
Citation: Yaghoobi, T.; Leung, M.-F.

Modeling Software Reliability with

Learning and Fatigue. Mathematics

2023, 11, 3491. https://doi.org/

10.3390/math11163491

Academic Editor: Vassilis

C. Gerogiannis

Received: 28 June 2023

Revised: 8 August 2023

Accepted: 10 August 2023

Published: 13 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Modeling Software Reliability with Learning and Fatigue
Tahere Yaghoobi 1,* and Man-Fai Leung 2

1 Department of Computer Engineering and Information Technology, Payame Noor University,
Tehran 19395-4697, Iran

2 School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University,
Cambridge CB1 1PT, UK; man-fai.leung@aru.ac.uk

* Correspondence: t.yaghoobi@pnu.ac.ir

Abstract: Software reliability growth models (SRGMs) based on the non-homogeneous Poisson
process have played a significant role in predicting the number of remaining errors in software,
enhancing software reliability. Software errors are commonly attributed to the mental errors of
software developers, which necessitate timely detection and resolution. However, it has been
observed that the human error-making mechanism is influenced by factors such as learning and
fatigue. In this paper, we address the issue of integrating the fatigue factor of software testers
into the learning process during debugging, leading to the development of more realistic SRGMs.
The first model represents the software tester’s learning phenomenon using the tangent hyperbolic
function, while the second model utilizes an exponential function. An exponential decay function
models fatigue. We investigate the behavior of our proposed models by comparing them with similar
SRGMs, including two corresponding models in which the fatigue factor is removed. Through
analysis, we assess our models’ quality of fit, predictive power, and accuracy. The experimental
results demonstrate that the model of tangent hyperbolic learning with fatigue outperforms the
existing ones regarding fit, predictive power, or accuracy. By incorporating the fatigue factor, the
models provide a more comprehensive and realistic depiction of software reliability.

Keywords: software reliability growth model; non-homogeneous Poisson process; learning curve;
fatigue; imperfect debugging

MSC: 68M15

1. Introduction

Due to the ubiquitous use of software in our daily lives, accurately predicting the
number of software errors has become crucial, particularly in critical applications. Software
reliability growth models (SRGMs) based on the non-homogeneous Poisson process (NHPP)
have emerged as widely adopted tools for this purpose [1] (Pham, 2006). These models
allow for the numerical estimation of the remaining errors in software and provide insights
into its reliability. To address the complexities of the software development process, SRGMs
have evolved to incorporate various factors, including the experience, skill, and learning of
software developers [2].

Research has highlighted the significant impact of fatigue on the human error-making
process [3]. In particular, studies have demonstrated that fatigue can trigger attention
switching in individuals, typically occurring after approximately 40 min of continuous ac-
tivity. This fatigue-induced attention shift is attributed to a gradual reduction in dopamine
secretion, eventually reaching a threshold that disrupts attention. Furthermore, it has been
observed that other neurotransmitters cannot adequately compensate for the decline in
dopamine release. To capture this phenomenon, researchers have modeled the decrease in
dopamine secretion rate as an exponential decay process towards a specific limit [3].

Mathematics 2023, 11, 3491. https://doi.org/10.3390/math11163491 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163491
https://doi.org/10.3390/math11163491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7753-0136
https://doi.org/10.3390/math11163491
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163491?type=check_update&version=1

Mathematics 2023, 11, 3491 2 of 20

Software debugging is the process of identifying and removing errors or defects in a
computer program, which affects software reliability. Achieving perfect software debugging
is often challenging and may not always be possible due to the inherent complexity of
software development. The goal is to minimize bugs and deliver a high-quality product by
employing best practices and continuously improving the development and debugging
processes. In imperfect debugging, software testers inadvertently introduce new faults
during the debugging process. Whether the debugging process is perfect or imperfect can be
influenced by various human-related and non-human-related factors, such as the experience
and skill of debuggers, debugging tools, program size and complexity, testing strategies,
and environmental factors [4]. We believe that learning and fatigue are two human-related
factors that can significantly impact software debugging, influencing the efficiency and
effectiveness of the process. The reason is that developers familiar with the codebase,
understand the software’s logic and expected behavior, and possess domain knowledge to
understand the intricacies and potential pitfalls can do more efficient debugging.

On the other hand, debugging requires sustained attention and focus, as developers
need to analyze code, identify patterns, and devise solutions. Fatigue can lead to reduced
concentration, making it easier to overlook critical details or commit errors during de-
bugging. Debugging can be time-consuming and sometimes frustrating, especially when
dealing with complex bugs. Fatigue may reduce a developer’s patience and persistence,
potentially resulting in prematurely abandoning the problem-solving process or the hasty
application of inadequate fixes. In both cases, learning and fatigue can work hand in hand.
New developers or those less familiar with the codebase may experience increased fatigue
as they need to invest more effort in understanding the code and identifying issues. Con-
versely, fatigue can hinder the learning process, making it more challenging for developers
to absorb new information (experience) or gain deeper insights into the software.

This research delves into a new specific aspect of imperfect debugging, i.e., the impact
of tester fatigue on the debugging process. We assume these imperfections can stem from
attention-switching problems caused by tester fatigue. Understanding that fatigue can
lead to attention-switching problems and subsequently introduce new defects is crucial for
creating more accurate representations of real-world scenarios. This research introduces
two SRGMs involving human-related factors of tester learning and fatigue. The first model
represents the software tester’s learning phenomenon via the tangent hyperbolic (tanh)
function, while the second model utilizes an exponential function. We investigate the
behavior of our proposed models by comparing them with similar SRGMs, including the
corresponding two perfect software reliability models that do not consider the effect of the
fatigue factor. We estimate the models’ parameters and assess their fit, predictive abilities,
and accuracy using three datasets to validate them.

Section 2 of this paper focuses on reviewing the relevant literature and exploring
previous works in the field. Section 3 introduces the mathematical formulations of our
proposed models, which are based on a general framework of a family of SRGMs. Section 4
presents numerical examples to illustrate the application and performance of the models.
To gain a deeper understanding of the proposed models, Section 5 conducts a sensitivity
analysis, providing valuable insights into their behavior and critical parameters. Finally,
Section 6 concludes this paper, summarizing the main findings and highlighting our
research contributions.

2. Literature Review
2.1. Learning Curves

Learning refers to acquiring new knowledge, skills, or understanding, and a learning
curve visually represents the relationship between skill level, expertise, and the time
required to complete a task. Mathematically, learning can be described using various
functions, each representing different improvement patterns over time. Three typical
learning curves are S-shaped, exponential, and exponential growth to a limit. The S-shaped
learning curve demonstrates the initial exponential growth, followed by a period of slower

Mathematics 2023, 11, 3491 3 of 20

growth and ultimately approaching a maximum upper limit that is never fully reached.
The logistic function commonly describes an S-shaped learning curve, also known as
the sigmoid curve. The exponential learning curve illustrates a slow rate of progress at
the beginning, gradually increasing over time until full proficiency is achieved. Unlike
the S-shaped curve, the exponential learning curve suggests that learning can improve
indefinitely without limits. The exponential growth to a limit learning curve indicates
that initial attempts result in rapid skill acquisition or information retention, reaching a
maximum rate and approaching a maximum upper limit. However, perfection or significant
improvement in the skill may not occur with subsequent repetitions. Figure 1 represents
three standard types of learning curves.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 22

curves are S-shaped, exponential, and exponential growth to a limit. The S-shaped learn-

ing curve demonstrates the initial exponential growth, followed by a period of slower

growth and ultimately approaching a maximum upper limit that is never fully reached.

The logistic function commonly describes an S-shaped learning curve, also known as the

sigmoid curve. The exponential learning curve illustrates a slow rate of progress at the

beginning, gradually increasing over time until full proficiency is achieved. Unlike the S-

shaped curve, the exponential learning curve suggests that learning can improve indefi-

nitely without limits. The exponential growth to a limit learning curve indicates that initial

attempts result in rapid skill acquisition or information retention, reaching a maximum

rate and approaching a maximum upper limit. However, perfection or significant im-

provement in the skill may not occur with subsequent repetitions. Figure 1 represents

three standard types of learning curves.

Figure 1. Learning curves of S-shaped, exponential, and exponential to a limit.

2.2. Related Works

Over the past few decades, researchers have made significant advancements in de-

veloping software reliability growth models by exploring various ideas and approaches.

One notable contribution in this field is the work of Pham and Nordmann, who intro-

duced a general framework for constructing new SRGMs [5]. This framework has served

as a foundation for interpreting several existing software reliability models. Within this

framework, two concepts play vital roles in the construction of an SRGM: the expected

number of initial faults (NIF) present in the software at the beginning of the testing phase

and the fault detection rate (FDR), which represents the rate at which failures are detected

over time. In the context of software debugging, both NIF and FDR can be treated as either

constant or varying in a time-dependent manner. Figure 2 categorizes this group of

SRGMs based on whether the NIF and FDR are considered constant or subject to change.

This figure helps to provide a clearer understanding of the different models within this

family.

Figure 2. A classification of some SRGMs.

In models with constant NIF, it is assumed that when a fault is detected, it is imme-

diately removed by the testers, and no new errors are introduced in the process. Conse-

quently, the software’s initial defects remain unchanged throughout the debugging phase.

On the other hand, in software reliability models with changing NIF, it is acknowledged

Figure 1. Learning curves of S-shaped, exponential, and exponential to a limit.

2.2. Related Works

Over the past few decades, researchers have made significant advancements in de-
veloping software reliability growth models by exploring various ideas and approaches.
One notable contribution in this field is the work of Pham and Nordmann, who introduced
a general framework for constructing new SRGMs [5]. This framework has served as a
foundation for interpreting several existing software reliability models. Within this frame-
work, two concepts play vital roles in the construction of an SRGM: the expected number of
initial faults (NIF) present in the software at the beginning of the testing phase and the fault
detection rate (FDR), which represents the rate at which failures are detected over time. In
the context of software debugging, both NIF and FDR can be treated as either constant or
varying in a time-dependent manner. Figure 2 categorizes this group of SRGMs based on
whether the NIF and FDR are considered constant or subject to change. This figure helps to
provide a clearer understanding of the different models within this family.

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 22

curves are S-shaped, exponential, and exponential growth to a limit. The S-shaped learn-

ing curve demonstrates the initial exponential growth, followed by a period of slower

growth and ultimately approaching a maximum upper limit that is never fully reached.

The logistic function commonly describes an S-shaped learning curve, also known as the

sigmoid curve. The exponential learning curve illustrates a slow rate of progress at the

beginning, gradually increasing over time until full proficiency is achieved. Unlike the S-

shaped curve, the exponential learning curve suggests that learning can improve indefi-

nitely without limits. The exponential growth to a limit learning curve indicates that initial

attempts result in rapid skill acquisition or information retention, reaching a maximum

rate and approaching a maximum upper limit. However, perfection or significant im-

provement in the skill may not occur with subsequent repetitions. Figure 1 represents

three standard types of learning curves.

Figure 1. Learning curves of S-shaped, exponential, and exponential to a limit.

2.2. Related Works

Over the past few decades, researchers have made significant advancements in de-

veloping software reliability growth models by exploring various ideas and approaches.

One notable contribution in this field is the work of Pham and Nordmann, who intro-

duced a general framework for constructing new SRGMs [5]. This framework has served

as a foundation for interpreting several existing software reliability models. Within this

framework, two concepts play vital roles in the construction of an SRGM: the expected

number of initial faults (NIF) present in the software at the beginning of the testing phase

and the fault detection rate (FDR), which represents the rate at which failures are detected

over time. In the context of software debugging, both NIF and FDR can be treated as either

constant or varying in a time-dependent manner. Figure 2 categorizes this group of

SRGMs based on whether the NIF and FDR are considered constant or subject to change.

This figure helps to provide a clearer understanding of the different models within this

family.

Figure 2. A classification of some SRGMs.

In models with constant NIF, it is assumed that when a fault is detected, it is imme-

diately removed by the testers, and no new errors are introduced in the process. Conse-

quently, the software’s initial defects remain unchanged throughout the debugging phase.

On the other hand, in software reliability models with changing NIF, it is acknowledged

Figure 2. A classification of some SRGMs.

In models with constant NIF, it is assumed that when a fault is detected, it is immedi-
ately removed by the testers, and no new errors are introduced in the process. Consequently,
the software’s initial defects remain unchanged throughout the debugging phase. On the
other hand, in software reliability models with changing NIF, it is acknowledged that
new faults may be introduced during the testing phase. This means that the total number
of defects in the software is not constant and comprises both the initial faults and the
additional faults introduced during the debugging process. This assumption recognizes
the possibility of testers unintentionally introducing new errors while attempting to fix
existing defects.

Mathematics 2023, 11, 3491 4 of 20

The FDR is a significant indicator of the effectiveness of the testing phase. It is influ-
enced by various factors, including the expertise of testers, testing techniques employed,
and the selection of test cases. The FDR can remain constant or vary among faults depend-
ing on the software reliability model. In the case of a constant FDR, it is assumed that all
defects in the software have an equal probability of being detected throughout the testing
period. This implies that the FDR remains consistent over time, irrespective of the specific
characteristics of the faults.

Conversely, in models with a time-dependent FDR, the function may exhibit increasing
or decreasing trends as time progresses. This variation acknowledges the dynamic nature
of the testing process, where the effectiveness of fault detection can be influenced by factors
such as the testing team’s expertise, the program’s size, and the software’s testability. By
incorporating the concept of a changing FDR, software reliability models can better reflect
the complexities and uncertainties inherent in real-world testing scenarios. Recognizing
the dependence of the FDR on various factors enables researchers to develop more accurate
models and gain deeper insights into the dynamics of software reliability assessment.

A. SRGMs with constant NIF and constant/changing FDR

The Goel–Okumoto model [6] is a widely referenced example of an NHPP model with
constant NIF and FDR. More SRGMs with constant NIF and changing FDR have been
proposed in the literature. These models consider learning phenomena, time resources,
testing coverage, and environmental uncertainties. Yamada et al. [7] introduced the concept
of a learning process in software testing, where testers gradually improve their skills
and familiarity with the software products. They formulated an increasing FDR with a
hyperbolic function to represent the learning rate of testers and proposed the delayed
S-shaped model. Ohba [8] considered the learning process of testers during the testing
phase and defined the FDR using a non-decreasing logistic S-shaped curve, leading to
the development of the inflection S-shaped model. Yamada and Osaki [9] considered the
consumption of time resources and proposed the exponential testing effort and Rayleigh
testing effort models. Pham [1] introduced the imperfect fault detection (IFD) model, which
incorporates a changing FDR that combines fault introduction with the phenomenon of
testing coverage. This model allows for a more realistic representation of the testing process.
Song et al. [10] considered the impact of testing coverage uncertainty or randomness in
the operating environment. They proposed a new NHPP software reliability model with
constant NIF and changing FDR regarding a testing coverage function, considering the
uncertainty associated with operational environments.

B. SRGMs with changing NIF and constant/changing FDR

More SRGMs with time-dependent changing NIF function and constant/changing
FDR have been proposed in the literature. For example, Yamada et al. [11] proposed two
imperfect debugging models assuming the NIF function to be an exponential or linear
function of the testing time, respectively, and FDR to be constant. Pham and Zhang [12]
developed an imperfect debugging model considering an exponential function of testing
time for NIF and a non-decreasing S-shaped function for FDR. Pham et al. [13] proposed
an imperfect SRGM with NIF function to be linear and FDR S-shaped of the testing time.
Li and Pham [14] introduced a new, changing NIF model, and FDR is expressed as a
testing coverage function. In their model, they also assumed that when a software failure is
detected, immediate debugging starts, and either the total number of faults is reduced by
one with probability p or the total number of faults remains the same with probability 1-p.

C. Other SRGMs

Many imperfect SRGMs do not fit the above framework precisely and use other
approaches. For example, Chiu et al. [15] proposed a model that considers the influen-
tial factors for finding errors in software, including the autonomous errors-detected and
learning factors. They proposed an FDR function including two factors representing the
exponential-shaped and the S-shaped types of behaviors. Iqbal et al. [16] investigated

Mathematics 2023, 11, 3491 5 of 20

the impact of two learning effect factors: autonomous and acquired learning, which are
gained after repeated experience/observation of the testing/debugging process by the
tester/debugger in an SRGM. Wang et al. [17] proposed an imperfect software debugging
model that considers a log-logistic distribution function for NIF, which can capture the
increasing and decreasing characteristics of the fault introduction rate per fault. They
reason imperfect software debugging models proposed in the literature generally assume
a constantly or monotonically decreasing fault introduction rate per fault. These models
cannot adequately describe the fault introduction process in a practical test. Wang and
Wu [18] proposed a nonlinear NHPP imperfect software debugging model by considering
that fault introduction is a nonlinear process. Al-Turk and Al-Mutairi [19] developed an
SRGM based on one-parameter Lindley distribution, which is modified by integrating two
learning effects of the autonomous error-detected factor and the learning factor. These
studies highlight the ongoing efforts to refine SRGMs by considering real-world scenar-
ios and addressing the critical aspects of the software testing and debugging processes.
Huang et al. [20] developed an NHPP model considering both human factors (learning ef-
fect of the debugging process) and the nature of errors, such as varieties of errors and change
points, during the testing period to extend the practicability of SRGMs. Verma et al. [21]
proposed an SRGM by considering conditions of error generation, fault removal efficiency
(FRE), imperfect debugging parameter, and fault reduction factor (FRF). The error genera-
tion, imperfect debugging, and FRE parameters have been assumed to be constant, while
FRF is time dependent and modeled using exponential, Weibull, and delayed s-shaped
distribution functions. Luo et al. [22] recently proposed a new SRGM with a changing NIF
and FDR represented by an exponential decay function of testing time.

Each category of SRGMs has its own set of advantages and disadvantages. On one
end of the spectrum, SRGMs with a changing NIF and FDR tend to have more parameters,
as they incorporate various assumptions to yield a more realistic representation of the
underlying processes. However, this realism comes at the cost of increased complexity.
Complex models may require more resources, such as time and memory, to appropriately
evaluate. While the abundance of parameters offers flexibility, it also leads to higher
computational overhead.

In contrast, SRGMs with a constant NIF and FDR follow a simpler approach, resulting
in fewer parameters and more straightforward models. A simpler model is generally
easier to comprehend, interpret, and implement. Despite potentially sacrificing some
level of realism, the simplicity of such models can prove advantageous, especially when
computational efficiency and ease of use are significant considerations.

3. Development of New NHPP Software Reliability Models

This study focuses on modeling SRGMs with a constant NIF and time-dependent
FDR function. This choice has two reasons: (1) To gain a deeper insight into how the
new time-dependent FDR affects the model’s behavior. By focusing on the FDR function,
we aim to understand its implications in software reliability analysis. (2) Simplicity is
another objective of this approach. Employing a constant NIF makes the resulting model
more straightforward to interpret. Simpler models are often favored for their ease of
implementation and comprehensibility.

The mean value function, m(t), for the class of NHPP-SRGMs with a constant NIF
and time-dependent FDR function, can be obtained by solving the following differential
equation:

dm(t)
dt

= r(t)·[a − m(t)] with m(0) = 0 (1)

in which a > 0 is the NIF, i.e., the number of defects in the software at the beginning of
the test, and r(t) is a time-dependent FDR function that denotes the rate of discovering
new faults in software over the testing. The SRGM defined via Equation (1) is based
on the following assumptions: (1) a non-homogeneous Poisson process can describe the
fault removal process; (2) the faults that remained in the software caused system failures

Mathematics 2023, 11, 3491 6 of 20

at random times; (3) the mean number of detected faults is proportional to the mean
number of remaining faults in the system. By introducing various functions for r(t), which
can be interpreted as different assumptions made, the mathematical expression for m(t)
can be derived. For example, when r(t) = b, then m(t) = a[1 − exp(−bt)], which is the
GO model [6].

Now, we propose new models based on Equation (1) by considering the following
functions for r(t):

1. The combination of tanh learning with fatigue;
2. The combination of exponential learning with fatigue;
3. Tanh learning without fatigue;
4. Exponential learning without fatigue.

This study analyzes two learning curves: one based on the tanh function and the
other based on the exponential function. The objective is to determine which curve more
accurately captures the actual learning behavior in the context of this research. Unlike
previous studies that have usually used an S-shaped curve for modeling r(t), this research
introduces a novel approach by adopting the tanh(t) function, where t ≥ 0, which exhibits
an exponential-to-limit behavior for learning. Furthermore, this study explores the integra-
tion of this new learning curve with the fatigue phenomenon to model r(t). The behavior
of the two proposed models is also investigated when the fatigue factor is removed from
the models.

In model NEW1, we assume r(t) represents a weighted combination of the tanh
learning with the fatigue of the tester as follows:

r(t) = α · tanh(st) + β · e−wt (2)

Parameters s and w represent the learning and fatigue rates, respectively. α and β are
positive coefficients representing the weights of each factor. By substituting Equation (2) in
Equation (1) and solving the resulting differential equation, the mathematical form of the
mean value function of the NEW1 model is obtained as follows:

m(t) = a[1 − e
β(e−wt−1)

w cosh
−α
s (st)] (3)

This model assumes that each time a failure is observed, the failure is removed, and
new faults can be introduced due to fatigue.

In model NEW2, we assume r(t) is the combination (for simplicity, average) of expo-
nential learning and fatigue.

r(t) = k · cosh(st) (4)

Parameter s represents an equal rate of learning and fatigue, and k is a weight. By
substituting Equation (4) in Equation (1) and solving the resulting differential equation, the
mathematical form of the mean value function of model NEW2 is obtained as follows:

m(t) = a
[

1 − e
−ksinh(st)

s

]
(5)

In model NEW3, only the tanh learning function without the fatigue factor is consid-
ered for r(t) as follows:

r(t) = k·tanh(st) (6)

By substituting Equation (6) in Equation (1) and solving the resulting differential
equation, the mathematical form of the mean value function of model NEW3 is obtained
as follows:

m(t) = a[1 − cosh
−k
s (st)] (7)

Mathematics 2023, 11, 3491 7 of 20

In model NEW4, only the exponential learning function without the fatigue factor is
considered for r(t) as follows:

r(t) = k · est (8)

By substituting Equation (8) in Equation (1) and solving the resulting differential
equation, the mathematical form of the mean value function of model NEW4 is obtained
as follows:

m(t) = a[1 − e
k(1−est)

s] (9)

4. Numerical Examples

Our experiments specifically considered SRGMs that align with this modeling frame-
work, featuring constant NIF and either constant or changing FDR. Table 1 summarizes the
characteristics of the similar existing SRGMs and the proposed models used in this study.

Table 1. Characteristics of SRGMs used in this study.

Model m(t) r(t) Comments

Goel-Okumoto (GO) a
(

1 − e−bt
)

b Constant FDR [6]

Delayed
S-shaped (DS) a[1 − (1 + bt)e−bt] b2t

1+bt
Increasing FDR with a hyperbolic

function [7]

Inflection S-shaped (IS) a(1−e−bt)
1+ce−bt

b
1+ce−bt

Increasing FDR with a
two-parameter logistic function [8]

Yamada Exponential (YE) a[1 − e−rα(1−e−βt)] r · αβe−βt Proportional to the exponential
testing effort function [9]

Yamada Rayleigh (YR) a[1 − e−αr(1−e−
βt2
2)] r · αβte−β t2

2
Proportional to the Rayleigh testing

effort function [9]

IFD a − ae−bt[1 + (b + d)t + bdt2] b2t
1+bt −

d
1+dt

Combination of a testing coverage
with a fault introduction rate

function [1]

SCP a[1 − β
β+bt−ln(1+dt)]

α η(−d+(1+dt)b)
(1+dt)e−bt

Testing coverage with the
uncertainty of the operating

environment (η has a generalized
probability density function with

two parameters α and β.) [10]

NEW1 a[1 − e
β(e−wt−1)

w cosh
−α
s (st)] α.tanh(st) + β.e−wt Combination of tanh learning with

fatigue (Current study)

NEW2 a[1 − e
−ksinh(st)

s] k.cosh(st) Average of exponential learning
with fatigue (Current study)

NEW3 a[1 − cosh
−k
s (st)] k.tanh(st) Tanh learning (Current study)

NEW4 a[1 − e
k(1−est)

s] k.est Exponential learning
(Current study)

4.1. Descriptions of the Datasets

Three datasets from different real software projects have been used to study our
proposed models’ fitting and predictive ability, validate our approaches, and compare them
with similar ones. The first dataset (DS1) is Release 1 of the Tandem Computers Software
Data Project. Over 20 weeks, 100 faults were detected [23]. This dataset is frequently used
in the literature. The second dataset (DS2) was obtained from a real-time command and
control system. During 25 h, 136 faults were detected [1]. The third dataset (DS3) was
collected from a wireless network switching system. Over 34 weeks, 181 defects were
detected [24]. Table 2 briefly describes three datasets used in this study.

Mathematics 2023, 11, 3491 8 of 20

Table 2. Summary of the selected failure data sets.

Data Set Testing Period Cumulative Number of Failures

DS1 Tandem Computer Software 20 weeks 100

DS2 Real-time Command and
Control System 25 h 136

DS3 Wireless Network System 34 days 181

4.2. Criteria for Model Comparison

We employed three criteria to compare and illustrate the models’ fitting, predictive
capabilities, and accuracy. These criteria were chosen to provide comprehensive evaluations
of the models’ performance. The three criteria used are outlined as follows.

Criterion 1. (A measure of fit)
The mean squared error (MSE) is a widely used criterion to assess the adequacy of

a software reliability model’s fit. Given a dataset consisting of pairs of observed failure
times (ti, mi) for i = 1, 2,. . ., k, where k represents the total number of observations in the
dataset, the MSE quantifies the discrepancy between the predicted values of the model and
the corresponding actual data. Mathematically, the MSE is defined as follows:

MSE =
1
k

k

∑
i=1

[mi − m(ti)]
2 (10)

mi denotes the cumulated number of actual software failures found until the time ti,
and m(ti) is the model estimate for the cumulated number of failures discovered at the time
ti. A smaller value of the MSE criterion represents a minor error in fitting and therefore
indicates a better model performance.

Criterion 2. (A measure of prediction)
The predictive ability of a software reliability growth model refers to its capability

to predict future and unseen software failure data based on the observed failure data.
The predictive ratio risk (PRR) is a criterion to assess the model’s prediction accuracy. It
quantifies the discrepancy between the model’s estimations and the actual observations.
The PRR is calculated as follows [25]:

PRR = ∑k
i=1

[
m(ti)− mi

m(ti)

]2
(11)

A smaller PRR indicates a better performance of the model.
Criterion 3. (A measure of accuracy)
Theil’s statistic (TS) measures accuracy, assessing the deviation between the actual

values and the model’s predictions across all periods. It is calculated as the average
deviation and is defined as follows:

TS =

√√√√∑k
i=1(m(ti)− mi)

2

∑k
i=1 mi

2
(12)

A closer TS to zero indicates better accuracy of the model.

4.3. Comparisons

To compare the proposed models’ fitting, predictive, and accuracy with other models,
we divided the datasets into two subsets: 80% and 20%. The 80% subset was used to
estimate the parameters of the models using the least-square error method. These estimated
parameter values were then applied to the 80% subset to calculate the mean square error
(MSE_fit) values. The estimated parameter values were also applied to the remaining
20% of the datasets to calculate the predictive ratio risk (PRR_predict) values. Finally, the

Mathematics 2023, 11, 3491 9 of 20

estimated parameter values were used for the entire period of collected failure data to
calculate Theil’s statistic (TS) values, which measure accuracy.

(1) DS1 (Tandem dataset).

Table 3 displays the optimal parameter values for each SRGM and the corresponding
values obtained via the MSE_fit, PRR_predict, and TS criteria using the DS1 dataset.

Table 3. Obtained results using DS1.

Model MSE_Fit PRR_Predict TS Parameters

GO 7.6246 0.029036 0.065128 a = 158.7887, b = 0.0624

DS 31.296 0.00074 0.067117 a = 103.0886, b = 0.2684

IS 7.6247 0.02902 0.065114 a = 158.7224, b = 0.0625, c = 0.001

YE 7.6286 0.0309 0.066846 a = 178.2258, r = 0.01, α = 560.4812, β = 0.01

YR 49.735 0.007346 0.087492 a = 99.5568, r = 0.01, α = 398.3805, β = 0.01

IFD 31.299 0.00074 0.067122 a = 103.0871, b = 0.2684, d = 0.00001

SCP 6.6326 0.051762 0.083567 a = 443.5951, b = 611.657, d = 7.727, α = 0.1, β = 0.8235

NEW1 2.4346 0.000321 0.019395 a = 102.4245, s = 0.0001, w = 955.9065, α = 225.0417, β = 192.0749

NEW2 6.4589 0.0028346 0.034402 a = 104.4743, k = 0.0954, s = 0.12998

NEW3 15.887 0.0023959 0.049836 a = 121.2902, k = 0.1, s = 2.0804

NEW4 7.6233 0.027477 0.063675 a = 149.458, k = 0.0659, s = 0.0064

Figure 3 represents the values obtained from Table 3 in a combo chart.
Mathematics 2023, 11, x FOR PEER REVIEW 10 of 22

Figure 3. Combo chart representing MSE, PRR, and TS values for SRGMs using DS1.

Based on the fitting ability (MSE_fit), the NEW1 model, which incorporates tanh

learning and fatigue, demonstrates the highest fitting level to the DS1 dataset. Regarding

predictive power (PRR_predict), the NEW1 model exhibits minimal prediction errors and

outperforms other models. When considering the measure of accuracy (TS), the NEW1

model emerges as the most precise. Additionally, the other proposed models exhibit com-

mendable performance compared to competing models.

A comparative analysis of the four proposed models shows that the NEW1 model

(incorporating tanh learning with fatigue) outperforms its counterparts across all three

evaluation criteria. Concerning the models’ fitting ability, NEW2 (employing exponential

learning with fatigue) exhibits superior performance compared to NEW4 (utilizing expo-

nential learning alone), followed by NEW3 (applying tanh learning). Regarding predictive

power, NEW3 slightly surpasses NEW2, while NEW4 demonstrates the least favorable

predictive performance. Regarding accuracy, NEW2 outperforms NEW3, followed by

NEW4 as the least accurate model.

Table 4 presents the estimated number of defects projected in the proposed models.

Table 4. Comparison of the estimated defects by the new models using DS1.

Testing Time

(Weeks)

Defects

Found

Estimated Defects by

the NEW1 Model

Estimated Defects by

the NEW2 Model

Estimated Defects by

the NEW3 Model

Estimated Defects by

the NEW4 Model

1 16 20 10 8 10

2 24 22 18 19 19

3 27 27 27 28 27

4 33 32 34 37 35

5 41 39 42 45 43

6 49 47 49 52 50

7 54 54 56 59 56

8 58 62 62 65 62

9 69 69 69 70 68

10 75 75 74 75 74

11 81 81 80 80 79

12 86 86 85 84 84

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0

5

10

15

20

25

30

35

40

45

50

NEW1 NEW2 NEW3 NEW4 IS GO YE DS IFD SCP YR

PRR, TSMSE

MSE_fit

PRR_predict

TS

Figure 3. Combo chart representing MSE, PRR, and TS values for SRGMs using DS1.

Based on the fitting ability (MSE_fit), the NEW1 model, which incorporates tanh
learning and fatigue, demonstrates the highest fitting level to the DS1 dataset. Regarding
predictive power (PRR_predict), the NEW1 model exhibits minimal prediction errors and
outperforms other models. When considering the measure of accuracy (TS), the NEW1
model emerges as the most precise. Additionally, the other proposed models exhibit
commendable performance compared to competing models.

A comparative analysis of the four proposed models shows that the NEW1 model
(incorporating tanh learning with fatigue) outperforms its counterparts across all three
evaluation criteria. Concerning the models’ fitting ability, NEW2 (employing exponential

Mathematics 2023, 11, 3491 10 of 20

learning with fatigue) exhibits superior performance compared to NEW4 (utilizing expo-
nential learning alone), followed by NEW3 (applying tanh learning). Regarding predictive
power, NEW3 slightly surpasses NEW2, while NEW4 demonstrates the least favorable
predictive performance. Regarding accuracy, NEW2 outperforms NEW3, followed by
NEW4 as the least accurate model.

Table 4 presents the estimated number of defects projected in the proposed models.

Table 4. Comparison of the estimated defects by the new models using DS1.

Testing Time
(Weeks)

Defects
Found

Estimated Defects
by the NEW1 Model

Estimated Defects
by the NEW2 Model

Estimated Defects
by the NEW3 Model

Estimated Defects
by the NEW4 Model

1 16 20 10 8 10

2 24 22 18 19 19

3 27 27 27 28 27

4 33 32 34 37 35

5 41 39 42 45 43

6 49 47 49 52 50

7 54 54 56 59 56

8 58 62 62 65 62

9 69 69 69 70 68

10 75 75 74 75 74

11 81 81 80 80 79

12 86 86 85 84 84

13 90 90 89 87 88

14 93 93 93 90 93

15 96 96 96 93 97

16 98 98 99 96 100

17 99 99 101 98 104

18 100 100 102 101 107

19 100 101 103 103 110

20 100 101 104 104 113

(2) DS2 (Real-time and Command dataset)

Table 5 displays the optimal parameter values for each SRGM and the corresponding
values obtained via the MSE_fit, PRR_predict, and TS criteria using the DS2 dataset.

Table 5. Obtained results using DS2.

Model MSE_Fit PRR_Predict TS Parameters

GO 30.905 0.02243 0.0589 a = 128.9073, b = 0.156
DS 111.77 0.11536 0.1165 a = 116.1565, b = 0.418
IS 30.909 0.022436 0.0590 a = 128.9051, b = 0.156, c = 0.00017
YE 22.711 0.01326 0.0489 a = 183.9655, r = 0.09, α = 14.9442, β = 0.09
YR 155.36 0.15089 0.1346 a = 116.9754, r = 0.025, α = 145.7865, β = 0.025
IFD 111.77 0.11537 0.1165 a = 116.1561, b = 0.418, d = 0.00001
SCP 5.4306 0.003572 0.025238 a = 433.4581, b = 1000, d = 2.5449, α = 4.9218, β = 0.38695
NEW1 11.986 0.0013361 0.0307 a = 143.9516, s = 15.59059, w = 873.0036, α = 0.1, β = 138.7975
NEW2 30.905 0.022431 0.0590 a = 128.9058, k = 0.156, s = 0.001
NEW3 21.675 0.035237 0.05892 a = 123.4075, k = 0.169, s = 47.3651
NEW4 30.941 0.022493 0.0590 a = 128.8742, k = 0.156, s = 0.00015

Mathematics 2023, 11, 3491 11 of 20

Figure 4 represents the values obtained from Table 5 in a combo chart.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 22

13 90 90 89 87 88

14 93 93 93 90 93

15 96 96 96 93 97

16 98 98 99 96 100

17 99 99 101 98 104

18 100 100 102 101 107

19 100 101 103 103 110

20 100 101 104 104 113

(2) DS2 (Real-time and Command dataset)

Table 5 displays the optimal parameter values for each SRGM and the corresponding

values obtained via the MSE_fit, PRR_predict, and TS criteria using the DS2 dataset.

Table 5. Obtained results using DS2.

Model MSE_Fit PRR_Predict TS Parameters

GO 30.905 0.02243 0.0589 a = 128.9073, b = 0.156

DS 111.77 0.11536 0.1165 a = 116.1565, b = 0.418

IS 30.909 0.022436 0.0590 a = 128.9051, b = 0.156, c = 0.00017

YE 22.711 0.01326 0.0489 a = 183.9655, r= 0.09, α = 14.9442, β = 0.09

YR 155.36 0.15089 0.1346 a = 116.9754, r= 0.025, α= 145.7865, β = 0.025

IFD 111.77 0.11537 0.1165 a = 116.1561, b = 0.418, d = 0.00001

SCP 5.4306 0.003572 0.025238 a = 433.4581, b = 1000, d = 2.5449, 𝛼 = 4.9218, β = 0.38695

NEW1 11.986 0.0013361 0.0307 a = 143.9516, s = 15.59059, w = 873.0036, α = 0.1, β = 138.7975

NEW2 30.905 0.022431 0.0590 a = 128.9058, k = 0.156, s = 0.001

NEW3 21.675 0.035237 0.05892 a = 123.4075, k = 0.169, s = 47.3651

NEW4 30.941 0.022493 0.0590 a = 128.8742, k = 0.156, s = 0.00015

Figure 4 represents the values obtained from Table 5 in a combo chart.

Figure 4. Combo chart representing MSE, PRR, and TS values for SRGMs using DS2.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0

20

40

60

80

100

120

140

160

SCP NEW1 YE GO NEW3 IS NEW2 NEW4 DS IFD YR

PRR, TSMSE

MSE_fit

PRR_predict

TS

Figure 4. Combo chart representing MSE, PRR, and TS values for SRGMs using DS2.

Based on the fitting ability (MSE_fit), the SCP model demonstrates the best fit, followed
by the NEW1 model for the DS2 dataset. Regarding predictive power (PRR_predict), the
NEW1 model exhibits the lowest prediction errors, while the SCP model ranks second.
Regarding accuracy (TS), the NEW1 model is the second-most accurate model after SCP.
The other proposed models exhibit satisfactory performance and outperform the DS, IFD,
and YR models.

A comparative analysis of the four proposed models shows that the NEW1 model
(incorporating tanh learning with fatigue) outperforms its counterparts across all three
evaluation criteria. NEW2 (employing exponential learning with fatigue) and NEW4 (utiliz-
ing exponential learning alone) exhibit considerable similarity in their performance across
all three criteria. Meanwhile, the NEW3 model, which applies tanh learning, showcases
distinct characteristics compared to NEW2 and NEW4. It notably excels in fitting ability;
however, its predictive power falls behind that of NEW2 and NEW4, suggesting that
NEW3 might be less accurate in making future predictions. Nevertheless, in terms of
accuracy, NEW3 performs similarly to NEW2 and NEW4, implying that all three models
yield comparable levels of correctness in their predictions.

Table 6 presents the estimated number of defects for the proposed models.

(3) DS3 (Wireless network system dataset)

Table 7 displays the optimal parameter values for each SRGM and the corresponding
values obtained via the MSE_fit, PRR_predict, and TS criteria using the DS3 dataset.

Based on the fitting ability (MSE_fit), the NEW1 model best fits the DS3 dataset.
Regarding predictive power (PRR_predict), the NEW1 model exhibits the lowest prediction
errors. Regarding accuracy (TS), the NEW1 model is the most accurate. The other proposed
models also exhibit satisfactory performance among their competitors.

Mathematics 2023, 11, 3491 12 of 20

Table 6. Comparison of the estimated defects by the new models using DS2.

Testing Time
(Hours)

Defects
Found

Estimated Defects
by the NEW1 Model

Estimated Defects
by the NEW2 Model

Estimated Defects
by the NEW3 Model

Estimated Defects
by the NEW4 Model

1 27 32 19 19 19

2 43 43 35 35 35

3 54 53 48 49 48

4 64 61 60 61 60

5 75 69 70 70 70

6 82 76 78 79 78

7 84 83 86 86 86

8 89 89 92 91 92

9 92 94 97 96 97

10 93 99 102 101 102

11 97 103 106 104 106

12 104 107 109 107 109

13 106 110 112 110 112

14 111 114 114 112 114

15 116 116 117 114 117

16 122 119 118 123 118

17 122 121 120 123 120

18 127 124 121 123 121

19 128 126 122 123 122

20 129 127 123 123 123

21 131 129 124 123 124

22 132 130 125 123 125

23 134 132 125 123 125

24 135 133 126 123 126

25 136 134 126 123 126

Table 7. The obtained results using DS3.

Model MSE_Fit PRR_Predict TS Parameters

GO 13.823 0.0068311 0.0372 a = 5724.2965, b = 0.001

DS 18.05 0.028493 0.0535 a = 201.7278, b = 0.0977

IS 5.912 0.0070125 0.028491 a = 208.1097, b = 0.1, c = 4.097

YE 15.072 0.005775 0.0369 a = 2989.2663, r = 0.1523, α = 84.755, β = 0.00015

YR 41.288 0.14166 0.1008 a = 156.15498, r = 0.2652, α = 18396.9465, β = 0.0000015

IFD 18.163 0.028824 0.0538 a = 201.4796, b = 0.098, d = 0.0001

SCP 5.8568 0.0078277 0.031415 a = 964.07144, b = 18.663, d = 0.3086, α = 1.268, β = 1622.9581

NEW1 5.6262 0.0020131 0.0219 a = 242.957, s = 0.017, w = 0.017, α = 0.1057, β = 0.017

NEW2 6.8976 0.035603 0.0512 a = 166.1322, k = 0.0322, s = 0.1017

NEW3 7.7425 0.0046374 0.028717 a = 685.335, k = 0.01, s = 0.4079

NEW4 5.754 0.0056439 0.0269 a = 187.6476, k = 0.0237, s = 0.063

Mathematics 2023, 11, 3491 13 of 20

Figure 5 represents the values obtained from Table 7 in a combo chart.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 22

Table 7. The obtained results using DS3.

Model MSE_Fit PRR_Predict TS Parameters

GO 13.823 0.0068311 0.0372 a = 5724.2965, b = 0.001

DS 18.05 0.028493 0.0535 a = 201.7278, b = 0.0977

IS 5.912 0.0070125 0.028491 a = 208.1097, b = 0.1, c = 4.097

YE 15.072 0.005775 0.0369 a = 2989.2663, r = 0.1523, α = 84.755, β = 0.00015

YR 41.288 0.14166 0.1008 a = 156.15498, r = 0.2652, α = 18396.9465, β = 0.0000015

IFD 18.163 0.028824 0.0538 a = 201.4796, b = 0.098, d = 0.0001

SCP 5.8568 0.0078277 0.031415 a = 964.07144, b = 18.663, d = 0.3086, α = 1.268, β = 1622.9581

NEW1 5.6262 0.0020131 0.0219 a = 242.957, s = 0.017, w = 0.017, α = 0.1057, β = 0.017

NEW2 6.8976 0.035603 0.0512 a = 166.1322, k = 0.0322, s = 0.1017

NEW3 7.7425 0.0046374 0.028717 a = 685.335, k = 0.01, s = 0.4079

NEW4 5.754 0.0056439 0.0269 a = 187.6476, k = 0.0237, s = 0.063

Figure 5 represents the values obtained from Table 7 in a combo chart.

Figure 5. Combo chart representing MSE, PRR, and TS values for SRGMs using DS3.

Based on the fitting ability (MSE_fit), the NEW1 model best fits the DS3 dataset. Re-

garding predictive power (PRR_predict), the NEW1 model exhibits the lowest prediction

errors. Regarding accuracy (TS), the NEW1 model is the most accurate. The other pro-

posed models also exhibit satisfactory performance among their competitors.

In a comparative analysis of the four proposed models, compelling evidence

emerges, clearly showcasing the superiority of the NEW1 model (integrating tanh learn-

ing with fatigue) over its counterparts across all three evaluation criteria. Conversely,

NEW2 (employing exponential learning with fatigue) exhibits the least favorable perfor-

mance among all models, showcasing inferior results across all three criteria. Further-

more, NEW4 (utilizing exponential learning exclusively) demonstrates advantages over

NEW3 (applying tanh learning) regarding fitting ability and accuracy. However, it falls

short compared to NEW3 regarding predictive power, implying that NEW3 possesses a

better capability to make accurate future predictions.

Table 8 presents the estimated number of defects for the proposed models.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0

5

10

15

20

25

30

35

40

45

NEW1 NEW4 IS NEW3 SCP YE GO NEW2 DS IFD YR

PRR, TSMSE

MSE_fit

PRR_predict

TS

Figure 5. Combo chart representing MSE, PRR, and TS values for SRGMs using DS3.

In a comparative analysis of the four proposed models, compelling evidence emerges,
clearly showcasing the superiority of the NEW1 model (integrating tanh learning with
fatigue) over its counterparts across all three evaluation criteria. Conversely, NEW2 (em-
ploying exponential learning with fatigue) exhibits the least favorable performance among
all models, showcasing inferior results across all three criteria. Furthermore, NEW4 (uti-
lizing exponential learning exclusively) demonstrates advantages over NEW3 (applying
tanh learning) regarding fitting ability and accuracy. However, it falls short compared to
NEW3 regarding predictive power, implying that NEW3 possesses a better capability to
make accurate future predictions.

Table 8 presents the estimated number of defects for the proposed models.

Table 8. Comparison of the estimated defects by the proposed models using DS3.

Testing Time
(Days)

Defects
Found

Estimated Defects
by the NEW1 Model

Estimated Defects
by the NEW2 Model

Estimated Defects
by the NEW3 Model

Estimated Defects
by the NEW4 Model

1 5 4 5 1 5

2 6 9 10 5 9

3 13 14 16 10 14

4 22 19 21 16 19

5 24 24 26 23 24

6 29 29 31 29 30

7 34 35 36 35 35

8 40 41 41 42 41

9 46 47 47 48 47

10 53 53 53 55 53

11 63 59 58 61 59

Mathematics 2023, 11, 3491 14 of 20

Table 8. Cont.

Testing Time
(Days)

Defects
Found

Estimated Defects
by the NEW1 Model

Estimated Defects
by the NEW2 Model

Estimated Defects
by the NEW3 Model

Estimated Defects
by the NEW4 Model

12 70 65 64 67 65

13 71 72 70 73 71

14 74 78 77 79 78

15 78 84 83 85 84

16 90 90 90 91 90

17 98 97 96 97 97

18 105 103 103 103 103

19 110 109 109 109 109

20 117 115 116 115 115

21 123 121 122 120 121

22 128 127 128 126 127

23 130 132 133 131 133

24 136 138 139 137 138

25 141 143 144 142 143

26 148 149 148 148 148

27 156 154 152 153 153

28 164 159 155 158 157

29 166 163 158 164 161

30 169 168 160 169 165

31 170 172 162 174 168

32 176 177 163 179 172

33 180 181 164 184 174

34 181 185 165 189 177

4.4. Threats to the Validity

In this section, we address potential limitations to the generalizability of our findings.
These limitations primarily concern the applicability of our models in industrial settings.
Although our experiments utilized three real datasets to demonstrate the performance of
the proposed models, it is essential to acknowledge that the results may vary across specific
applications. The reason is that software reliability models rely on the failure dataset;
thus, no single model is suitable for every application. Furthermore, the choice of criteria
and models used in the experiments is another issue that may impact the outcomes. We
selected three comparison criteria and seven competitor models based on previous software
reliability studies that align with our approach. We recommend using additional criteria
and expanding the set of candidate models for evaluation and comparison to select the most
suitable software reliability model for a specific application. Expanding the evaluation’s
scope can give a more comprehensive understanding of the models’ performance.

5. Sensitivity Analysis

A scientific model can be likened to a black box that takes inputs and produces corre-
sponding outputs. In the case of a mathematical model, sensitivity analysis is employed to
assess the impact of changes in input values on the model’s outputs. Sensitivity analysis
serves various purposes, including prioritizing model inputs to identify the critical drivers
of model behavior. It also provides insights into the stability of inputs. Sensitivity plots

Mathematics 2023, 11, 3491 15 of 20

visualize how the model’s output changes when the inputs are modified within prede-
termined small ranges. This information is valuable for managers, decision-makers, or
analysts as it offers insights into the problem. In one-way sensitivity analysis, inputs are
varied individually around a selected value of interest, and the variations can be minor.
By systematically adjusting the parameter values, we gained insights into the model’s
response to parameter changes and identified the parameters significantly impacting the
model’s behavior.

To assess the sensitivity and stability of the NEW1 model, we conducted a one-way
sensitivity analysis by modifying a single parameter while keeping all other parameters
fixed. This analysis aimed to identify which model parameters are sensitive to changes and
which are more stable. Specifically, we examined how variations in the estimated parameter
values obtained from Tables 3, 5 and 7, ranging from −40% to +40% at 20% intervals, affect
the estimated mean value function of the NEW1 model.

In Figures 6–8, we present the results of a sensitivity analysis performed on all five
parameters of the NEW1 model, utilizing DS1-DS3 datasets. These figures display the mean
value function, m(t), for the NEW1 model. Within each figure, we vary one parameter
value, as represented in the corresponding plots, while keeping the remaining parameters
fixed, following the details in Tables 3, 5 and 7. These figures provide insights into the
impact of parameter variations on the cumulative number of expected faults. It is evident
from Figures 6–8 that among all parameters of the NEW1 model, the predicted number of
initial defects, represented by the parameter “a”, plays a critical role in driving the behavior
of the proposed model. Parameter changes “a” result in noticeable variations in the model’s
output for all datasets.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 22

the most suitable software reliability model for a specific application. Expanding the eval-

uation’s scope can give a more comprehensive understanding of the models’ performance.

5. Sensitivity Analysis

A scientific model can be likened to a black box that takes inputs and produces cor-

responding outputs. In the case of a mathematical model, sensitivity analysis is employed

to assess the impact of changes in input values on the model’s outputs. Sensitivity analysis

serves various purposes, including prioritizing model inputs to identify the critical drivers

of model behavior. It also provides insights into the stability of inputs. Sensitivity plots

visualize how the model’s output changes when the inputs are modified within predeter-

mined small ranges. This information is valuable for managers, decision-makers, or ana-

lysts as it offers insights into the problem. In one-way sensitivity analysis, inputs are var-

ied individually around a selected value of interest, and the variations can be minor. By

systematically adjusting the parameter values, we gained insights into the model’s re-

sponse to parameter changes and identified the parameters significantly impacting the

model’s behavior.

To assess the sensitivity and stability of the NEW1 model, we conducted a one-way

sensitivity analysis by modifying a single parameter while keeping all other parameters

fixed. This analysis aimed to identify which model parameters are sensitive to changes

and which are more stable. Specifically, we examined how variations in the estimated pa-

rameter values obtained from Tables 3, 5, and 7, ranging from −40% to +40% at 20% inter-

vals, affect the estimated mean value function of the NEW1 model.

In Figures 6–8, we present the results of a sensitivity analysis performed on all five

parameters of the NEW1 model, utilizing DS1-DS3 datasets. These figures display the

mean value function, m(t), for the NEW1 model. Within each figure, we vary one param-

eter value, as represented in the corresponding plots, while keeping the remaining param-

eters fixed, following the details in Tables 3, 5, and 7. These figures provide insights into

the impact of parameter variations on the cumulative number of expected faults. It is evi-

dent from Figures 6–8 that among all parameters of the NEW1 model, the predicted num-

ber of initial defects, represented by the parameter “a”, plays a critical role in driving the

behavior of the proposed model. Parameter changes “a” result in noticeable variations in

the model’s output for all datasets.

Figure 6 also reveals that slight changes in parameter “s”, corresponding to the learn-

ing rate, lead to slight changes in the model’s output. Parameter “w”, corresponding to

the fatigue factor, remains stable, indicating that the model’s output is less sensitive to

these parameter changes. Similarly, slight changes in the value “α” lead to minor modifi-

cations in the model’s output, and weight “β” indicates the robustness of the variations.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

Figure 6. Cont.

Mathematics 2023, 11, 3491 16 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 22

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1.

Figure 7 demonstrates that variations in parameter “s” has no impact on the value of

the NEW1 model, reaffirming its stability. Changes in parameters “w” and “β” do not

result in noticeable modifications to the model’s output. However, the slight parameter

variations in “α” lead to slight model value fluctuations. Overall, the sensitivity analyses

highlight the significance of the predicted number of initial defects (parameter “a”) in

driving the behavior of the NEW1 model. Parameters “w”, “s”, and “β” are considered

stable and robust, while parameter “α” exhibit relatively minor effects on the model’s out-

put.

Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1.

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1.

Figure 7 demonstrates that variations in parameter “s” has no impact on the value of

the NEW1 model, reaffirming its stability. Changes in parameters “w” and “β” do not

result in noticeable modifications to the model’s output. However, the slight parameter

variations in “α” lead to slight model value fluctuations. Overall, the sensitivity analyses

highlight the significance of the predicted number of initial defects (parameter “a”) in

driving the behavior of the NEW1 model. Parameters “w”, “s”, and “β” are considered

stable and robust, while parameter “α” exhibit relatively minor effects on the model’s out-

put.

Figure 7. Cont.

Mathematics 2023, 11, 3491 17 of 20

Mathematics 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1.

Figure 7 demonstrates that variations in parameter “s” has no impact on the value of

the NEW1 model, reaffirming its stability. Changes in parameters “w” and “β” do not

result in noticeable modifications to the model’s output. However, the slight parameter

variations in “α” lead to slight model value fluctuations. Overall, the sensitivity analyses

highlight the significance of the predicted number of initial defects (parameter “a”) in

driving the behavior of the NEW1 model. Parameters “w”, “s”, and “β” are considered

stable and robust, while parameter “α” exhibit relatively minor effects on the model’s out-

put.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 22

Figure 7. Sensitivity analysis plots for the parameters of the NEW1 model using DS2.

Figure 8 illustrates the sensitivity analysis results of the NEW1 model using DS3. It

can be observed that the parameter “w” exhibits stability, meaning that variations in its

value have a minimal impact on the model’s overall value. On the other hand, changes in

the parameters “s”, “α” and “β” lead to minor fluctuations in the model’s value.

Figure 7. Sensitivity analysis plots for the parameters of the NEW1 model using DS2.

Figure 6 also reveals that slight changes in parameter “s”, corresponding to the learning
rate, lead to slight changes in the model’s output. Parameter “w”, corresponding to the

Mathematics 2023, 11, 3491 18 of 20

fatigue factor, remains stable, indicating that the model’s output is less sensitive to these
parameter changes. Similarly, slight changes in the value “α” lead to minor modifications
in the model’s output, and weight “β” indicates the robustness of the variations.

Figure 7 demonstrates that variations in parameter “s” has no impact on the value of
the NEW1 model, reaffirming its stability. Changes in parameters “w” and “β” do not result
in noticeable modifications to the model’s output. However, the slight parameter variations
in “α” lead to slight model value fluctuations. Overall, the sensitivity analyses highlight
the significance of the predicted number of initial defects (parameter “a”) in driving the
behavior of the NEW1 model. Parameters “w”, “s”, and “β” are considered stable and
robust, while parameter “α” exhibit relatively minor effects on the model’s output.

Figure 8 illustrates the sensitivity analysis results of the NEW1 model using DS3. It
can be observed that the parameter “w” exhibits stability, meaning that variations in its
value have a minimal impact on the model’s overall value. On the other hand, changes in
the parameters “s”, “α” and “β” lead to minor fluctuations in the model’s value.

Similar sensitivity analyses can be performed for other models using a similar approach.
Mathematics 2023, 11, x FOR PEER REVIEW 19 of 22

Figure 8. Cont.

Mathematics 2023, 11, 3491 19 of 20
Mathematics 2023, 11, x FOR PEER REVIEW 20 of 22

Figure 8. Sensitivity analysis plots for the parameters of the NEW1 model using DS3.

Similar sensitivity analyses can be performed for other models using a similar ap-

proach.

6. Conclusions

In this study, we aimed to develop a novel software reliability model that integrates

two critical human-related factors: learning and fatigue of software debuggers. While ex-

isting research has examined the impact of learning and experience on software reliability,

there is a noticeable gap in the literature concerning the study of other human-related

factors, such as fatigue. This work considered fatigue’s effects on error making, incorpo-

rating fatigue as a crucial factor in constructing the software reliability model. The find-

ings presented in this paper demonstrate the robust performance of the model across all

the datasets examined, showcasing its efficacy in predicting software reliability. By em-

ploying the tanh function to represent learning and the exponential decay function to

model fatigue, we have contributed to the existing knowledge in this field. The successful

application of these functions to represent the FDR highlights their suitability for captur-

ing the dynamics of human-related factors in the reliability estimation process. Despite

the promising results, it is essential to acknowledge the limitations and constraints of our

study. The unavailability of new datasets restricted our ability to test the model on more

recent datasets. However, the older datasets are still relevant and valid in understanding

the underlying principles in the current studied domain, as researchers widely use them.

Additionally, the choice of the FDR function was constrained to ensure the solvability

of the resulting differential equation. For future research, we recommend exploring the

Figure 8. Sensitivity analysis plots for the parameters of the NEW1 model using DS3.

6. Conclusions

In this study, we aimed to develop a novel software reliability model that integrates
two critical human-related factors: learning and fatigue of software debuggers. While
existing research has examined the impact of learning and experience on software reliability,
there is a noticeable gap in the literature concerning the study of other human-related fac-
tors, such as fatigue. This work considered fatigue’s effects on error making, incorporating
fatigue as a crucial factor in constructing the software reliability model. The findings pre-
sented in this paper demonstrate the robust performance of the model across all the datasets
examined, showcasing its efficacy in predicting software reliability. By employing the tanh
function to represent learning and the exponential decay function to model fatigue, we
have contributed to the existing knowledge in this field. The successful application of these
functions to represent the FDR highlights their suitability for capturing the dynamics of
human-related factors in the reliability estimation process. Despite the promising results, it
is essential to acknowledge the limitations and constraints of our study. The unavailability
of new datasets restricted our ability to test the model on more recent datasets. However,
the older datasets are still relevant and valid in understanding the underlying principles in
the current studied domain, as researchers widely use them.

Additionally, the choice of the FDR function was constrained to ensure the solvability
of the resulting differential equation. For future research, we recommend exploring the
development of alternative models that incorporate other factors affecting fault introduction.
By considering a more comprehensive set of variables, we can further enhance the accuracy
and applicability of software reliability models.

Author Contributions: Conceptualization, T.Y. and M.-F.L.; software, T.Y. and M.-F.L.; formal anal-
ysis, T.Y. and M.-F.L.; data curation, T.Y. and M.-F.L.; writing—original draft preparation, T.Y. and
M.-F.L.; writing—review and editing, T.Y. and M.-F.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Mathematics 2023, 11, 3491 20 of 20

Data Availability Statement: Data availability is not applicable to this article as no new data were
created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pham, H. System Software Reliability. Reliability Engineering Series; Springer: London, UK, 2006.
2. Yamada, S. Software Reliability Modeling: Fundamentals and Applications; Springer: Tokyo, Japan, 2014; Volume 5.
3. Baghdadi, G.; Jafari, S.; Sprott, J.C.; Towhidkhah, F.; Golpayegani, M.H. A chaotic model of sustaining attention problems in

attention deficit disorder. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 174–185. [CrossRef]
4. Zhang, X.; Pham, H. An analysis of factors affecting software reliability. J. Syst. Softw. 2000, 50, 43–56. [CrossRef]
5. Pham, H.; Nordmann, L. A generalized NHPP software reliability model. In Proceedings of the 3rd Int’l Conference on Reliability

and Quality in Design, Anaheim, CA, USA, 12–14 March 1997; pp. 116–120.
6. Goel, A.L.; Okumoto, K. Time-dependent error-detection rate model for software reliability and other performance measures.

IEEE Trans. Reliab. 1979, 28, 206–211. [CrossRef]
7. Yamada, S.; Ohba, M.; Osaki, S. S-shaped reliability growth modeling for software error detection. IEEE Trans. Reliab. 1983, 32,

475–484. [CrossRef]
8. Ohba, M. Inflection S-Shaped Software Reliability Growth Model. In Stochastic Models in Reliability Theory. Lecture Notes in

Economics and Mathematical Systems; Osaki, S., Hatoyama, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 235.
9. Yamada, S.; Osaki, S. Software reliability growth modeling: Models and applications. IEEE Trans. Softw. Eng. 1985, 12, 1431–1437.

[CrossRef]
10. Song, K.Y.; Chang, I.H.; Pham, H. A testing coverage model based on NHPP software reliability considering the software

operating environment and the sensitivity analysis. Mathematics 2019, 7, 450. [CrossRef]
11. Yamada, S.; Tokuno, K.; Osaki, S. Imperfect debugging models with fault introduction rate for software reliability assessment.

Int. J. Syst. Sci. 1992, 23, 2241–2252. [CrossRef]
12. Pham, H.; Zhang, X. An NHPP software reliability model and its comparison. Int. J. Reliab. Qual. Saf. Eng. 1997, 4, 269–282.

[CrossRef]
13. Pham, H.; Nordmann, L.; Zhang, Z. A general imperfect-software-debugging model with S-shaped fault-detection rate. IEEE

Trans. Reliab. 1999, 48, 169–175. [CrossRef]
14. Li, Q.; Pham, H. A testing-coverage software reliability model considering fault removal efficiency and error generation.

PLoS ONE 2017, 12, e0181524. [CrossRef] [PubMed]
15. Chiu, K.C.; Huang, Y.S.; Lee, T.Z. A study of software reliability growth from the perspective of learning effects. Reliab. Eng. Syst.

Saf. 2008, 93, 1410–1421. [CrossRef]
16. Iqbal, J.; Ahmad, N.; Quadri, S.M.K. A software reliability growth model with two types of learning. In Proceedings of the 2013

International Conference on Machine Intelligence and Research Advancement, Katra, India, 21–23 December 2013; pp. 498–503.
17. Wang, J.; Wu, Z.; Shu, Y.; Zhang, Z. An imperfect software debugging model considering log-logistic distribution fault content

function. J. Syst. Softw. 2015, 100, 167–181. [CrossRef]
18. Wang, J.; Wu, Z. Study of the nonlinear imperfect software debugging model. Reliab. Eng. Syst. Saf. 2016, 153, 180–192. [CrossRef]
19. Al-Turk, L.I.; Al-Mutairi, N.N. Enhancing reliability predictions by considering learning effects based on one-parameter Lindley

distribution. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering, Gold Coast,
Australia, 16–18 December 2020; pp. 1–7.

20. Huang, Y.S.; Chiu, K.C.; Chen, W.M. A software reliability growth model for imperfect debugging. J. Syst. Softw. 2022, 188, 111267.
[CrossRef]

21. Verma, V.; Anand, S.; Kapur, P.K.; Aggarwal, A.G. Unified framework to assess software reliability and determine optimal release
time in the presence of fault reduction factor, error generation and fault removal efficiency. Int. J. Syst. Assur. Eng. Manag. 2022,
13, 2429–2441. [CrossRef]

22. Luo, H.; Xu, L.; He, L.; Jiang, L.; Long, T. A Novel Software Reliability Growth Model Based on Generalized Imperfect Debugging
NHPP Framework. IEEE Access 2023, 11, 71573–71593. [CrossRef]

23. Wood, A. Software Reliability Growth Models; TANDEM Technical Report; Tandem Computers: Cupertino, CA, USA, 1996; Volume 96.
24. Jeske, D.R.; Zhang, X.; Pham, L. Adjusting software failure rates that are estimated from test data. IEEE Trans. Reliab. 2005, 54,

107–114.
25. Pham, H.; Deng, C. Predictive-ratio risk criterion for selecting software reliability models. In Proceedings of the 9th International

Conference on Reliability and Quality in Design, Honolulu, HI, USA, 7–9 August 2003; pp. 17–21.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cnsns.2014.05.015
https://doi.org/10.1016/S0164-1212(99)00075-8
https://doi.org/10.1109/TR.1979.5220566
https://doi.org/10.1109/TR.1983.5221735
https://doi.org/10.1109/TSE.1985.232179
https://doi.org/10.3390/math7050450
https://doi.org/10.1080/00207729208949452
https://doi.org/10.1142/S0218539397000199
https://doi.org/10.1109/24.784276
https://doi.org/10.1371/journal.pone.0181524
https://www.ncbi.nlm.nih.gov/pubmed/28750091
https://doi.org/10.1016/j.ress.2007.11.004
https://doi.org/10.1016/j.jss.2014.10.040
https://doi.org/10.1016/j.ress.2016.05.003
https://doi.org/10.1016/j.jss.2022.111267
https://doi.org/10.1007/s13198-022-01653-x
https://doi.org/10.1109/ACCESS.2023.3292301

	Introduction
	Literature Review
	Learning Curves
	Related Works

	Development of New NHPP Software Reliability Models
	Numerical Examples
	Descriptions of the Datasets
	Criteria for Model Comparison
	Comparisons
	Threats to the Validity

	Sensitivity Analysis
	Conclusions
	References

