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Abstract 

Software Reliability Growth Models (SRGMs) based on the non-homogeneous 

Poisson process have played a significant role in predicting the number of remaining 

errors in software, enhancing software reliability. Software errors are commonly 

attributed to the mental errors of software developers, which necessitate timely detection 

and resolution. However, it has been observed that the human error-making mechanism 

is influenced by factors such as learning and fatigue. In this paper, we address the issue 

of integrating the fatigue factor of software testers into the learning process during 

debugging, leading to the development of more realistic SRGMs. The first model 

represents the software tester's learning phenomenon through the tangent hyperbolic 

function, while the second model utilizes an exponential function. An exponential decay 

function models fatigue. We investigate the behavior of our proposed models by 

comparing them with similar SRGMs, including two corresponding models in which the 

fatigue factor is removed. Through analysis, we assess our models' quality of fit, 

predictive power, and accuracy. The experimental results demonstrate that the model of 

tangent hyperbolic learning with fatigue outperforms the existing ones regarding fit, 

predictive power, or accuracy. By incorporating the fatigue factor, the models provide 

a more comprehensive and realistic depiction of software reliability.  

Keywords: Software reliability growth model; non-homogeneous Poisson process; 

learning curve; fatigue; imperfect debugging  

 



1. Introduction  

Due to the ubiquitous use of software in our daily lives, accurately predicting the 

number of software errors has become crucial, particularly in critical applications. 

Software Reliability Growth Models (SRGMs) based on the non-homogeneous Poisson 

process (NHPP) have emerged as widely adopted tools for this purpose (Pham, 2006). 

These models allow for numerical estimation of the remaining errors in software and 

provide insights into its reliability. To address the complexities of the software 

development process, SRGMs have evolved to incorporate various factors, including 

the experience, skill, and learning of software developers (Yamada, 2014).  

Research has highlighted the significant impact of fatigue on the human error-making 

process (Baghdadi et al., 2015). In particular, studies have demonstrated that fatigue can 

trigger attention switching in individuals, typically occurring after approximately 40 

minutes of continuous activity. This fatigue-induced attention shift is attributed to a 

gradual reduction in dopamine secretion, eventually reaching a threshold that disrupts 

attention. Furthermore, it has been observed that other neurotransmitters cannot 

adequately compensate for the decline in dopamine release. To capture this 

phenomenon, researchers have modelled the decrease in dopamine secretion rate as an 

exponential decay process towards a specific limit (Baghdadi et al., 2015).  

Software debugging is the process of identifying and removing errors or defects in a 

computer program, which affects software reliability. Achieving perfect software 

debugging is often challenging and may not always be possible due to the inherent 

complexity of software development. The goal is to minimize bugs and deliver a high-

quality product by employing best practices and continuously improving the 

development and debugging processes. In imperfect debugging, software testers 

inadvertently introduce new faults during the debugging process. Whether the 

debugging process is perfect or imperfect can be influenced by various human-related 

and non-human-related factors, such as the experience and skill of debuggers, 

debugging tools, program size and complexity, testing strategies, and environmental 

factors (Zhang and Pham, 2000). We believe that learning and fatigue are two human-

related factors that can significantly impact software debugging, influencing the 

efficiency and effectiveness of the process. The reason is that developers familiar with 

the codebase, have a good understanding of the software's logic and expected behaviour 

and possess domain knowledge to understand the intricacies and potential pitfalls can 

do more efficient debugging. 

On the other hand, debugging requires sustained attention and focus, as developers 

need to analyze code, identify patterns, and devise solutions. Fatigue can lead to reduced 

concentration, making it easier to overlook critical details or commit errors during 

debugging. Debugging can be time-consuming and sometimes frustrating, especially 

when dealing with complex bugs. Fatigue may reduce a developer's patience and 

persistence, potentially resulting in premature abandonment of the problem-solving 



process or hasty application of inadequate fixes. In both cases, learning and fatigue can 

work hand in hand. New developers or those less familiar with the codebase may 

experience increased fatigue as they need to invest more effort in understanding the code 

and identifying issues. Conversely, fatigue can hinder the learning process, making it 

more challenging for developers to absorb new information (experience) or gain deeper 

insights into the software.  

This research delves into a new specific aspect of imperfect debugging - the impact 

of tester fatigue on the debugging process. We assume these imperfections can stem 

from attention-switching problems caused by tester fatigue. Understanding that fatigue 

can lead to attention-switching problems and subsequently introduce new defects is 

crucial for creating more accurate representations of real-world scenarios. The research 

introduces two SRGMs involving human-related factors of tester learning and fatigue. 

The first model represents the software tester's learning phenomenon through the 

tangent hyperbolic (tanh) function, while the second model utilizes an exponential 

function. We investigate the behavior of our proposed models by comparing them with 

similar SRGMs, including the corresponding two perfect software reliability models that 

do not consider the effect of the fatigue factor. We estimate the models' parameters and 

assess their fit, predictive abilities, and accuracy using three datasets to validate them.  

Section 2 of this paper focuses on reviewing relevant literature and exploring 

previous works in the field. Section 3 introduces the mathematical formulations of our 

proposed models, which are based on a general framework of a family of SRGMs. 

Section 4 presents numerical examples to illustrate the application and performance of 

the models. To gain a deeper understanding of the proposed models, Section 5 conducts 

a sensitivity analysis, providing valuable insights into their behavior and critical 

parameters. Finally, Section 6 concludes the paper, summarizing the main findings and 

highlighting our research contributions.  

 

2. Literature review 

A. Learning curves 

Learning refers to acquiring new knowledge, skills, or understanding, and a learning 

curve visually represents the relationship between skill level, expertise, and the time 

required to complete a task. Mathematically, learning can be described by various 

functions, each representing different improvement patterns over time. Three typical 

learning curves are S-shaped, exponential, and exponential growth to a limit. The S-

shaped learning curve demonstrates initial exponential growth, followed by a period of 

slower growth and ultimately approaching a maximum upper limit that is never fully 

reached. The logistic function commonly describes an S-shaped learning curve, also 

known as the sigmoid curve. The exponential learning curve illustrates a slow rate of 



progress at the beginning, gradually increasing over time until full proficiency is 

achieved. Unlike the S-shaped curve, the exponential learning curve suggests that 

learning can improve indefinitely without limits. The exponential growth to a limit 

learning curve indicates that initial attempts result in rapid skill acquisition or 

information retention, reaching a maximum rate and approaching a maximum upper 

limit. However, perfection or significant improvement in the skill may not occur with 

subsequent repetitions. Figure 1 represents three standard types of learning curves. 

  

Figure 1. S-shaped, exponential, and exponential to a limit learning curves 

 

B. Related works 

Over the past few decades, researchers have made significant advancements in 

developing software reliability growth models by exploring various ideas and 

approaches. One notable contribution in this field is the work of Pham and Nordmann, 

who introduced a general framework for constructing new SRGMs (Pham & Nordmann, 

1997). This framework has served as a foundation for interpreting several existing 

software reliability models. Within this framework, two concepts play vital roles in the 

construction of an SRGM: the expected number of initial faults (NIF) present in the 

software at the beginning of the testing phase and the fault detection rate (FDR), which 

represents the rate at which failures are detected over time. In the context of software 

debugging, both NIF and FDR can be treated as either constant or varying in a time-

dependent manner. Figure 2 categorizes this group of SRGMs based on whether the NIF 

and FDR are considered constant or subject to change. This figure helps to provide a 

clearer understanding of the different models within this family. 

 

SRGM 

NIF FDR 

changing constant constant changing 



Figure 2. A classification of some SRGMs 

In models with constant NIF, it is assumed that when a fault is detected, it is 

immediately removed by the testers, and no new errors are introduced in the process. 

Consequently, the software's initial defects remain unchanged throughout the debugging 

phase. On the other hand, in software reliability models with changing NIF, it is 

acknowledged that new faults may be introduced during the testing phase. This means 

that the total number of defects in the software is not constant and comprises both the 

initial faults and the additional faults introduced during the debugging process. This 

assumption recognizes the possibility of testers unintentionally introducing new errors 

while attempting to fix existing defects. 

The FDR is a significant indicator of the effectiveness of the testing phase. It is 

influenced by various factors, including the expertise of testers, testing techniques 

employed, and the selection of test cases. The FDR can remain constant or vary among 

faults depending on the software reliability model. In the case of a constant FDR, it is 

assumed that all defects in the software have an equal probability of being detected 

throughout the testing period. This implies that the FDR remains consistent over time, 

irrespective of the specific characteristics of the faults. 

Conversely, in models with a time-dependent FDR, the function may exhibit 

increasing or decreasing trends as time progresses. This variation acknowledges the 

dynamic nature of the testing process, where the effectiveness of fault detection can be 

influenced by factors such as the testing team's expertise, the program's size, and the 

software's testability. By incorporating the concept of a changing FDR, software 

reliability models can better reflect the complexities and uncertainties inherent in real-

world testing scenarios. Recognizing the dependence of the FDR on various factors 

enables researchers to develop more accurate models and gain deeper insights into the 

dynamics of software reliability assessment. 

SRGMs with constant NIF and constant/changing FDR  

The Goel-Okumoto model (Goel and Okumoto, 1979) is a widely referenced 

example of an NHPP model with constant NIF and FDR. More SRGMs with constant 

NIF and changing FDR have been proposed in the literature. These models consider 

learning phenomena, time resources, testing coverage, and environmental uncertainties. 

Yamada et al. (1983) introduced the concept of a learning process in software testing, 

where testers gradually improve their skills and familiarity with the software products. 

They formulated an increasing FDR with a hyperbolic function to represent the learning 

rate of testers and proposed the delayed S-shaped model. Ohba (1984) considered the 

learning process of testers during the testing phase and defined the FDR using a non-

decreasing logistic S-shaped curve, leading to the development of the inflection S-

shaped model. Yamada and Osaki (1985) considered the consumption of time resources 

and proposed the exponential testing effort and Rayleigh testing effort models. Pham 



(2006) introduced the imperfect fault detection (IFD) model, which incorporates a 

changing FDR that combines fault introduction with the phenomenon of testing 

coverage. This model allows for a more realistic representation of the testing process. 

Song et al. (2019) considered the impact of testing coverage uncertainty or randomness 

in the operating environment. They proposed a new NHPP software reliability model 

with constant NIF and changing FDR regarding a testing coverage function, considering 

the uncertainty associated with operational environments. 

SRGMs with changing NIF and constant/changing FDR  

More SRGMs with time-dependent changing NIF function and constant/changing 

FDR have been proposed in the literature. For example, Yamada et al. (1992) proposed 

two imperfect debugging models assuming the NIF function to be an exponential or 

linear function of the testing time, respectively, and FDR to be constant. Pham and 

Zhang (1997) developed an imperfect debugging model considering an exponential 

function of testing time for NIF and a non-decreasing S-shaped function for FDR. Pham 

et al. (1999) proposed an imperfect SRGM with NIF function to be linear and FDR S-

shaped of the testing time. Li and Pham (2017) introduced a new, changing NIF model, 

and FDR is expressed as a testing coverage function. They also assumed in their model, 

when a software failure is detected, immediate debugging starts, and either the total 

number of faults is reduced by one with probability p or the total number of faults 

remains the same with probability 1-p.  

Other SRGMs  

Many imperfect SRGMs do not fit the above framework precisely and use other 

approaches. For example, Chiu et al. (2008) proposed a model that considers the 

influential factors for finding errors in software, including the autonomous errors-

detected and learning factors. They proposed an FDR function including two factors 

representing the exponential-shaped and the S-shaped types of behaviours. Iqbal et al. 

(2013) investigated the impact of two types of learning effect factors: autonomous 

learning and acquired learning which is gained after repeated experience/observation of 

the testing/debugging process by the tester/debugger in an SRGM. Wang et al. (2015) 

proposed an imperfect software debugging model that considers a log-logistic 

distribution function for NIF, which can capture the increasing and decreasing 

characteristics of the fault introduction rate per fault. They reason imperfect software 

debugging models proposed in the literature generally assume a constantly or 

monotonically decreasing fault introduction rate per fault. These models cannot 

adequately describe the fault introduction process in a practical test. Wang and Wu 

(2016) proposed a nonlinear, NHPP imperfect software debugging model by 

considering that fault introduction is a nonlinear process. Al-Turk and Al-Mutairi (2020) 

developed an SRGM based on one-parameter Lindley distribution, which is modified 

by integrating two learning effects of the autonomous errors-detected factor and the 

learning factor. These studies highlight the ongoing efforts to refine SRGMs by 



considering real-world scenarios and addressing critical aspects of the software testing 

and debugging processes. Huang et al. (2022) developed an NHPP model considering 

both human factors (learning effect of the debugging process) and the nature of errors, 

such as varieties of errors and change points, during the testing period to extend the 

practicability of SRGMs. Verma et al. (2022) proposed an SRGM by considering 

conditions of error generation, fault removal efficiency (FRE), imperfect debugging 

parameter, and fault reduction factor (FRF). The error generation, imperfect debugging, 

and FRE parameters have been assumed to be constant, while FRF is time-dependent 

and modelled by exponential, Weibull, and delayed s-shaped distribution functions. Luo 

et al. (2023) recently proposed a new SRGM with a changing NIF and FDR represented 

by an exponential decay function of testing time. 

Each category of SRGMs has its own set of advantages and disadvantages. On one 

end of the spectrum, SRGMs with a changing NIF and FDR tend to have more 

parameters, as they incorporate various assumptions to yield a more realistic 

representation of the underlying processes. However, this realism comes at the cost of 

increased complexity. Complex models may require more resources, such as time and 

memory, to appropriately evaluate. While the abundance of parameters offers flexibility, 

it also leads to higher computational overhead.  

In contrast, SRGMs with a constant NIF and FDR follow a simpler approach, 

resulting in fewer parameters and more straightforward models. A simpler model is 

generally easier to comprehend, interpret, and implement. Despite potentially sacrificing 

some level of realism, the simplicity of such models can prove advantageous, especially 

when computational efficiency and ease of use are significant considerations.  

3. Development of new NHPP software reliability models 

This study focuses on modelling SRGMs with a constant NIF and time-dependent 

FDR function. This choice has two reasons: (1) To gain a deeper insight into how the 

new time-dependent FDR affects the model's behaviour. By focusing on the FDR 

function, we aim to understand its implications in software reliability analysis. (2) 

Simplicity is another objective of this approach. Employing a constant NIF makes the 

resulting model more straightforward to interpret. Simpler models are often favoured 

for their ease of implementation and comprehensibility.  

The mean value function, m(t), for the class of NHPP- SRGMs with a constant NIF 

and time-dependent FDR function can be obtained by solving the following differential 

equation: 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑟(𝑡) ∙ [𝑎 − 𝑚(𝑡)]   with 𝑚(0) = 0    (1) 

In which a>0 is the NIF, i.e., the number of defects in the software at the beginning 

of the test, and r(t) is a time-dependent FDR function that denotes the rate of discovering 



new faults in software over the testing. The SRGM defined by Eq. (1) is based on the 

following assumptions: (1) a non-homogeneous Poisson process can describe the fault 

removal process. (2) The faults that remained in the software caused the system fails at 

random times (3) The mean number of detected faults is proportional to the mean 

number of remaining faults in the system. By introducing various functions for 

r(t), which can be interpreted as different assumptions made, the mathematical 

expression for m(t) can be derived. For example, when r(t)=b, then 𝑚(𝑡) = 𝑎[1 −

exp(−𝑏𝑡)], that is the GO model (Goel and Okumoto, 1979).  

Now, we propose new models based on Eq. (1) by considering the following 

functions for r(t): 

1. Combination of tanh learning with fatigue.  

2. Combination of exponential learning with fatigue.   

3. Tanh learning without fatigue.  

4. Exponential learning without fatigue. 

This study analyses two learning curves: one based on the tanh function and the other 

based on the exponential function. The objective is to determine which curve more 

accurately captures the actual learning behaviour in the context of this research. Unlike 

previous studies that have usually used an S-shaped curve for modelling r(t), this 

research introduces a novel approach by adopting the tanh(t) function, where t≥0, which 

exhibits an exponential-to-limit behaviour for learning. Furthermore, the study explores 

the integration of this new learning curve with the fatigue phenomenon to model r(t). 

The behavior of the two proposed models is also investigated when the fatigue factor is 

removed from the models. 

In model NEW1, we assume r(t) represents a weighted combination of the tanh 

learning with the fatigue of the tester as follows: 

𝑟(𝑡) = 𝛼 ∙ tanh(𝑠𝑡) + 𝛽 ∙ 𝑒−𝑤𝑡     (2) 

Parameters 𝑠 and 𝑤 represent the learning and fatigue rates, respectively. α and β are 

positive coefficients representing the weights of each factor. By substituting Eq. (2) in 

Eq. (1) and solving the resulting differential equation, the mathematical form of the 

mean value function of the NEW1 model is obtained as follows: 

𝑚(𝑡) = 𝑎[1 − 𝑒
𝛽(𝑒−𝑤𝑡−1)

𝑤 𝑐𝑜𝑠ℎ
−𝛼

𝑠 (𝑠𝑡)]     (3) 

This model assumes each time a failure is observed, the failure is removed, and new 

faults can be introduced due to fatigue. 

In model NEW2, we assume r(t) is the combination (for simplicity average) of 

exponential learning and fatigue. 



𝑟(𝑡) = 𝑘 ∙ cosh(𝑠𝑡)      (4) 

Parameter s represents an equal rate of learning and fatigue, and k is a weight. By 

substituting Eq. (4) in Eq. (1) and solving the resulting differential equation, the 

mathematical form of the mean value function of model NEW2 is obtained as follows:  

𝑚(𝑡) =  𝑎 [1 − 𝑒
−𝑘𝑠𝑖𝑛ℎ(𝑠𝑡)

𝑠 ]     (5) 

In model NEW3, only the tanh learning function without the fatigue factor is 

considered for r(t) as follows: 

𝑟(𝑡) = 𝑘 ∙ tanh(𝑠𝑡)      (6) 

By substituting Eq. (6) in Eq. (1) and solving the resulting differential equation, the 

mathematical form of the mean value function of model NEW3 is obtained as follows:  

𝑚(𝑡) = 𝑎[1 − 𝑐𝑜𝑠ℎ
−𝑘

𝑠 (𝑠𝑡)]     (7) 

In model NEW4, only the exponential learning function without the fatigue factor is 

considered for r(t) as follows: 

𝑟(𝑡) = 𝑘 ∙ 𝑒𝑠𝑡       (8) 

By substituting Eq. (8) in Eq. (1) and solving the resulting differential equation, the 

mathematical form of the mean value function of model NEW4 is obtained:  

𝑚(𝑡) = 𝑎[1 − 𝑒
𝑘(1− 𝑒𝑠𝑡)

𝑠 ]       (9) 

4. Numerical examples 

Our experiments specifically considered SRGMs that align with this modelling 

framework, featuring constant NIF and either constant or changing FDR Table 1. 

summarizes the characteristics of the similar existing SRGMs and the proposed models 

used in this study.  

Table 1. Characteristics of SRGMs used in this study 

Model  𝑚(𝑡) 𝑟(𝑡) Comments 

Goel- 

Okumoto 

(GO)  
𝑎(1 − 𝑒−𝑏𝑡) 𝑏 

Constant FDR (Goel & Okumoto, 

1979) 

Delayed  

S-shaped 

(DS) 
𝑎[1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡] 

𝑏2𝑡

1 + 𝑏𝑡
 

Increasing FDR with a hyperbolic 

function (Yamada et al. 1983) 



Inflection 

S-shaped 

(IS) 

𝑎(1 − 𝑒−𝑏𝑡)

1 + 𝑐𝑒−𝑏𝑡  
𝑏

1 + 𝑐𝑒−𝑏𝑡 
Increasing FDR with a two-parameter 

logistic function (Ohba, 1984) 

Yamada 

Exponential 

(YE) 
𝑎[1 − 𝑒−𝑟𝛼(1−𝑒−𝛽𝑡)] 𝑟. 𝛼𝛽𝑒−𝛽𝑡 

Proportional to the exponential 

testing effort function (Yamada & 

Osaki 1985) 

Yamada 

Rayleigh 

(YR) 
𝑎[1 − 𝑒

−𝛼𝑟(1−𝑒−
𝛽𝑡2

2 )
] 𝑟. 𝛼𝛽𝑡𝑒−𝛽

𝑡2

2  

Proportional to the Rayleigh testing 

effort function (Yamada & Osaki, 

1985)  

IFD 
𝑎 − 𝑎𝑒−𝑏𝑡[1 + (𝑏 + 𝑑)𝑡

+ 𝑏𝑑𝑡2] 
𝑏2𝑡

1 + 𝑏𝑡
−

𝑑

1 + 𝑑𝑡
 

Combination of a testing coverage 

with a fault introduction rate function 

(Pham 2006) 

SCP 𝑎[1 −
𝛽

𝛽 + 𝑏𝑡 − ln(1 + 𝑑𝑡)
]𝛼 

η(−𝑑 + (1 + 𝑑𝑡)𝑏)

(1 + 𝑑𝑡)𝑒−𝑏𝑡  

Testing coverage with the uncertainty 

of the operating environment (η has a 

generalized probability density 

function with two parameters α and 

β.) (Song et al. 2019) 

NEW1 𝑎[1 − 𝑒
𝛽(𝑒−𝑤𝑡−1)

𝑤 𝑐𝑜𝑠ℎ
−𝛼

𝑠 (𝑠𝑡)] 𝛼. tanh(𝑠𝑡) + 𝛽. 𝑒−𝑤𝑡 
Combination of tanh learning with 

fatigue (Current study) 

NEW2 𝑎[1 − 𝑒
−𝑘𝑠𝑖𝑛ℎ(𝑠𝑡)

𝑠 ] 𝑘. cosh(𝑠𝑡) 
Average of exponential learning with 

fatigue (Current study) 

NEW3 𝑎[1 − 𝑐𝑜𝑠ℎ
−𝑘
𝑠 (𝑠𝑡)] 𝑘. tanh(𝑠𝑡) Tanh learning (Current study) 

NEW4 𝑎[1 − 𝑒
𝑘(1− 𝑒𝑠𝑡)

𝑠 ] 𝑘. 𝑒𝑠𝑡 Exponential learning (Current study) 

 

4.1 Descriptions of the Datasets 

Three datasets from different real software projects have been used to study our 

proposed models' fitting and predictive ability, validate our approaches, and compare 

them with similar ones. The first dataset (DS1) is Release 1 of the Tandem Computers 

Software Data Project. Over 20 weeks, 100 faults were detected (Wood 1996). This 

dataset is frequently used in the literature. The second dataset (DS2) was obtained from 

a real-time command and control system. During 25 hours, 136 faults were detected 

(Pham 2006). The third dataset (DS3) was collected from a wireless network switching 

system. Over 34 weeks, 181 defects were detected (Jeske et al. 2005).  

Table 2. Summary of the selected failure data sets 

Data set Testing period Cumulative number of failures 

DS1 Tandem Computer Software 20 weeks 100 

DS2 Real-time Command and Control System 25 hours 136 

DS3 Wireless Network System 34 days 181 

 

4.2 Criteria for model comparison 



We employed three criteria to compare and illustrate the models' fitting, predictive 

capabilities, and accuracy. These criteria were chosen to provide comprehensive 

evaluations of the models' performance. The three criteria used are as follows: 

Criterion 1. (A measure of fit) 

The mean squared error (MSE) is a widely used criterion to assess the adequacy of a 

software reliability model's fit. Given a dataset consisting of pairs of observed failure 

times (ti, yi) for i = 1, 2, ..., k, where k represents the total number of observations in the 

dataset, the MSE quantifies the discrepancy between the predicted values of the model 

and the corresponding actual data. Mathematically, the MSE is defined as follows: 

MSE =
1

k
∑ [m𝑖 −  m(t𝑖)]2k

i=1   (10) 

𝑚𝑖 denotes the cumulated number of actual software failures found until the time 𝑡𝑖, 

and 𝑚(𝑡𝑖) is the model estimate for the cumulated number of failures discovered at the 

time 𝑡𝑖. A smaller value of the MSE criterion represents a minor error in fitting and 

therefore indicates a better model performance. 

Criterion 2. (A measure of prediction) 

The predictive ability of a software reliability growth model refers to its capability to 

predict future and unseen software failure data based on the observed failure data. The 

predictive ratio risk (PRR) is a criterion to assess the model's prediction accuracy. It 

quantifies the discrepancy between the model's estimations and the actual observations. 

The PRR is calculated as follows (Pham and Deng 2003): 

PRR = ∑ [
𝑚(𝑡𝑖)−𝑚𝑖

𝑚(𝑡𝑖)
]2𝑘

𝑖=1   (11) 

A smaller PRR indicates a better performance of the model. 

Criterion 3. (A measure of accuracy) 

Theil's statistic (TS) measures accuracy, assessing the deviation between the actual 

values and the model's predictions across all periods. It is calculated as the average 

deviation and is defined as follows: 

𝑇𝑆 = √
∑ (m(𝑡𝑖)−𝑚𝑖)2𝑘

𝑖=1

∑ 𝑚𝑖
2𝑘

𝑖=1

  (12) 

A closer TS to zero indicates better accuracy of the model.  

4.3 Comparisons 



To compare the proposed models' fitting, predictive, and accuracy with other models, 

we divided the datasets into two subsets: 80% and 20%. The 80% subset was used to 

estimate the parameters of the models using the least-square error method. These 

estimated parameter values were then applied to the 80% subset to calculate the mean 

square error (MSE_fit) values. The estimated parameter values were also applied to the 

remaining 20% of the datasets to calculate the predictive ratio risk (PRR_predict) 

values. Finally, the estimated parameter values were used for the entire period of 

collected failure data to calculate Theil's statistic (TS) values, which measure accuracy. 

1) DS1 (Tandem dataset). 

Table 3 displays the optimal parameter values for each SRGM and the corresponding 

values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS1 

dataset. 

Table 3. Obtained results using DS1 

Model MSE_ fit PRR_ predict TS Parameters 

GO 7.6246 0.029036 0.065128 a=158.7887, b=0.0624 

DS 31.296 0.00074 0.067117 a=103.0886, b=0.2684 

IS 7.6247 0.02902 0.065114 a=158.7224, b=0.0625, c=0.001 

YE 7.6286 0.0309 0.066846 a=178.2258, r=0.01, α=560.4812, β=0.01 

YR 49.735 0.007346 0.087492 a=99.5568,   r=0.01, α= 398.3805, β=0.01 

IFD 31.299 0.00074 0.067122 a=103.0871, b=0.2684, d=0.00001 

SCP 6.6326 0.051762 0.083567 a=443.5951, b=611.657, d=7.727, α=0.1, β=0.8235 

NEW1 2.4346 0.000321 0.019395 a=102.424, s=0.0001, w=955.9065, α=225.0417, β=192.0749 

NEW2 6.4589 0.0028346 0.034402 a=104.4743, k=0.0954, s=0.12998 

NEW3 15.887 0.0023959 0.049836 a=121.2902, k=0.1, s=2.0804 

NEW4 7.6233 0.027477 0.063675 a=149.458,  k=0.0659, s=0.0064 

Figure 3 represents the values obtained from Table 3 in a combo chart. 

 



 

Figure 3. Combo chart representing MSE, PRR, and TS values for SRGMs using 

DS1. 

Based on the fitting ability (MSE_fit), the NEW1 model, which incorporates tanh 

learning and fatigue, demonstrates the highest fitting level to the DS1 dataset. Regarding 

predictive power (PRR_predict), the NEW1 model exhibits minimal prediction errors 

and outperforms other models. When considering the measure of accuracy (TS), the 

NEW1 model emerges as the most precise. Additionally, the other proposed models 

exhibit commendable performance compared to competing models.  

A comparative analysis of the four proposed models shows that the NEW1 model 

(incorporating tanh learning with fatigue) outperforms its counterparts across all three 

evaluation criteria. Concerning the models' fitting ability, NEW2 (employing 

exponential learning with fatigue) exhibits superior performance compared to NEW4 

(utilizing exponential learning alone), followed by NEW3 (applying tanh learning). 

Regarding predictive power, NEW3 slightly surpasses NEW2, while NEW4 

demonstrates the least favourable predictive performance. Regarding accuracy, NEW2 

outperforms NEW3, followed by NEW4 as the least accurate model. 

Table 4 presents the estimated number of defects as projected by the proposed 

models. 

 

Table 4. Comparison of the estimated defects by the new models using DS1. 
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Testing 

Time 

(weeks) 

Defects 

found 

Estimated 

defects by the 

NEW1 model 

Estimated 

defects by the 

NEW2 model 

Estimated 

defects by the 

NEW3 model 

Estimated 

defects by the 

NEW4 model 

1 16 20 10 8 10 

2 24 22 18 19 19 

3 27 27 27 28 27 

4 33 32 34 37 35 

5 41 39 42 45 43 

6 49 47 49 52 50 

7 54 54 56 59 56 

8 58 62 62 65 62 

9 69 69 69 70 68 

10 75 75 74 75 74 

11 81 81 80 80 79 

12 86 86 85 84 84 

13 90 90 89 87 88 

14 93 93 93 90 93 

15 96 96 96 93 97 

16 98 98 99 96 100 

17 99 99 101 98 104 

18 100 100 102 101 107 

19 100 101 103 103 110 

20 100 101 104 104 113 

 

2) DS2 (Real-time and Command dataset) 

Table 5 displays the optimal parameter values for each SRGM and the corresponding 

values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS2 

dataset. 

Table 5. Obtained results using DS2 

Model MSE_ fit PRR_ predict TS Parameters 

GO 30.905 0.02243 0.0589 a=128.9073, b=0.156 

DS 111.77 0.11536 0.1165 a=116.1565, b=0.418 

IS 30.909 0.022436 0.0590 a=128.9051, b=0.156, c=0.00017 

YE 22.711 0.01326 0.0489 a=183.9655, r= 0.09, α=14.9442, β=0.09 

YR 155.36  0.15089 0.1346 a=116.9754, r= 0.025, α= 145.7865, β=0.025 

IFD 111.77 0.11537 0.1165 a=116.1561, b=0.418, d=0.00001 

SCP 5.4306 0.003572 0.025238 a=433.4581, b=1000, d=2.5449, 𝛼 =4.9218, β=0.38695 

NEW1 11.986 0.0013361 0.0307 a=143.9519, s=15.59059, w=873.0036, α =0.1 β =138.7975 



NEW2 30.905  0.022431 0.0590 a=128.9058, k=0.156, s=0.001 

NEW3 21.675  0.035237 0.05892 a=123.4075, k= 0.169, s=47.3651 

NEW4 30.941  0.022493 0.0590 a=128.8742, k=0.156, s=0.00015 

Figure 4 represents the values obtained from Table 5 in a combo chart. 

 

Figure 4. Combo chart representing MSE, PRR, and TS values for SRGMs using 

DS2. 

Based on the fitting ability (MSE_fit), the SCP model demonstrates the best fit, 

followed by the NEW1 model for the DS2 dataset. Regarding predictive power 

(PRR_predict), the NEW1 model exhibits the lowest prediction errors, while the SCP 

model ranks second. Regarding accuracy (TS), the NEW1 model is the second-most 

accurate model after SCP. The other proposed models exhibit satisfactory performance 

and outperform the DS, IFD, and YR models.  

A comparative analysis of the four proposed models shows that the NEW1 model 

(incorporating tanh learning with fatigue) outperforms its counterparts across all three 

evaluation criteria. NEW2 (employing exponential learning with fatigue) and NEW4 

(utilizing exponential learning alone) exhibit considerable similarity in their 

performance across all three criteria. Meanwhile, the NEW3 model, which applies tanh 

learning, showcases distinct characteristics compared to NEW2 and NEW4. It notably 

excels in fitting ability; however, its predictive power falls behind that of NEW2 and 

NEW4, suggesting that NEW3 might be less accurate in making future predictions. 

Nevertheless, in terms of accuracy, NEW3 performs similarly to NEW2 and NEW4, 

implying that all three models yield comparable levels of correctness in their 

predictions.  
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Table 6 presents the estimated number of defects for the proposed models. 

Table 6. Comparison of the estimated defects by the new models using DS2. 

Testing 

Time 

(hours) 

Defects 

found 

Estimated 

defects by the 

NEW1 model 

Estimated 

defects by the 

NEW2 model 

Estimated 

defects by the 

NEW3 model 

Estimated 

defects by the 

NEW4 model 

1 27 32 19 19 19 

2 43 43 35 35 35 

3 54 53 48 49 48 

4 64 61 60 61 60 

5 75 69 70 70 70 

6 82 76 78 79 78 

7 84 83 86 86 86 

8 89 89 92 91 92 

9 92 94 97 96 97 

10 93 99 102 101 102 

11 97 103 106 104 106 

12 104 107 109 107 109 

13 106 110 112 110 112 

14 111 114 114 112 114 

15 116 116 117 114 117 

16 122 119 118 123 118 

17 122 121 120 123 120 

18 127 124 121 123 121 

19 128 126 122 123 122 

20 129 127 123 123 123 

21 131 129 124 123 124 

22 132 130 125 123 125 

23 134 132 125 123 125 

24 135 133 126 123 126 

25 136 134 126 123 126 

 

3) DS3 (Wireless network system dataset) 

Table 7 displays the optimal parameter values for each SRGM and the corresponding 

values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS3 

dataset. 

 

Table 7. The obtained results using DS3 



Model MSE_ fit PRR_ predict TS Parameters 

GO 13.823 0.0068311 0.0372 a=5724.2965, b=0.001 

DS 18.05 0.028493 0.0535 a=201.7278, b=0.0977 

IS 5.912 0.0070125 0.028491 a=208.1097, b=0.1, c=4.097 

YE 15.072 0.005775 0.0369 a=2989.2663, r=0.1523, α=84.755, β=0.00015 

YR 41.288 0.14166 0.1008 a=156.15498, r=0.2652, α=18396.9465, β=0.0000015 

IFD 18.163 0.028824 0.0538 a=201.4796, b=0.098, d=0.0001 

SCP 5.8568 0.0078277 0.031415 a=964.07144, b=18.663, d=0.3086, α=1.268, β=1622.9581 

NEW1 5.6262 0.0020131 0.0219 a=242.957, s=0.017, w=0.017, α=0.1057, β=0.017 

NEW2 6.8976 0.035603 0.0512 a=166.1322, k=0.0322, s=0.1017 

NEW3 7.7425 0.0046374  0.028717 a=685.335, k= 0.01, s=0.4079 

NEW4 5.754 0.0056439 0.0269 a=187.6476, k=0.0237, s=0.063 

Figure 5 represents the values obtained from Table 7 in a combo chart. 

 

Figure 5. Combo chart representing MSE, PRR, and TS values for SRGMs using 

DS3. 

Based on the fitting ability (MSE_fit), the NEW1 model best fits the DS3 dataset. 

Regarding predictive power (PRR_predict), the NEW1 model exhibits the lowest 

prediction errors. Regarding accuracy (TS), the NEW1 model is the most accurate. The 

other proposed models also exhibit satisfactory performance among their competitors.  

In a comparative analysis of the four proposed models, compelling evidence emerges, 

clearly showcasing the superiority of the NEW1 model (integrating tanh learning with 
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fatigue) over its counterparts across all three evaluation criteria. Conversely, NEW2 

(employing exponential learning with fatigue) exhibits the least favourable performance 

among all models, showcasing inferior results across all three criteria. Furthermore, 

NEW4 (utilizing exponential learning exclusively) demonstrates advantages over 

NEW3 (applying tanh learning) regarding fitting ability and accuracy. However, it falls 

short compared to NEW3 regarding predictive power, implying that NEW3 possesses a 

better capability to make accurate future predictions. 

Table 8 presents the estimated number of defects for the proposed models. 

 

Table 8. Comparison of the estimated defects by the proposed models using DS3. 

Testing 

Time 

(days) 

Defects 

found 

Estimated 

defects by the 

NEW1 model 

Estimated 

defects by the 

NEW2 model 

Estimated 

defects by the 

NEW3 model 

Estimated 

defects by the 

NEW4 model 

1 5 4 5 1 5 

2 6 9 10 5 9 

3 13 14 16 10 14 

4 22 19 21 16 19 

5 24 24 26 23 24 

6 29 29 31 29 30 

7 34 35 36 35 35 

8 40 41 41 42 41 

9 46 47 47 48 47 

10 53 53 53 55 53 

11 63 59 58 61 59 

12 70 65 64 67 65 

13 71 72 70 73 71 

14 74 78 77 79 78 

15 78 84 83 85 84 

16 90 90 90 91 90 

17 98 97 96 97 97 

18 105 103 103 103 103 

19 110 109 109 109 109 

20 117 115 116 115 115 

21 123 121 122 120 121 

22 128 127 128 126 127 

23 130 132 133 131 133 

24 136 138 139 137 138 

25 141 143 144 142 143 

26 148 149 148 148 148 

27 156 154 152 153 153 



28 164 159 155 158 157 

29 166 163 158 164 161 

30 169 168 160 169 165 

31 170 172 162 174 168 

32 176 177 163 179 172 

33 180 181 164 184 174 

34 181 185 165 189 177 

 

4.4 Threats to the validity 

In this section, we address potential limitations to the generalizability of our findings. 

These limitations primarily concern the applicability of our models in industrial settings. 

Although our experiments utilized three real datasets to demonstrate the performance of 

the proposed models, it is essential to acknowledge that the results may vary across 

specific applications. The reason is that software reliability models rely on the failure 

dataset; thus, no single model is suitable for every application. Furthermore, the choice 

of criteria and models used in the experiments is another issue that may impact the 

outcomes. We selected three comparison criteria and seven competitor models based on 

previous software reliability studies that align with our approach. We recommend using 

additional criteria and expanding the set of candidate models for evaluation and 

comparison to select the most suitable software reliability model for a specific 

application. Expanding the evaluation's scope can give a more comprehensive 

understanding of the models' performance. 

5. Sensitivity analysis 

A scientific model can be likened to a black box that takes inputs and produces 

corresponding outputs. In the case of a mathematical model, sensitivity analysis is 

employed to assess the impact of changes in input values on the model's outputs. 

Sensitivity analysis serves various purposes, including prioritizing model inputs to 

identify the critical drivers of model behavior. It also provides insights into the stability 

of inputs. Sensitivity plots visualize how the model's output changes when inputs are 

modified within predetermined small ranges. This information is valuable for managers, 

decision-makers, or analysts as it offers insights into the problem. In one-way sensitivity 

analysis, inputs are varied individually around a selected value of interest, and the 

variations can be minor. By systematically adjusting the parameter values, we gained 

insights into the model's response to parameter changes and identified the parameters 

significantly impacting the model's behavior. 

To assess the sensitivity and stability of the NEW1 model, we conducted a one-way 

sensitivity analysis by modifying a single parameter while keeping all other parameters 

fixed. This analysis aimed to identify which model parameters are sensitive to changes 



and which are more stable. Specifically, we examined how variations in the estimated 

parameter values obtained from Tables 3, 5, and 7, ranging from -40% to +40% at 20% 

intervals, affect the estimated mean value function of the NEW1 model.  

In Figures 6-8, we present the results of a sensitivity analysis performed on all five 

parameters of the NEW1 model, utilizing DS1-DS3 datasets. These figures display the 

mean value function, m(t), for the NEW1 model. Within each figure, we vary one 

parameter value, as represented in the corresponding plots, while keeping the remaining 

parameters fixed, following the details in Tables 3, 5, and 7. These figures provide 

insights into the impact of parameter variations on the cumulative number of expected 

faults. It is evident from Figure 6-8 that among all parameters of the NEW1 model, the 

predicted number of initial defects, represented by the parameter "a", plays a critical role 

in driving the behavior of the proposed model. Parameter changes "a" result in 

noticeable variations in the model's output for all datasets.  

Figure 6 also reveals that slight changes in parameter "s", corresponding to the 

learning rate, lead to slight changes in the model's output. Parameter "w", corresponding 

to the fatigue factor, remains stable, indicating that the model's output is less sensitive 

to these parameter changes. Similarly, slight changes in the value "α" lead to minor 

modifications in the model's output and weight "β" indicates robustness to variations.  

 



 

 

 



 

Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1. 

Figure 7 demonstrates that variations in parameter "s" has a minimal impact on the 

value of the NEW1 model, reaffirming its stability. Changes in parameters "w" and "β" 

do not result in noticeable modifications to the model's output. However, the slight 

parameter variations "α" lead to slight model value fluctuations. Overall, the sensitivity 

analyses highlight the significance of the predicted number of initial defects (parameter 

"a") in driving the behaviour of the NEW1 model. Parameters "w", "s", and "β" are 

considered stable and robust, while parameter "α" exhibit relatively minor effects on the 

model's output.  

 



 

 

 



 

Figure 7. Sensitivity analysis plots for the parameters of the NEW1 model using DS2. 

Figure 8 illustrates the sensitivity analysis results of the NEW1 model using DS3. It 

can be observed that the parameter "s" exhibits stability, meaning that variations in its 

value have minimal impact on the model's overall value. On the other hand, changes in 

the parameters "w", "α", and "β" lead to minor fluctuations in the model's value.  

 

 



 

 

 

Figure 8. Sensitivity analysis plots for the parameters of the NEW1 model using DS3. 

Similar sensitivity analyses can be performed for other models using a similar 

approach. 

6. Conclusion 



In this study, we aimed to develop a novel software reliability model that integrates 

two critical human-related factors: learning and fatigue of software debuggers. While 

existing research has examined the impact of learning and experience on software 

reliability, there is a noticeable gap in the literature concerning the study of other human-

related factors, such as fatigue. This work considered fatigue's effects on error-making, 

incorporating fatigue as a crucial factor in constructing the software reliability model. 

The findings presented in this paper demonstrate the robust performance of the model 

across all the datasets examined, showcasing its efficacy in predicting software 

reliability. By employing the tanh function to represent learning and the exponential 

decay function to model fatigue, we have contributed to the existing knowledge in this 

field. The successful application of these functions to represent the FDR highlights their 

suitability for capturing the dynamics of human-related factors in the reliability 

estimation process. Despite the promising results, it is essential to acknowledge the 

limitations and constraints of our study. The unavailability of new datasets restricted our 

ability to test the model on more recent datasets. However, the older datasets are still 

relevant and valid in understanding the underlying principles in the current studied 

domain, as researchers widely use them. 

Additionally, the choice of the FDR function was constrained to ensure the 

solvability of the resulting differential equation. For future research, we recommend 

exploring the development of alternative models that incorporate other factors affecting 

fault introduction. By considering a more comprehensive set of variables, we can further 

enhance the accuracy and applicability of software reliability models. 
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