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Abstract: This paper primarily focuses on the chaos synchronization analysis of neural networks
(NNs) under a hybrid controller. Firstly, we design a suitable hybrid controller with saturated
impulse control, combined with time-dependent intermittent control. Both controls are low-energy
consumption and discrete, aligning well with industrial development needs. Secondly, the saturation
function in the chaotic neural network is addressed using the polyhedral representation method and
the sector nonlinearity method, respectively. By integrating the Lyapunov stability theory, Jensen’s
inequality, the mathematical induction method, and the inequality reduction technique, we establish
suitable time-dependent Lyapunov generalized equations. This leads to the estimation of the domain
of attraction and the derivation of local exponential stability conditions for the error system. The
validity of the achieved theoretical criteria is eventually demonstrated through numerical experiment
simulations.

Keywords: Chaos Synchronization, Neural Networks, Actuator Saturation, Hybrid Controller, Lya-
punov Stability Control

1. Introduction

In current scientific research, chaotic neural network holds significant importance, no-
tably within the burgeoning field of artificial intelligence and its associated methodologies
[1-3]. This includes nonlinear modelling and exploration of complex systems, information
processing and pattern recognition, analysis and control of dynamic behaviour, expansion
of neural network learning theory, and artificial intelligence [4-8]. The importance of
chaotic neural networks for research is not limited to the field of neural networks, but
also includes a variety of fields such as complex systems science, information processing,
dynamics and behaviour analysis, and computational science. Therefore, the study of
nonlinear modelling and dynamical behaviour of chaotic neural networks is an important
part of the foundation for the development of chaotic neural networks.

It must be mentioned that the synchronisation problem is unavoidable when studying
the dynamic behaviour of chaotic neural networks (CNNs). The analysis of synchronisation
of nonlinear systems is an important direction that has received much attention in the
current research field and academic discipline. In many cross-cutting research areas such
as biological neural networks [9], learning systems [10], and data processing [11]. The
study of synchronous phenomena not only contributes to a deeper understanding of the
intrinsic dynamical behaviour of the system, but also provides potential opportunities for
practical applications. As the name implies, synchronisation of a class of NNs under a
certain network topology focuses on the dynamic behaviour of a group of neural nodes
that can gradually achieve synchronisation in the presence of an information interaction or
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in the presence of a controller steering. Due to the wide range of industrial applications of s
neural network synchronisation, many academic results on synchronisation of NNs have s
emerged in the past decade [12-15]. a7

In the study of synchronisation problems in neural networks, the question of how to
achieve fast synchronisation and how to use less energy to do has become a hot topic for s
researchers. Researchers and scholars have tried to solve the synchronisation problem of 4
neural networks using various control methods: Sliding mode control, impulse control, «
intermittent control, etc. Among the many control methods, impulse control is generally = «
regarded as a simple, classical and highly manoeuvrable control method for synchronisa- 4
tiondue to its uniqueness and ease of implementation. In recent years, many meaningful 4
research results have also been obtained on the design of impulse control protocols or s
impulse control gains for synchronisation of neural networks [16-20]. a6

On other hand, intermittent control has gained considerable importance over the last  «
decade, as it has the potential to solve complex control problems that cannot be adequately
tackled by traditional continuous control strategies. The significance of intermittent control 4
research lies in its ability to more effectively manage systems with uncertainties, constraints, s
disturbances, and nonlinear dynamics. Intermittent control is used in various industrial s
applications such as robotics, energy systems, biological systems, network systems and s
transportation, and has produced a number of significant research results [21-25]. Wu [21] =
studied the problem of fixed-time synchronization of nonlinear systems via intermittent s
control. Zhong [22] focused on the hybrid mechanism for networked control systems. s
However, very little research has been done on hybrid controllers. Utilizing the advantages s
of impulsive and intermittent control for hybrid control of nonlinear systems is more useful s
in engineering applications. 58

Finally, any physical actuator can be saturated with an upper power limit, due to s
hardware problems. If the actuator saturation phenomenon is ignored when designing e
a closed-loop industrial system controller, the performance of the controlled system will &
decrease when the controller reaches saturation, and in extreme cases, the controlled system e
may become unstable. Therefore, the phenomenon of actuator saturation is a factor that e
should not be ignored when studying closed-loop control systems. Many interesting results e
have also been obtained on actuator saturation [26-30]. Hu [26] takes full account of the
saturation phenomenon characteristics and uses the convex combination technique to &
represent the saturation control as a series of convex packet forms. Li combined impulse &
control with actuator saturation to obtain a number of columns of results on saturated
impulse control [31-34]. And two methods for solving the impulse saturation problem are &
proposed: the dead-zone nonlinear method and the polyhedral representation. Besides,
many scholars have also applied impulse saturation control theory to multi-intelligent =
body systems, complex networks and other related fields [35-38]. 72

Based on the above, this paper fully considers the effect of actuator saturation on 7
CNNs, and designs a hybrid controller containing impulse control and intermittent control 7
to study the synchronisation problem of CNNs. The main innovations are 75

* A hybrid controller containing impulse control and intermittent control is designed.
¢ The effect of saturation on the controller is fully considered, and the saturation function =
is processed by two methods to obtain a synchronisation criterion that reflecting the 7

saturation characteristics. 79
*  Using the linear matrix inequality (LMI) and some effective lemmas, a much less &
conservative synchronisation criterion is obtained. 81

The main structure of the paper is: section 2 gives a series of lemmas, assumptions,
and definitions; moreover, establishes an accurate mathematical model and proposes the e
controller. Section 3 gives the process of theoretical proof and presents two theorems. e
Section 4 verifies the obtained theoretical results with experimental simulations. Section 5 &
gives the conclusion. 8
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2. Preliminary and Mathematical Modeling

We give the necessary lemmas, assumptions and definitions to support the theoretical
prove of the paper in this section.

2.1. Lemmas

Some Lemmas are given as follows.
Lemma 1 [39] Let m > 1 be a given integer value, u, v € R™ denote two given vectors. If
[lv]]ec < 1holds. Then, for Yu € R™, the follow equation hold.

Sat(u) € co{Qu+ 2, v: 1 €11, 2"}, 1)

where, co denotes the convex hull after the transformation of the saturation function,
2,€9,9 =1-9, I[1, 2™] denotes {1,2,3,...,2"}.

Lemma 2 (Jensen’s Inequality) [40,41] There exist arbitrary constant matrices J = 37 > 0 €
R"*" and productable functions g(s), s € [a, b] such that the inequality (2) holds:

3( / ’ g(s)ds). @)

Lemma 3 (Wirtinger Correlation Inequality) [42] There exists a symmetric matrix ® and an
arbitrary differentiable function v(s), s € [a, b], such that the following inequalities hold:

T

-0 [ " @agos = ( [ oas)

, 46 26 — 66
(b—a)/ ol (s)®0(s)ds >ZT | + 46 —66 | X,
a x % 126 (3)
bt 26 —26
.T . >5T
/a /U 0" (5)B0(s)dsdv _ZZ{ . 26 ]22,

where X; = col{v(b), v(a), ;- ab v(s)ds} and X = col{o(b), 5~ ub v(s)ds}.
Lemma 4 (Schur Complement Lemma) [42] There exist three constant matrices 3; = 51T <
0,3 = 32T <0,33, 31— 33T 35 133 < 0 holds if and only if the following inequality exists.

3135} {3233}
[*32 <0, « 3 < 0.

Lemma 5 (Generalized Sector Condition) [44] There exist two vectors y = [v1, 72, ..., Tn] €
R” and p = [p1, g2, - pin) T € R" satisfying the following condition |p; — 7;| < fio, fig > 0.
The following inequality holds for any diagonal matrix P € R"*".

K(p)Plr(p) =7 <0,
where x () denote the nonlinear function.

2.2. Assumptions and Definitions

Assumption 1 There exists a nonlinear activation function f;(-) : R — R satisfying the
Lipschitz condition. In other words, there exists a constant &; > 0 such that Vz;, z € R,
one have
i(z1) — fi(z
Z1 — 2o

Assumption 2 Let Ty, T, be the constants,which Ty; > T, > 0 such that the impulse
time sequence {t;} € S(Ty, Tapr), where S(Ty,, Tyr) denotes a class of time series {t;} and
satisfies 0 <ty 1 — ty = Tk € [T, Tm), k € N.

Assumption 3 Given the constant .7, it is guaranteed that % exists in the impulsive
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interval (tg, fry1) and has 0 < J} < tgyq — b < 0. 118
Definition 1 Let x and 7 be positive constants. And if every solution of v(t) in the error 19
system satisfied 120

lo(#)] < xe™ ™ [o(to) ||, VE > to.

Then, the error system is said to exponentially stable. 121
Definition 2 The region R4 denotes the domain of attraction of the error system about the 1
origin, where 123
Ry = {U e R" :limo(t,v(ty)) = 0}.
t—o0
2.3. Model Description 124
In the paper, the following NN is considered 125
§(t) = =DE(t) + EF (1)) + 1(1), )

where, &(t) = {¢1(t), & (t), ..., & (t)}T € R" denotes the state variable of the ith neuron 1z
node at time point . D € R"*" and E € R"*" are denoted as connection weighting 1
coefficient matrices. F(&) € R" denoted as the activation function of each neuron node. 1
I(t) = [L(t), I(t), ..., [,(t)]T € R" denoted as external inputs to the system. 129

Moreover, in order to explore the synchronization problem of NNs with intermittent 13
impulse control for the drive system (5), the following response system with intermittent 1
impulse saturation controllers is designed in this section. 132

@(t) = —Dew(t) + EF(w(t)) + U+ I(t), ()

where U denotes for the designed intermittent saturation impulse controller. The w(t) 1
denotes the state variable of the corresponding system. In addition, the matrices D, E, the = 12
activation function F(w(t)), and the external input I(t) satisfy the form described in the 13
system (5), respectively. 136

The primary objective of the paper is to propose an appropriate hybrid control strategy 17
consisted of saturation impulsive control and intermittent control to propel the system (6) 13

with the system (5) to be synchronized. 139
Based on the above considerations, the following hybrid controller is designed in this 10
paper 141
U =U(t) + U(t), )
for which 142
U(t) = —exp{—a(t — i)} 7 () (E(t) — w(b)), 8)
And, the U(t) denotes the term of intermittent control of the proposed hybrid controller s
from paper [23]. Moreover, there are 144
A W, e <t <t + T, keRy
W (t) = )
0, ty + Jk < t < tq1,
and the term of the saturation impulsive control in the hybrid controller is defined as s
follows 146
U(tx) = Sat{u(t, )}o(t —ty), (10)

where « is the given scalar and # (t) is the control gain vector, where # € RY . {t;} 1
denotes the sampling time sequences and satisfies the following: 0 <ty <t < -+ <t < 1

,111’1’1 tk:+00. 149
t— 400
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Suppose that Sat{u(t)} = [Sat{uq(t)},--- ,Sat{u,(£)}]T: R" — R" is the Standard 10
Vector-valued Saturation Function (SVSF) with saturation level iy > 0. 151

Sat{u;(t)} = sign((u;(t)) min{do, |u;(t)|}

where i1y denotes the saturation level of the saturation function, u;(t) = K{g;(t) —w;(t)}, K € 1=
R™ " is the gain constants matrix of saturate impulsive. 153
Remark 1 The monitoring and measurement of the system state is performed at fixed sam- 15
pling points, and the instant of impulse occurrence is also performed at the above sampling s
points in the hybrid controller (7). The presence of a state-dependent exponential variable s
exp{—a(t — t;)} in the intermittent control allows the controller to be better controlled s
according to the state of time, and only in the [, t; + ) region the intermittent controller 15

is activated. 159
Remark 2 The part of intermittent control (8) can be converted to periodic intermittent 1
control R 161
Ui(t), to+ kTt <t <to+ (k+a)T,
(1) = a1

0, to+ (k+a)t<t<ty+ (k+1)T.

162

Obviously, the above intermittent control protocol (8) is a classical frame protocol that 16

can represent both periodic and non-periodic forms. 164
Remark 3 In response systems, a class of hybrid controllers consisting of two control s
strategy is considered. Where the intermittent controller incorporates the exp{ —a(t — t;)} 1
term, it can be seen that the gap control is related to the current time state and the pulse 1
moment, which can also be reflected in the saturated impulse intermittent controller e
designed in this paper when the control amplitude is continuously adjusted based on the 16
feedback from the pulse state and the intermittent control state. 170

3. Main Results 1

Some sufficient criterion for the error system to converge to the origin are given 1
using linear matrix inequalities, Lyapunov-Krasovskii generalized methods and inequality 17
techniques in the section. Two main approaches to deal with the saturation term is utilised: 17
the first is the sector nonlinear modeling approach, which uses the dead zone nonlinearity s
instead of the saturation term, and the second is for the polyhedral representation approach, 1
which represents the saturation function as a convex package. 177

3.1. Synchronization analysis based on PRs 178
Based on Lemma 1, it exist a matrix H € R"*" such that w(t, ) € M = {w € R" : 1
‘H(Z-)a)‘ < iip},Vi € [1,n].Then, one can claimed that Sat{ 7w (t, )} € co{ ZKw(t; )+ o

7, Hw (t; ) }. Therefore, it can be obtained 181
21’1
sat{Kw(ty)} = Y6/ (2K+ 27 H)w(t) (12)
=1

for which ijil G =1L0< At ) keN, je[1,2"].v(t,x) = &i(t) — wi(t),e > Ois the 1=
error state variable of the driver system (5) and the response system (6). According from 1
the (7), we can definite the hybrid controller U;. Substituting U; into (6) yields that 184

v(t)
v(t) = —Dv(t) + EF(v;(t)), t € [te + Tk tisr),
o

Av(tei1) = Z;GJ(@]K‘F QfH)V(tkjrl)r t=tri1
=

Du(t) + EF(vi(t)) +exp{—a(t — k) }#v(ty), t € [t, tx + Fk),
(

(13)
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where v(t) = [v1(t), va(t), -+, va(H)]T, (V( ) = F(&(t)) — Flw(t)), 165
Mlter) = v(Ef ) — Vi), v(t) = v(E7) = Jim (5, ), o(5) = (o).
Let e(t) = exp{at}v(t). Then the error system converts into k 187

é(t) = (al — D)e(t) + EF(e;(t)) + #e(ty), t € [t, t + T3,

é(t) = (aI — D)e(t) + EF(ei(t)), t € [tk + Tk, tes), 19)

Ne(tiyr) = zznlg, (%K n QJ*H) e(tk;l), b=ty
=

Remark 4 The whole error system (14) can be described as three parts: an intermittent s
control part in the interval [t;, t + ), a non-additive controller part in the interval s
[ty + Tk, try1) and a saturated impulse control part in the time instants t = t; ;. 100

Theorem 1. For given constants Tpy > Ty 2 0, @ > 0, 1 > 0,0 > 0,€ < 0,6, € [0,1]
and ijll ¢, = 1 and given matrices H, K, #',D € R"™". Suppose that exist diagonal matrices 1
P e R™" matrices G > 0, n x n matrices Hy, H, 11, §2, &, i =1, ...,6. Then, the LMIs hold 103

for any initial value condition v(ty) € E{G, @}, Ty € {Tw, Tm}, j € I[1, n], 7 € I[1, 2"]. 104
On le}
= 0, 15
e (15)

195

Iy Ihp Ihs Ihy Ils

*  IIp Iz Il Ilps
2A(Ty)=| » x Il Iy IIx| <O, (16)
* * * H44 H45
* * * * 55
196
Ih Inp Iz Iy Iis
x Iy Iz Ipg Ins
.sz(Tk) = * * F33 F34 F35 <0, (17)
* * * F44 F45
* * x x Iz5
1) Ifa > —€,0 < 1t < exp{2(e + ) } Tyu, LMIs (15)-(17) hold. 107

g Hj >0 (18)
*x @idexp{—2(e+a)Ty}| =~

198
T
2" -
* -G
Then the system (14) achieves stability at an exponential decay rate — M +e+a 2 fO<a<
—€,0 < 7w < exp{2(e +a)} T, linear matrix inequality (15)-(17), (19) and the following LMIs 20

hold. Then the system (14) achieves stability at an exponential decay rate — ln—” +€+a. 201
HT
) >0, (20)
*x  oigexp{—2(e +a)Ty}

() Ifa+e = 0, there exists a sufficiently small constant B € (0, —e)so that 0 < T < 2
exp{2(e + a) Ty } holds. 203

Then, the system (14) achieves stability with an exponential decay rate (—g}—;, - g}—; +e€).
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In other words, for all initial values in the ellipsoid £{G, @}, the response system (6) is locally
exponentially synchronised with the driving system (5) under the hybrid controller. In addition the

205

206

207

estimated domain of attraction is Ry = £{G, @}.

Q11 =G + Tysym{n1 } + H1, Q12 = =T — Tmi — Ha,
Qo =Tmsym{n1} + Hi,

8
ITy; =4€G — 2sym(n1) — meﬁl — 46y 4+ 244 (al — D) + 27 (el — D),

4
ITyy =211 + 215 — mesl +2(al — D)Tety] +2(al — D)Lt + 2247,

2 12 4
ITy3 =24 E + 2A,E + 2PP, Iy = 7 O1+ Gy,
M M

8
115 =44 — 25271 — 2274, 1, = _Tiqjl — 2sym(172) + 22/3%,
M
12
I3 =2E + 2a4E, Ty = 701 ITys = =20y — 29, II33 = —2P, 134 = 0,
M
24
I35 =2Ecty +2Ecf, Ty = *Tfﬁl —46;, 115 =0,
M

Ils5 =

TmT 4
Ag Ky — 20t — 207, Tyq = ITyq + 4€Ty, [sym(m) + 61+ 2@4,
M
2
Ihp =11y + 4€T {Tﬁl —1 - ’72} , Iz = I3,
M
6
Fl4 :Hl4 + 4€Tk l:@l e 262:| ,
Tm
T

4
Iis =115 + 4€Tksym(171), Iy = Iy + 4€Ty [sym(nz) + Mﬁl] ,

6
I3 =I1p3, Ip4 = Iy + 4€Ty [—T@],
M
o5 =ITp5 — 4Ty [y +172]", T3z = I3, T34 = 0,

12
I35 =135, Ty = T4y + 4€Tj [TM@ "‘262]/ 5 =0,

T
I55 =I55 + €T (2H, + 7M)

208

209

210

211

2
Proof of Theorem 1. Consider the Lyapunov-krasovskii functional consisting of three part
as follow
V(t) = Vi(t) + Va(t) + Vi, (21)
where,
Vi(t) =T (t)Ge(t), (22)
t ot
Vo(t) = To(t) / ¢ (s)H1é(s)ds + To(t) / / ¢t (s)Hoeé(s)dsdr, (23)
ti ty JT
V() = Ta(t)xi () Bxa (1), (24)

for which Ty (t) = t — ty, To(t) = txy1 —t, x1 = cole(t), e(t;) and

B— [’71+’71T —771—172]'
* 2+
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Firstly, when t € [t;, t¢, 1), based on Lemma 2 and condition (15), it can be shown that 2
V(t) > 0holds. When Ty + T, < Ty there are 215

0 >eT(t)ge(t) + Tz(t)xlT(t)Bxl(t) 1 [ T () Hae(s)ds
el (Ge(t) + =" (t)Ge(t) + To(t)x] () Bxa(t).

/ s)dsH / é(s)ds

eT(1{G + Tysym{n} + HaJe(t) — T%eT(t){TMm T Tagga + HaYe(t)

+ TLe (t){ Tamsym{m1 } + HqYe(ty)
M

T
>l (Hou(t) > 0.
M
Next, state evolution trajectories are estimated for each interval: the intermittent 2

control interval t € [t, # + ) and the uncontrolled interval ¢ € [ty + , tri1). a7
When t € [ty, t + ), 218

D*Tu(f) /t / §)Haé(s)dsdt
k T

=T,(t /tk/T s)Hoé(s)dsdt + To(t )/t: [;t /TtéT(s)’Hzé(s)ds}

+Tz(t){t'/ ¢" (s)Haeé(s)ds — fy /téT(S)Hzé(S)ds} )
=(t — 1) Ta(D)eT () Hae(1) /tk /T §)Had(s)dsd.
Then, 210
DtV(t) =D"Vy(t) + DTVa(t) + DT Vy
=2¢"(£)Geé(t) + Ta(t)e" (t)Haé(t) — /t T (s)Hae(s)ds
(26)
IO Ta()E () Haé () /tk /T §)Haé(s)dsdt
+2Ta(t)x1 (HBX1(t) — x1 (H)Bxa (#).
It can be derived 20

DYV () +2eV(t) =27 (£)Gé(t) + 2ee” (t)Ge(t) + Ta(t)eT (t)Hqé(t)
4 (2eTy(t) — 1) /t: ¢ (s)Hré(s)ds
+ Th(t)Ta(t)e )'T( t)Haé(t) (27)
+ (2eTy(t) - 1) /tk /T §)Haé(s)dsdT
+2D ()] (DB (1) + (2eTa(t) — 1)xi (H)Bxa ().

Divide the formula (27) into parts and estimate. 2

2Ty (t)x1 () B (t) =2Tae” (£) (11 + y1 )é(t) — 2Tae” (t) (1 + 12) T é(t). (28)
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According to the Wirtinger-type inequality of Lemma 3, one can obtained

Gens(t) - 1) [ syphetsyis < PO a),  e9)
by Tm
t t
eT(t) 1) [ [ (o) Hae(s)dsdr < 2eTa(t) ~Dxs(6) Aosls), (30)

where x, = col{e(t),e(tx),p(t)} and x3 = col{e(t), p(t) },p(t) = %(t) fti e(s)ds.
The matrices A1 and A, are transformed into

4, 28, —6@, B
Al = * 461 —6@1 ’ A2 = |:2f2 22Q5®2:|
xox 128 2

Using (28), (29) and (30), the equation (27) can be transformed into

DYV (t) 4+ 2eV (1) <2eT (£)Geé(t) + 2ee” (t)Ge(t)

+(2eTa(t) = 1)x{ () Bxi(t) + Ta(t)e" () Hié(t)

+%T1éT(t)H2é(t) - %TzéT(t)HQé(t)

31
LTl () + n)e(t) — 2Tl () 0y + ) ety O
+%X2(S)TA1X2(S)
M
+(2eTa(t) — 1)x3(s) T Aaxs(s).
For any n x n matrix &7, i =1, 2, 3, one has
20e" (t).ch + &' (t)aty + e (ty) ] 2

x[(aI — D)e(t) + EF(e;(t)) + #e(ty)(t) — é(t)] =0
When t € [, fiy1), the following inequality is similarly obtained
DYV (t) +2eV(t) <2el ()Ge(t) + 2ee (t)Ge(t)
+(2eTy(t) — V)xi () Bxa(t) + Ta(b)é" (£ x) Haé(t, x)
+%MT1éT(t)H2é(t) + %TzéT(t)Hzé(t) (33)
+2Toe" (£) (i1 + 171 )é(t) — 2Tae” (1) (111 + 172) " é(t)

+(2€T2T<2_1>xz<s>wz<s> + (26Ta(t) = 1)x3(5) " Asita s).

For any n x n matrix < with i = 4, 5, 6, the following is established

20e (t)ty + e" ()5 + T () )

. (34)
x[(al — D)e(t) + EE(ei(t)) — é(t)] = 0.

By assumption 1, there exists an arbitrary adapted dimensional diagonal matrix P, > 0
such that the inequality is established:

2E7 (e(t))Pae(t) — E(e(t))] > 0. (35)
According to the equation (31)-(35), the following is established

Ti(t) Ta(t)

+ < T
DYV (1) +2eV () < x7() | = -

2A(Ty) + 25(Ti) | x(t). (36)

222

223

224

225

226

227

228

229

230

232
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where x(t) = col{e(t), e(ty), F(ei(t)), p(t), é(1)}.
From the linear matrix inequalities (LMIs) (16) and (17), it can be obtained

DV (t) 4 2eV(t) <0, (37)
where
V(t) < exp{—2e(t —t;)}V(tx), t € [tr, tig1), (38)
and
el (tri1)Ge(try1) < exp{—2eTi}e’ (t)Ge(ty). (39)

It is estimated that at the saturation impulse moment t = 1,1, by ¢;(t) = e*{¢;(t) —
wi(t)}- . .
V' (tk1) GV (ter1) < exp{—2(e +a)Tebv™ (t)Gv(te). (40)

The stability analysis of the system (14) is discussed in three areas,accordingly.
Case 1. When € + a > 0, the following can be obtained:

vI(1)Gv () <exp{—2(e + &) Ti}v" (to) G (to)

(41)
<wexp{—2(e+a)Tpu}.

where v(t]) € £{G, @exp{—2(e +a)Tu}}.
Based on the Schur complement theory obtained from the condition (18), it can be
shown that
H Hj) < @ liagexp{—2(e + ) Tu}G. (42)

The trajectory of the error-system is
V(t1) =el (t1,x)Ge(t1, x)
T 2" T 2" B
—eT (17, ) ;g] (1+2K+2 H) Q;g] (1+ 2K+ H)e(ty) 49
<me' (t1,x)Ge(t1,x) = mV(t;).
Since e(t) = exp{at}v(t) and the condition (19), the following holds
vI(t)Gv(t) < vl (1) Gv(t)). (44)
Using the same method, when t; = t, is obtained:

vI(ty)Gv(ty) <exp{—2(e +a)Ti}v" (t1)Gv(h)
< exp{-2(e + )T} (1) G0 (1)) )
<wexp{—2(e+a)Tu}.

Using mathematical induction,one can be drawn:
Vtior) <V (t). (46)
From (18), it is possible to derive the
V(ty) <V (k). (47)

Furthermore, based on the assumption 3, we can get:

t—tp t—tp
—-1<k<
Ty T

,k € Np. (48)
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Finally, from equations (38) and (47), it follows that

V(1) <exp{—2e(t — )}V (k)
<mexp{—2e(t — )}V (t;)

IN

k-1

<7t exp{—Ze [(t —t)+ ) T,
s=1

b @

— it exp{—2e(t — t0)}V (to)

< Lexp{—2e(t — 1)}V (to).

In summary, based on equations (48) and (49), this means that

V(t) < frexp{ (1“" - 2e> (t— to)}V(to), (50)
Tm
where 7 = max{n~1, 1, 71%/{}
Generally speaking,
idmax(G) Inm '
i) < ) e e (G e =)t t0) fIutto)l. 61

Case 2. When € + & < 0, we can easily get:

VT(tk_H)gv(tk_H) <exp{—2(e +a)Tn W ()G (o). (52)
Thus, for Vv;(ty) € £{G, @}, it follows that
vI ()G () < exp{—2(e +a)Tp}v" (to)Gv(to). (53)
Using the Schur complement theory with the condition (17), we have that
H(, Hj) < @ 'igexp{—2(e + )T} G. (54)

Similar to the proof process for case 1, using mathematical induction, we can conclude
the following

V(t) <rttexp{—2e(t — to)}V(to)
<ml exp{ (1;,”T - 26) (t—to) }V(to). &3)

M

In summary, it can be concluded that

lv(H)] < m X exp{ (;nnz —€— 1x> (t— to)}||vi(t0)|\. (56)

Case 3. When € 4« = 0, based on equation (37), there exists a very small constant
B € (0, —e) which, due to the continuity of (37), makes the following hold

DTV(t)+2(e+B)V(t) <0,

this means
V(t) <exp{—2(e+B)(t —tx)}V (), t € [tr, try1)- (57)
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Thus, similar to case 1, one can infer that 263
V(t) <V (t), t € [t, tk+1). (58)
Since (57) and (58), it follows that 264

vl < 52 el (7 - ) (- ) bt

D 265

Remark 5. In the proof process, a Lyapunov-Krasovskii generalised function re- s
lated to the time state is devised, and the B matrix term is widely used in existing 267

proofs in the literature. In addition, we set two integral terms T,(t ft s)H1é(s 268
and T (t f b f (s)Hoeé(s)dsdT to get more relaxed conditions. 269
When the 1nput saturation term is ignored, the error system (14) can be rewritten as  2n0
¢i(t) =(aI — D)e(t) + EF(e;(t)) + #e(ty), t € [t, tx + F),
¢i(t) =(aI — D)e(t) + EF(ei(t)), t € [tk + T, tis), (59)

Ae(tk+1/x) :Ke<tk_+1)/ t= tk+l'

Corollary 1. For a given constant Tyy > T, 20, @ >0, > 0,2 > 0,0 < w < e2Tmleta)
and a given n x n dimensional matrix K, #" and D. Suppose that for Tx € {T;;, T}, there 2
exist diagonal matrices P, € R"*", matrices G > 0, n x n matrices Hi, Hp, 171,12 € R™", 23
<, i =1, ...,6, linear matrix inequality (15)-(17), the following inequality is established 274

-6 (1+K)7g
<0.
N g <0 (60)
Then, the trajectory of the dynamical system (59) achieve stability at — 1“ 2 o tatedecay s
rate exponentially. 216
3.2. Synchronisation analysis based on SNA a7

By Lemma 4, the dead-zone nonlinearity Z(U(t;)) = U(t;) — Sat{U(t;) } is defined, 2
where Z(U(ty, x)) = [Z(U1(tg, x)), Z(Ua(ty, x)),- -+, Z(Un(ty, x))]. Thus, the error 2

system is transformed into 260
¢i(t) =(al — D)e(t) + EF(ei(t)) + #e(t), t € [tr, te + F)
¢i(t) =(al = D)e(t) + EF(ei(t)), t € [t + Th tesn), (61)

Ife(t, ) € £(KH), based on Lemma 4, the following condition establishes with respect to  2s:
nonlinear functions 282

AT (Ke(tr,,)) Py |2 (Ke(t,,)) — He(t,,)] < 0. 62)

Theorem 2. Given the constants Ty > Ty, 2 0, @ > 0, 1 > 0, &« > 0, and € < 0, and 23
given the matrices H, K, #',D € R"". Suppose that there exist dimensional diagonal matrices 2
P € R™" > 0and P, € R™" > 0, matrices G > 0, n x n dimensional matrices Hy, Ho, 171, 2
ﬂndﬂz,ﬂfi,izl,...,ﬁ 286

Then, for any of initial value v(ty) € E{G, @}, Ty € {Tm, Trm} the following conditions 2
hold: 288



Version December 26, 2023 submitted to Journal Not Specified 13 of 21

(1) ifa > —€,0 < 11 < exp{2(€ + a) Ty }, linear matrix inequality (15)-(17), the following linear
matrix inequality holds

g (Kgy = H)"
[* o MBexp(-2(e + )Ty} = (63)
0= [(21 gj > 0. 64)

The error system (61) would achieve stability with an exponential decay rate — él}—; +e+a

@ If0<a < —€ 0 < <exp{2(e + a)Ty}, linear matrix inequality (15)-(17), (64), and the
following linear matrix inequality holds

g (Kgjy = Hp)"
[* wilﬂfo) ex]p{—Z(]e—i-oc)TM} 2 0. (65)

The error system (61) would achieve stability at an exponential decay rate — ;“T; +e+a

(3) If & + € = O, there exists a sufficiently small constant p € (0, — €) such that 0 < 7w <
exp{2(e + a) Ty, } holds. Then the error system (61) would achieve stability with an exponential
1 In
decay rate (=3, —o; +€)-
That is, for all initial errors E{G, @} in the ellipsoid, the response system (6) and the driving
system (5) are locally exponentially synchronised under hybrid control. Therefore, the estimated

domain of attraction is Ry = £{G, @}.
Proof of Theorem 2. The above part of the proof is similar to Theorem 1 and is omitted. If

the linear matrix inequalities (16) and (17) hold.
Then, since e(t) = exp{at}v(t) when

vt (tl;l) Qv(t,;l) < exp{—2(e +a)T vl (t)Gv(ty). (66)
Case 1. When € + a > 0, it can be obtained:

vI(1)Gv () <exp{—2(e +a)Ti}v" (to)Gv(to)

(67)
<wexp{—2(e + )Ty},
Furthermore, from the Schur complement theory of Eq. (63), it follows:
T -1:2
Then, for Vv(tg) € £{G, @}, there exists v(t;, x) € £(KH) that holds.
This can be obtained from the linear matrix inequalities (64) and (62)
V(tl) :eT(tl)Qe(tl)
U1+ Ke(ty) —#(Kelty DTG+ Kpelty) = ket )]

— %" (Ke(t] )Py [%(Ke(t)) — He(t] )]
=X1 (t7)Oxa(ty) + me’ (t7)Ge(t) < me” (t7)Ge(ty).

where x4(t, x) = col{e(t), Z(Ke(t))}.
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Using mathematical induction, from the linear matrix inequalities (64) and (62), it
yields that

V(te) =e” (te)Ge(t)
<[(T+K)e(ty ) — Z(Ke(t )] GL(I + K)e(t; ) — 2(Ke(t;))]
— 2" (Ke(t; )Py [2(Ke(t)) — He(t)]
=x1 () Oxa(ty) + mel (1 )Ge(ty ) < me' (t)Ge(ty ).

(70)

When t € [ty, t;1), the following inequality establishes according to equations (38) and
(70)
V() <exp{—2e(t — 1)}V (t)

<rrexp{—2e(t —tx) }V(t,)

<.. @1
<7 exp{—2e(t — to) }V (to).
Similarly to Theorem 1, one obtains
V() < 7 Xp{ (1“” 26) (t— to)}V(to), 2)
Ty
m
where 77 = max{nl, 1, tTm }
Thus, one can obtain
TAmax(G) { <ln7r ) }
v € ]| — 2L ex — —e—a|(t—t vi(to, x)||. (73)
ol < /5 et 31 (t — to) Hvs(to, )]
Case 2. When € + a < 0, it is obtained that
vI(t)Gu(t]) < exp{—2(e + &) Ti }v" (to)Gu(to). (74)
Furthermore, from the Schur complement theory of Eq. (63), we have that
Koy~ Hp) (Ko —Hp) <o '3 2 Tu}G (75)
( () ~ (j)) ( (i)~ <f)) S @ dyexp{—=2(e +a)T}g.
Thus, for v(ty) € E{G, @exp{—2(e +a)Tn}}, there are
T
T (1~ T(1—
v (f >(K<j> - H(f)) (Ko) - H('))V ()
<@ 'ufexp{—2(e +a)TutvT (t7)GVT (t])
<@ a3t (ty)GvT (1)
SIZOI
and
" (Ke(t;))P1[%(Ke(t;)) — He(t; )] <O0. (76)
Same as case 1, which gives
V(t) < V(L) (77)

It can be concluded that

Amax(G) Inm
Ivio)] < = exp{ (35 —e =) (= t0) vt )
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Figure 1. Driven system with initial value ¢y = [1.7, 2.4, — 3.3] (5) Chaotic behaviour

Case 3. When € + a« = 0, the analysis is similar to Theorem 1. Omitted. O

4. Numerical Simulation

Consider a CNNs model of three neuron nodes (5) with the following parameter
settings

12 -16 0
D=L E=[125 1 09|0)
0 22 15

And the activation function F(&) = [F (&), Fa(&), -, Fu(&n)]T € R", FE(&) =
0.5(¢; + 1| — |& — 1), then F;({;) satisfies Assumption 1.

Setting the initial state of the system as ¢y = [1.7, 2.4, — 3.3|, we can get the chaotic
behaviour of the driving system (5) as shown in Fig. 1 and dynamics trajectory of neuron
as shown in Fig. 2.

Next, in order to synchronise the drive system (5) with the response system (6),
consider the saturated pulse-interval controller (7), set the following parameters: « = 0.3,
K = —-05L.

Take v = 04, ¢ = —0.2, ® = 04, 7 = 0.9 and ¢ = 0.6. It can be introduced that
0 < a < g, and according to Theorem 1 and the LMIs toolbox, it can be proved that the
linear matrix inequalities (15)-(17), (18), (19) are feasible solutions, and

1.0497 —0.6549 0.7531
G1=10x10°x |—0.6549 13659 —0.9377],
0.7531 —0.9377 1.0417
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Figure 2. The {; evolutionary trajectories with initial values of ¢y = [0.8, 1.1, — 0.76]: (a) {1
evolutionary trajectory; (b) ¢, evolutionary trajectory; (c) {3 evolutionary trajectory.
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Table 1. Comparison of control parameters in Figure 3.

Title Impulsive Gain Intermittent Gain Saturation Level
Fig3(a) -0.5 0.4 0.6
Fig3(b) -0.5 0.4 None
Fig3(c) -0.5 04 0.8
Fig3(d) 0 0.4 None

From Theorem 1, the synchronisation of the system (5) and the system (6) under
saturated impulse-intermittent control is shown in Fig. 3(a). In the case of an inter-pulse
controller without saturation, the driving system (5) and the response system (6) are
synchronised as presented in Fig. 3(b). When the saturation parameter is reduced, the

synchronisation of the drive system (5) and the response system (6) is shown in Fig. 3(c).

And the table(1) gives the details of the parameters to more clearly see the pattern of change
in the evolutionary trajectory of the error system when we fix a parameter and change
another parameter. This also better illustrates the feasibility of the controller we have
designed. At the same time, we can derive the estimation of the admissible set £ {G1, 2}

of the initial value conditions of the error system (14) as shown in red in Fig. 4.

0.5
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°

(a)

0.5

)
- = =06, |
(06,00
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— €, 0)
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(0 (d)

Figure 3. Evolutionary trajectories of the error system in the controller (7): (a) Evolutionary trajectory
of the error system with saturated impulse intermittent control; (b) Evolutionary trajectory of the
error system with impulse intermittent control (14); (c) Evolutionary trajectory of the error system
with varying saturation parameter impulse intermittent control. (d) Evolutionary trajectory of the
error system (14) without impulse action

Fixing the control parameters constant, by solving the LMIs (15)-(17), (63) and (63) in
Theorem 2, it can be seen that the linear matrix inequality has a feasible solution and the
initial value conditions of the error system (14) can be solved. (64) show that the linear
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Figure 4. Theorem 1 and Theorem 2 Initial Value Conditional Estimates of the domains of attraction
&1{G1, 2} and & {G,, 2} where the red part represents the domain of attraction £1{G1, 2}, and the
blue part represents the domain of attraction £;{G», 2}.

matrix inequality has a feasible solution and that the error system (14) The estimation of
the admissible set £,{G,, 2} of the initial value conditions is shown in blue in Figure 4.

14641 —0.5240 0.7590
G, =1.0x10% x |—05240 1.7305 —0.9476].
0.7590 —0.9476 1.2149

From Fig. 4, it can be seen that the admissible sets of the error system when the initial
conditions are constant are £1{G;, 2} and £,{G,, 2} satisfy £1{G1, 2} C £{G, 2}. Itcan
be shown that the stabilization conditions Theorem 1 is much less conservative.

Removing the impulse control under the set parameters leads to a system evolution
trajectory as shown in the graph of Fig. 3(d) and the comparison of parameters as shown
in Fig3 (a) and Fig3 (d) in Table (1), where we can see that purely intermittent control is
unable to drive the response system to state synchronisation under this parameter. This
also concludes the feasibility of our designed saturated pulse intermittent controller.

5. Conclusions

The paper focuses on impulse synchronisation of CNNs based on intermittent control
and actuator saturation. The saturation function of the system is handled using a polyhedral
representation, and the local stability conditions of the error system and the domain
of attraction estimates are obtained by constructing suitable state-dependent Lyapunov-
Krasovskii generalised functions in combination with Jensen’s inequality, Wirtinger-type
inequality, Schur complementary elicitation, Lyapunov stability theory, and the comparison
principle. Finally, the validity of the obtained results is verified by numerical simulations.
Using both methods, a less conservative stability criterion was obtained. The experimental
simulation shows that the LMI calculation is simpler and consumes less energy. In our
future work, we will incorporate more practical hybrid controllers into the chaotic neural
network model, combine state-dependent saturated impulse control with event-triggered
control, adaptive control, etc., and study its dynamical behaviour.
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