attraction E1{G1, 2}, and the
blue part represents the domain of attraction E2{G2, 2}.

matrix inequality has a feasible solution and that the error system (14) The estimation of 350

the admissible set E2{G2, 2} of the initial value conditions is shown in blue in Figure 4. 351

G2 = 1.0 × 103 ×

 1.4641 −0.5240 0.7590
−0.5240 1.7305 −0.9476
0.7590 −0.9476 1.2149

.

From Fig. 4, it can be seen that the admissible sets of the error system when the initial 352

conditions are constant are E1{G1, 2} and E2{G2, 2} satisfy E1{G1, 2} ⊂ E2{G2, 2}. It can 353

be shown that the stabilization conditions Theorem 1 is much less conservative. 354

Removing the impulse control under the set parameters leads to a system evolution 355

trajectory as shown in the graph of Fig. 3(d) and the comparison of parameters as shown 356

in Fig3 (a) and Fig3 (d) in Table (1), where we can see that purely intermittent control is 357

unable to drive the response system to state synchronisation under this parameter. This 358

also concludes the feasibility of our designed saturated pulse intermittent controller. 359

5. Conclusions 360

The paper focuses on impulse synchronisation of CNNs based on intermittent control 361

and actuator saturation. The saturation function of the system is handled using a polyhedral 362

representation, and the local stability conditions of the error system and the domain 363

of attraction estimates are obtained by constructing suitable state-dependent Lyapunov- 364

Krasovskii generalised functions in combination with Jensen’s inequality, Wirtinger-type 365

inequality, Schur complementary elicitation, Lyapunov stability theory, and the comparison 366

principle. Finally, the validity of the obtained results is verified by numerical simulations. 367

Using both methods, a less conservative stability criterion was obtained. The experimental 368

simulation shows that the LMI calculation is simpler and consumes less energy. In our 369

future work, we will incorporate more practical hybrid controllers into the chaotic neural 370

network model, combine state-dependent saturated impulse control with event-triggered 371

control, adaptive control, etc., and study its dynamical behaviour. 372
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