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Abstract

Software Reliability Growth Models (SRGMs) based on the non-homogeneous
Poisson process have played a significant role in predicting the number of remaining
errors in software, enhancing software reliability. Software errors are commonly
attributed to the mental errors of software developers, which necessitate timely detection
and resolution. However, it has been observed that the human error-making mechanism
is influenced by factors such as learning and fatigue. In this paper, we address the issue
of integrating the fatigue factor of software testers into the learning process during
debugging, leading to the development of more realistic SRGMs. The first model
represents the software tester's learning phenomenon through the tangent hyperbolic
function, while the second model utilizes an exponential function. An exponential decay
function models fatigue. We investigate the behavior of our proposed models by
comparing them with similar SRGMs, including two corresponding models in which the
fatigue factor is removed. Through analysis, we assess our models' quality of fit,
predictive power, and accuracy. The experimental results demonstrate that the model of
tangent hyperbolic learning with fatigue outperforms the existing ones regarding fit,
predictive power, or accuracy. By incorporating the fatigue factor, the models provide
a more comprehensive and realistic depiction of software reliability.

Keywords: Software reliability growth model; non-homogeneous Poisson process;
learning curve; fatigue; imperfect debugging



1. Introduction

Due to the ubiquitous use of software in our daily lives, accurately predicting the
number of software errors has become crucial, particularly in critical applications.
Software Reliability Growth Models (SRGMs) based on the non-homogeneous Poisson
process (NHPP) have emerged as widely adopted tools for this purpose (Pham, 2006).
These models allow for numerical estimation of the remaining errors in software and
provide insights into its reliability. To address the complexities of the software
development process, SRGMs have evolved to incorporate various factors, including
the experience, skill, and learning of software developers (Yamada, 2014).

Research has highlighted the significant impact of fatigue on the human error-making
process (Baghdadi et al., 2015). In particular, studies have demonstrated that fatigue can
trigger attention switching in individuals, typically occurring after approximately 40
minutes of continuous activity. This fatigue-induced attention shift is attributed to a
gradual reduction in dopamine secretion, eventually reaching a threshold that disrupts
attention. Furthermore, it has been observed that other neurotransmitters cannot
adequately compensate for the decline in dopamine release. To capture this
phenomenon, researchers have modelled the decrease in dopamine secretion rate as an
exponential decay process towards a specific limit (Baghdadi et al., 2015).

Software debugging is the process of identifying and removing errors or defects in a
computer program, which affects software reliability. Achieving perfect software
debugging is often challenging and may not always be possible due to the inherent
complexity of software development. The goal is to minimize bugs and deliver a high-
quality product by employing best practices and continuously improving the
development and debugging processes. In imperfect debugging, software testers
inadvertently introduce new faults during the debugging process. Whether the
debugging process is perfect or imperfect can be influenced by various human-related
and non-human-related factors, such as the experience and skill of debuggers,
debugging tools, program size and complexity, testing strategies, and environmental
factors (Zhang and Pham, 2000). We believe that learning and fatigue are two human-
related factors that can significantly impact software debugging, influencing the
efficiency and effectiveness of the process. The reason is that developers familiar with
the codebase, have a good understanding of the software's logic and expected behaviour
and possess domain knowledge to understand the intricacies and potential pitfalls can
do more efficient debugging.

On the other hand, debugging requires sustained attention and focus, as developers
need to analyze code, identify patterns, and devise solutions. Fatigue can lead to reduced
concentration, making it easier to overlook critical details or commit errors during
debugging. Debugging can be time-consuming and sometimes frustrating, especially
when dealing with complex bugs. Fatigue may reduce a developer's patience and
persistence, potentially resulting in premature abandonment of the problem-solving



process or hasty application of inadequate fixes. In both cases, learning and fatigue can
work hand in hand. New developers or those less familiar with the codebase may
experience increased fatigue as they need to invest more effort in understanding the code
and identifying issues. Conversely, fatigue can hinder the learning process, making it
more challenging for developers to absorb new information (experience) or gain deeper
insights into the software.

This research delves into a new specific aspect of imperfect debugging - the impact
of tester fatigue on the debugging process. We assume these imperfections can stem
from attention-switching problems caused by tester fatigue. Understanding that fatigue
can lead to attention-switching problems and subsequently introduce new defects is
crucial for creating more accurate representations of real-world scenarios. The research
introduces two SRGMs involving human-related factors of tester learning and fatigue.
The first model represents the software tester's learning phenomenon through the
tangent hyperbolic (tanh) function, while the second model utilizes an exponential
function. We investigate the behavior of our proposed models by comparing them with
similar SRGMs, including the corresponding two perfect software reliability models that
do not consider the effect of the fatigue factor. We estimate the models' parameters and
assess their fit, predictive abilities, and accuracy using three datasets to validate them.

Section 2 of this paper focuses on reviewing relevant literature and exploring
previous works in the field. Section 3 introduces the mathematical formulations of our
proposed models, which are based on a general framework of a family of SRGMs.
Section 4 presents numerical examples to illustrate the application and performance of
the models. To gain a deeper understanding of the proposed models, Section 5 conducts
a sensitivity analysis, providing valuable insights into their behavior and critical
parameters. Finally, Section 6 concludes the paper, summarizing the main findings and
highlighting our research contributions.

2. Literature review
A. Learning curves

Learning refers to acquiring new knowledge, skills, or understanding, and a learning
curve visually represents the relationship between skill level, expertise, and the time
required to complete a task. Mathematically, learning can be described by various
functions, each representing different improvement patterns over time. Three typical
learning curves are S-shaped, exponential, and exponential growth to a limit. The S-
shaped learning curve demonstrates initial exponential growth, followed by a period of
slower growth and ultimately approaching a maximum upper limit that is never fully
reached. The logistic function commonly describes an S-shaped learning curve, also
known as the sigmoid curve. The exponential learning curve illustrates a slow rate of



progress at the beginning, gradually increasing over time until full proficiency is
achieved. Unlike the S-shaped curve, the exponential learning curve suggests that
learning can improve indefinitely without limits. The exponential growth to a limit
learning curve indicates that initial attempts result in rapid skill acquisition or
information retention, reaching a maximum rate and approaching a maximum upper
limit. However, perfection or significant improvement in the skill may not occur with
subsequent repetitions. Figure 1 represents three standard types of learning curves.

S-shaped Exponential Exponential to a limit

Figure 1. S-shaped, exponential, and exponential to a limit learning curves

B. Related works

Over the past few decades, researchers have made significant advancements in
developing software reliability growth models by exploring various ideas and
approaches. One notable contribution in this field is the work of Pham and Nordmann,
who introduced a general framework for constructing new SRGMs (Pham & Nordmann,
1997). This framework has served as a foundation for interpreting several existing
software reliability models. Within this framework, two concepts play vital roles in the
construction of an SRGM: the expected number of initial faults (NIF) present in the
software at the beginning of the testing phase and the fault detection rate (FDR), which
represents the rate at which failures are detected over time. In the context of software
debugging, both NIF and FDR can be treated as either constant or varying in a time-
dependent manner. Figure 2 categorizes this group of SRGMs based on whether the NIF
and FDR are considered constant or subject to change. This figure helps to provide a
clearer understanding of the different models within this family.

SRGM

NIF FDR

constant changing constant changing




Figure 2. A classification of some SRGMs

In models with constant NIF, it is assumed that when a fault is detected, it is
immediately removed by the testers, and no new errors are introduced in the process.
Consequently, the software's initial defects remain unchanged throughout the debugging
phase. On the other hand, in software reliability models with changing NIF, it is
acknowledged that new faults may be introduced during the testing phase. This means
that the total number of defects in the software is not constant and comprises both the
initial faults and the additional faults introduced during the debugging process. This
assumption recognizes the possibility of testers unintentionally introducing new errors
while attempting to fix existing defects.

The FDR is a significant indicator of the effectiveness of the testing phase. It is
influenced by various factors, including the expertise of testers, testing techniques
employed, and the selection of test cases. The FDR can remain constant or vary among
faults depending on the software reliability model. In the case of a constant FDR, it is
assumed that all defects in the software have an equal probability of being detected
throughout the testing period. This implies that the FDR remains consistent over time,
irrespective of the specific characteristics of the faults.

Conversely, in models with a time-dependent FDR, the function may exhibit
increasing or decreasing trends as time progresses. This variation acknowledges the
dynamic nature of the testing process, where the effectiveness of fault detection can be
influenced by factors such as the testing team's expertise, the program's size, and the
software's testability. By incorporating the concept of a changing FDR, software
reliability models can better reflect the complexities and uncertainties inherent in real-
world testing scenarios. Recognizing the dependence of the FDR on various factors
enables researchers to develop more accurate models and gain deeper insights into the
dynamics of software reliability assessment.

SRGMs with constant NIF and constant/changing FDR

The Goel-Okumoto model (Goel and Okumoto, 1979) is a widely referenced
example of an NHPP model with constant NIF and FDR. More SRGMs with constant
NIF and changing FDR have been proposed in the literature. These models consider
learning phenomena, time resources, testing coverage, and environmental uncertainties.
Yamada et al. (1983) introduced the concept of a learning process in software testing,
where testers gradually improve their skills and familiarity with the software products.
They formulated an increasing FDR with a hyperbolic function to represent the learning
rate of testers and proposed the delayed S-shaped model. Ohba (1984) considered the
learning process of testers during the testing phase and defined the FDR using a non-
decreasing logistic S-shaped curve, leading to the development of the inflection S-
shaped model. Yamada and Osaki (1985) considered the consumption of time resources
and proposed the exponential testing effort and Rayleigh testing effort models. Pham



(2006) introduced the imperfect fault detection (IFD) model, which incorporates a
changing FDR that combines fault introduction with the phenomenon of testing
coverage. This model allows for a more realistic representation of the testing process.
Song et al. (2019) considered the impact of testing coverage uncertainty or randomness
in the operating environment. They proposed a new NHPP software reliability model
with constant NIF and changing FDR regarding a testing coverage function, considering
the uncertainty associated with operational environments.

SRGMs with changing NIF and constant/changing FDR

More SRGMs with time-dependent changing NIF function and constant/changing
FDR have been proposed in the literature. For example, Yamada et al. (1992) proposed
two imperfect debugging models assuming the NIF function to be an exponential or
linear function of the testing time, respectively, and FDR to be constant. Pham and
Zhang (1997) developed an imperfect debugging model considering an exponential
function of testing time for NIF and a non-decreasing S-shaped function for FDR. Pham
et al. (1999) proposed an imperfect SRGM with NIF function to be linear and FDR S-
shaped of the testing time. Li and Pham (2017) introduced a new, changing NIF model,
and FDR is expressed as a testing coverage function. They also assumed in their model,
when a software failure is detected, immediate debugging starts, and either the total
number of faults is reduced by one with probability p or the total number of faults
remains the same with probability 1-p.

Other SRGMs

Many imperfect SRGMs do not fit the above framework precisely and use other
approaches. For example, Chiu et al. (2008) proposed a model that considers the
influential factors for finding errors in software, including the autonomous errors-
detected and learning factors. They proposed an FDR function including two factors
representing the exponential-shaped and the S-shaped types of behaviours. Igbal et al.
(2013) investigated the impact of two types of learning effect factors: autonomous
learning and acquired learning which is gained after repeated experience/observation of
the testing/debugging process by the tester/debugger in an SRGM. Wang et al. (2015)
proposed an imperfect software debugging model that considers a log-logistic
distribution function for NIF, which can capture the increasing and decreasing
characteristics of the fault introduction rate per fault. They reason imperfect software
debugging models proposed in the literature generally assume a constantly or
monotonically decreasing fault introduction rate per fault. These models cannot
adequately describe the fault introduction process in a practical test. Wang and Wu
(2016) proposed a nonlinear, NHPP imperfect software debugging model by
considering that fault introduction is a nonlinear process. Al-Turk and Al-Mutairi (2020)
developed an SRGM based on one-parameter Lindley distribution, which is modified
by integrating two learning effects of the autonomous errors-detected factor and the
learning factor. These studies highlight the ongoing efforts to refine SRGMs by



considering real-world scenarios and addressing critical aspects of the software testing
and debugging processes. Huang et al. (2022) developed an NHPP model considering
both human factors (learning effect of the debugging process) and the nature of errors,
such as varieties of errors and change points, during the testing period to extend the
practicability of SRGMs. Verma et al. (2022) proposed an SRGM by considering
conditions of error generation, fault removal efficiency (FRE), imperfect debugging
parameter, and fault reduction factor (FRF). The error generation, imperfect debugging,
and FRE parameters have been assumed to be constant, while FRF is time-dependent
and modelled by exponential, Weibull, and delayed s-shaped distribution functions. Luo
et al. (2023) recently proposed a new SRGM with a changing NIF and FDR represented
by an exponential decay function of testing time.

Each category of SRGMs has its own set of advantages and disadvantages. On one
end of the spectrum, SRGMs with a changing NIF and FDR tend to have more
parameters, as they incorporate various assumptions to yield a more realistic
representation of the underlying processes. However, this realism comes at the cost of
increased complexity. Complex models may require more resources, such as time and
memory, to appropriately evaluate. While the abundance of parameters offers flexibility,
it also leads to higher computational overhead.

In contrast, SRGMs with a constant NIF and FDR follow a simpler approach,
resulting in fewer parameters and more straightforward models. A simpler model is
generally easier to comprehend, interpret, and implement. Despite potentially sacrificing
some level of realism, the simplicity of such models can prove advantageous, especially
when computational efficiency and ease of use are significant considerations.

3. Development of new NHPP software reliability models

This study focuses on modelling SRGMs with a constant NIF and time-dependent
FDR function. This choice has two reasons: (1) To gain a deeper insight into how the
new time-dependent FDR affects the model's behaviour. By focusing on the FDR
function, we aim to understand its implications in software reliability analysis. (2)
Simplicity is another objective of this approach. Employing a constant NIF makes the
resulting model more straightforward to interpret. Simpler models are often favoured
for their ease of implementation and comprehensibility.

The mean value function, m(t), for the class of NHPP- SRGMs with a constant NIF
and time-dependent FDR function can be obtained by solving the following differential
equation:

dam(t) _

22 = () [a—m(®)] withm(0) =0 (1)

In which a>0 is the NIF, i.e., the number of defects in the software at the beginning
of the test, and r(t) is a time-dependent FDR function that denotes the rate of discovering



new faults in software over the testing. The SRGM defined by Eq. (1) is based on the
following assumptions: (1) a non-homogeneous Poisson process can describe the fault
removal process. (2) The faults that remained in the software caused the system fails at
random times (3) The mean number of detected faults is proportional to the mean
number of remaining faults in the system. By introducing various functions for
r(t), which can be interpreted as different assumptions made, the mathematical
expression for m(t) can be derived. For example, when r(t)=b, then m(t) = a[1 —
exp(—bt)], that is the GO model (Goel and Okumoto, 1979).

Now, we propose new models based on Eq. (1) by considering the following
functions for r(t):

1. Combination of tanh learning with fatigue.

2. Combination of exponential learning with fatigue.
3. Tanh learning without fatigue.

4. Exponential learning without fatigue.

This study analyses two learning curves: one based on the tanh function and the other
based on the exponential function. The objective is to determine which curve more
accurately captures the actual learning behaviour in the context of this research. Unlike
previous studies that have usually used an S-shaped curve for modelling r(t), this
research introduces a novel approach by adopting the tanh(t) function, where t>0, which
exhibits an exponential-to-limit behaviour for learning. Furthermore, the study explores
the integration of this new learning curve with the fatigue phenomenon to model r(t).
The behavior of the two proposed models is also investigated when the fatigue factor is
removed from the models.

In model NEW1, we assume r(t) represents a weighted combination of the tanh
learning with the fatigue of the tester as follows:

r(t) = a-tanh(st) + f - e (2)

Parameters s and w represent the learning and fatigue rates, respectively. o and 3 are
positive coefficients representing the weights of each factor. By substituting Eq. (2) in
Eg. (1) and solving the resulting differential equation, the mathematical form of the
mean value function of the NEW1 model is obtained as follows:

BEe™-1)  -a
m(t) =a[l—e w coshs (st)] (3)

This model assumes each time a failure is observed, the failure is removed, and new
faults can be introduced due to fatigue.

In model NEW2, we assume r(t) is the combination (for simplicity average) of
exponential learning and fatigue.



r(t) = k - cosh(st) 4)

Parameter s represents an equal rate of learning and fatigue, and Kk is a weight. By
substituting Eqg. (4) in Eqg. (1) and solving the resulting differential equation, the
mathematical form of the mean value function of model NEW?2 is obtained as follows:

—ksinh(st)]

m(t) = a[l—e s ©)

In model NEW3, only the tanh learning function without the fatigue factor is
considered for r(t) as follows:

r(t) = k - tanh(st) (6)

By substituting Eg. (6) in Eq. (1) and solving the resulting differential equation, the
mathematical form of the mean value function of model NEW3 is obtained as follows:

m(t) = a[l — cosh_Tk(st)] (7)

In model NEWA4, only the exponential learning function without the fatigue factor is
considered for r(t) as follows:

r(t) = k-est (8)

By substituting Eq. (8) in Eq. (1) and solving the resulting differential equation, the
mathematical form of the mean value function of model NEW4 is obtained:

k(1 eSt)

m(t) =a[l—e s ] 9)

4. Numerical examples

Our experiments specifically considered SRGMs that align with this modelling
framework, featuring constant NIF and either constant or changing FDR Table 1.
summarizes the characteristics of the similar existing SRGMs and the proposed models
used in this study.

Table 1. Characteristics of SRGMs used in this study

Model m(t) r(t) Comments

8&3;“0 a(1—e-bty b Constant FDR (Goel & Okumoto,

(GO) 1979)

Delayed 2 . . .
_ bt Increasing FDR with a hyperbolic

- — bt

(SDsSh)aped al = (1 +bt)e™™] 1+ bt function (Yamada et al. 1983)




Inflection

S-shaned a(l1—e™Pt) b Increasing FDR with a two-parameter
(1S) P 1+ ce-bt 1+ ce~bt logistic function (Ohba, 1984)
Yamada Proportional to the exponential
Exponential | q[1 — e~7@(1-¢7%)] r.afe Ft testing effort function (Yamada &
(YE) Osaki 1985)
Yamada Be2 . Proportional to the Rayleigh testing
Rayleigh afl - e—w(l—e_T)] r. a[?te_ﬁ% effort function (Yamada & Osaki,
(YR) 1985)
_ Combination of a testing coverage
- bt 2
IFD a—ae™ 1+ ++dg(t1t2 bt __d with a fault introduction rate function
] 1+bt 1+dt (Pham 2006)
Testing coverage with the uncertainty
—d+(1+d)b of the o_peratlng enV|r0'n'ment m ha§ a
SCP a[l— bt /l; T dt 1% n¢ c(i _bt) ) generalized  probability  density
B +bt —In(1 +dt) (1 +dt)e function with two parameters o and
B.) (Song et al. 2019)
Ble™t-1) —a —wt Combination of tanh learning with
NEW1 all—e W cosh (st)] | @tanh(st) +f.e fatigue (Current study)
—ksinh(st) Average of exponential learning with
NEW2 a[ll—e s k.cosh(st) fatigue (Current study)
NEWS3 all - cosh_s_k(st)] k.tanh(st) Tanh learning (Current study)
NEW4 Ka—e”) k.est Exponential learning (Current study)

all—e s ]

4.1 Descriptions of the Datasets

Three datasets from different real software projects have been used to study our
proposed models' fitting and predictive ability, validate our approaches, and compare
them with similar ones. The first dataset (DS1) is Release 1 of the Tandem Computers
Software Data Project. Over 20 weeks, 100 faults were detected (Wood 1996). This
dataset is frequently used in the literature. The second dataset (DS2) was obtained from
a real-time command and control system. During 25 hours, 136 faults were detected
(Pham 2006). The third dataset (DS3) was collected from a wireless network switching
system. Over 34 weeks, 181 defects were detected (Jeske et al. 2005).

Table 2. Summary of the selected failure data sets

Data set Testing period | Cumulative number of failures
DS1 | Tandem Computer Software 20 weeks 100
DS2 | Real-time Command and Control System | 25 hours 136
DS3 | Wireless Network System 34 days 181

4.2 Criteria for model comparison




We employed three criteria to compare and illustrate the models' fitting, predictive
capabilities, and accuracy. These criteria were chosen to provide comprehensive
evaluations of the models' performance. The three criteria used are as follows:

Criterion 1. (A measure of fit)

The mean squared error (MSE) is a widely used criterion to assess the adequacy of a
software reliability model's fit. Given a dataset consisting of pairs of observed failure
times (ti, yi) fori =1, 2, ..., k, where k represents the total number of observations in the
dataset, the MSE quantifies the discrepancy between the predicted values of the model
and the corresponding actual data. Mathematically, the MSE is defined as follows:

MSE = £ 2, [m; — m(t)]? (10)

m,; denotes the cumulated number of actual software failures found until the time ¢;,
and m(t;) is the model estimate for the cumulated number of failures discovered at the
time t;. A smaller value of the MSE criterion represents a minor error in fitting and
therefore indicates a better model performance.

Criterion 2. (A measure of prediction)

The predictive ability of a software reliability growth model refers to its capability to
predict future and unseen software failure data based on the observed failure data. The
predictive ratio risk (PRR) is a criterion to assess the model's prediction accuracy. It
quantifies the discrepancy between the model's estimations and the actual observations.
The PRR is calculated as follows (Pham and Deng 2003):

PRR = Y [Ty (11)

m(t;)
A smaller PRR indicates a better performance of the model.
Criterion 3. (A measure of accuracy)

Theil's statistic (TS) measures accuracy, assessing the deviation between the actual
values and the model's predictions across all periods. It is calculated as the average
deviation and is defined as follows:

k N )2
Ts = [Zizm(m)-m)* (12)

Z{‘(=1mi2
A closer TS to zero indicates better accuracy of the model.

4.3 Comparisons



To compare the proposed models' fitting, predictive, and accuracy with other models,
we divided the datasets into two subsets: 80% and 20%. The 80% subset was used to
estimate the parameters of the models using the least-square error method. These
estimated parameter values were then applied to the 80% subset to calculate the mean
square error (MSE_fit) values. The estimated parameter values were also applied to the
remaining 20% of the datasets to calculate the predictive ratio risk (PRR_predict)
values. Finally, the estimated parameter values were used for the entire period of
collected failure data to calculate Theil's statistic (TS) values, which measure accuracy.

1) DS1 (Tandem dataset).

Table 3 displays the optimal parameter values for each SRGM and the corresponding
values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS1
dataset.

Table 3. Obtained results using DS1

Model | MSE_ fit | PRR_ predict | TS Parameters

GO 7.6246 0.029036 0.065128 | a=158.7887, b=0.0624

DS 31.296 0.00074 0.067117 | a=103.0886, b=0.2684

IS 7.6247 0.02902 0.065114 | a=158.7224, b=0.0625, ¢=0.001

YE 7.6286 0.0309 0.066846 | a=178.2258, r=0.01, 0=560.4812, $=0.01

YR 49.735 0.007346 0.087492 | a=99.5568, r=0.01, o= 398.3805, p=0.01

IFD 31.299 0.00074 0.067122 | a=103.0871, b=0.2684, d=0.00001

SCP 6.6326 0.051762 0.083567 | a=443.5951, b=611.657, d=7.727, 0=0.1, p=0.8235
NEW1 | 2.4346 0.000321 0.019395 | a=102.424, s=0.0001, w=955.9065, 0=225.0417, $=192.0749
NEW?2 | 6.4589 0.0028346 0.034402 | a=104.4743, k=0.0954, s=0.12998

NEWS3 | 15.887 0.0023959 0.049836 | a=121.2902, k=0.1, s=2.0804

NEW4 | 7.6233 0.027477 0.063675 | a=149.458, k=0.0659, s=0.0064

Figure 3 represents the values obtained from Table 3 in a combo chart.
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Figure 3. Combo chart representing MSE, PRR, and TS values for SRGMs using
DS1.

Based on the fitting ability (MSE_fit), the NEW1 model, which incorporates tanh
learning and fatigue, demonstrates the highest fitting level to the DS1 dataset. Regarding
predictive power (PRR_predict), the NEW1 model exhibits minimal prediction errors
and outperforms other models. When considering the measure of accuracy (TS), the
NEW1 model emerges as the most precise. Additionally, the other proposed models
exhibit commendable performance compared to competing models.

A comparative analysis of the four proposed models shows that the NEW1 model
(incorporating tanh learning with fatigue) outperforms its counterparts across all three
evaluation criteria. Concerning the models' fitting ability, NEW2 (employing
exponential learning with fatigue) exhibits superior performance compared to NEW4
(utilizing exponential learning alone), followed by NEW3 (applying tanh learning).
Regarding predictive power, NEW3 slightly surpasses NEW2, while NEW4
demonstrates the least favourable predictive performance. Regarding accuracy, NEW2
outperforms NEW3, followed by NEW4 as the least accurate model.

Table 4 presents the estimated number of defects as projected by the proposed
models.

Table 4. Comparison of the estimated defects by the new models using DSL1.



Testing | Defects | Estimated Estimated Estimated Estimated
Time found defects by the | defects by the | defects by the | defects by the
(weeks) NEW1 model | NEW2 model | NEW3 model | NEW4 model
1 16 20 10 8 10

2 24 22 18 19 19

3 27 27 27 28 27

4 33 32 34 37 35

5 41 39 42 45 43

6 49 47 49 52 50

7 54 54 56 59 56

8 58 62 62 65 62

9 69 69 69 70 68

10 75 75 74 75 74

11 81 81 80 80 79

12 86 86 85 84 84

13 90 90 89 87 88

14 93 93 93 90 93

15 96 96 96 93 97

16 98 98 99 96 100

17 99 99 101 98 104

18 100 100 102 101 107

19 100 101 103 103 110

20 100 101 104 104 113

2) DS2 (Real-time and Command dataset)

Table 5 displays the optimal parameter values for each SRGM and the corresponding
values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS2
dataset.

Table 5. Obtained results using DS2

Model | MSE_ fit | PRR_ predict | TS Parameters

GO 30.905 0.02243 0.0589 a=128.9073, b=0.156

DS 111.77 0.11536 0.1165 a=116.1565, b=0.418

IS 30.909 0.022436 0.0590 a=128.9051, b=0.156, c=0.00017

YE 22.711 0.01326 0.0489 a=183.9655, r=0.09, 0=14.9442, 3=0.09

YR 155.36 0.15089 0.1346 a=116.9754, r= 0.025, o= 145.7865, $=0.025

IFD 111.77 0.11537 0.1165 a=116.1561, b=0.418, d=0.00001

SCP 5.4306 0.003572 0.025238 | a=433.4581, b=1000, d=2.5449, a =4.9218, 3=0.38695
NEW1 | 11.986 0.0013361 0.0307 a=143.9519, s=15.59059, w=873.0036, o =0.1 p =138.7975




NEW2 | 30.905 0.022431 0.0590 a=128.9058, k=0.156, s=0.001
NEW3 | 21.675 0.035237 0.05892 | a=123.4075, k= 0.169, s=47.3651
NEW4 | 30.941 0.022493 0.0590 a=128.8742, k=0.156, s=0.00015

Figure 4 represents the values obtained from Table 5 in a combo chart.
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Figure 4. Combo chart representing MSE, PRR, and TS values for SRGMs using
DS2.

Based on the fitting ability (MSE_fit), the SCP model demonstrates the best fit,
followed by the NEW1 model for the DS2 dataset. Regarding predictive power
(PRR_predict), the NEW1 model exhibits the lowest prediction errors, while the SCP
model ranks second. Regarding accuracy (TS), the NEW1 model is the second-most
accurate model after SCP. The other proposed models exhibit satisfactory performance
and outperform the DS, IFD, and YR models.

A comparative analysis of the four proposed models shows that the NEW1 model
(incorporating tanh learning with fatigue) outperforms its counterparts across all three
evaluation criteria. NEW2 (employing exponential learning with fatigue) and NEW4
(utilizing exponential learning alone) exhibit considerable similarity in their
performance across all three criteria. Meanwhile, the NEW3 model, which applies tanh
learning, showcases distinct characteristics compared to NEW2 and NEWA4. It notably
excels in fitting ability; however, its predictive power falls behind that of NEW2 and
NEWA4, suggesting that NEW3 might be less accurate in making future predictions.
Nevertheless, in terms of accuracy, NEW3 performs similarly to NEW2 and NEW4,
implying that all three models yield comparable levels of correctness in their
predictions.



Table 6 presents the estimated number of defects for the proposed models.

Table 6. Comparison of the estimated defects by the new models using DS2.

Testing | Defects | Estimated Estimated Estimated Estimated
Time found defects by the | defects by the | defects by the | defects by the
(hours) NEW1 model | NEW2 model NEW3 model | NEW4 model
1 27 32 19 19 19

2 43 43 35 35 35

3 54 53 48 49 48

4 64 61 60 61 60

5 75 69 70 70 70

6 82 76 78 79 78

7 84 83 86 86 86

8 89 89 92 91 92

9 92 94 97 96 97

10 93 99 102 101 102

11 97 103 106 104 106

12 104 107 109 107 109

13 106 110 112 110 112

14 111 114 114 112 114

15 116 116 117 114 117

16 122 119 118 123 118

17 122 121 120 123 120

18 127 124 121 123 121

19 128 126 122 123 122

20 129 127 123 123 123

21 131 129 124 123 124

22 132 130 125 123 125

23 134 132 125 123 125

24 135 133 126 123 126

25 136 134 126 123 126

3) DS3 (Wireless network system dataset)

Table 7 displays the optimal parameter values for each SRGM and the corresponding
values obtained through the MSE_fit, PRR_predict, and TS criteria using the DS3
dataset.

Table 7. The obtained results using DS3



Model | MSE_fit | PRR_ predict | TS Parameters

GO 13.823 0.0068311 0.0372 a=5724.2965, b=0.001

DS 18.05 0.028493 0.0535 a=201.7278, b=0.0977

IS 5912 0.0070125 0.028491 | a=208.1097, b=0.1, c=4.097

YE 15.072 0.005775 0.0369 a=2989.2663, 1=0.1523, 0=84.755, f=0.00015

YR 41.288 0.14166 0.1008 a=156.15498, r=0.2652, a=18396.9465, $=0.0000015
IFD 18.163 0.028824 0.0538 a=201.4796, b=0.098, d=0.0001

SCP 5.8568 0.0078277 0.031415 | a=964.07144, b=18.663, d=0.3086, 0=1.268, =1622.9581
NEW1 | 5.6262 0.0020131 0.0219 a=242.957, s=0.017, w=0.017, 0=0.1057, $=0.017
NEW2 | 6.8976 0.035603 0.0512 a=166.1322, k=0.0322, s=0.1017

NEW3 | 7.7425 0.0046374 0.028717 | a=685.335, k= 0.01, s=0.4079

NEW4 | 5.754 0.0056439 0.0269 a=187.6476, k=0.0237, s=0.063

Figure 5 represents the values obtained from Table 7 in a combo chart.
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Figure 5. Combo chart representing MSE, PRR, and TS values for SRGMs using
DS3.

Based on the fitting ability (MSE_fit), the NEW1 model best fits the DS3 dataset.
Regarding predictive power (PRR_predict), the NEW1 model exhibits the lowest
prediction errors. Regarding accuracy (TS), the NEW1 model is the most accurate. The
other proposed models also exhibit satisfactory performance among their competitors.

In a comparative analysis of the four proposed models, compelling evidence emerges,
clearly showcasing the superiority of the NEW1 model (integrating tanh learning with



fatigue) over its counterparts across all three evaluation criteria. Conversely, NEW2
(employing exponential learning with fatigue) exhibits the least favourable performance
among all models, showcasing inferior results across all three criteria. Furthermore,
NEW4 (utilizing exponential learning exclusively) demonstrates advantages over
NEWS3 (applying tanh learning) regarding fitting ability and accuracy. However, it falls
short compared to NEW3 regarding predictive power, implying that NEW3 possesses a
better capability to make accurate future predictions.

Table 8 presents the estimated number of defects for the proposed models.

Table 8. Comparison of the estimated defects by the proposed models using DS3.

Testing | Defects | Estimated Estimated Estimated Estimated
Time found defects by the | defects by the | defects by the | defects by the
(days) NEW1 model | NEW2 model | NEW3 model | NEW4 model
1 5 4 5 1 5

2 6 9 10 5 9

3 13 14 16 10 14

4 22 19 21 16 19

5 24 24 26 23 24

6 29 29 31 29 30

7 34 35 36 35 35

8 40 41 41 42 41

9 46 47 47 48 47

10 53 53 53 55 53

11 63 59 58 61 59

12 70 65 64 67 65

13 71 72 70 73 71

14 74 78 7 79 78

15 78 84 83 85 84

16 90 90 90 91 90

17 98 97 96 97 97

18 105 103 103 103 103

19 110 109 109 109 109

20 117 115 116 115 115

21 123 121 122 120 121

22 128 127 128 126 127

23 130 132 133 131 133

24 136 138 139 137 138

25 141 143 144 142 143

26 148 149 148 148 148

27 156 154 152 153 153




28 164 159 155 158 157
29 166 163 158 164 161
30 169 168 160 169 165
31 170 172 162 174 168
32 176 177 163 179 172
33 180 181 164 184 174
34 181 185 165 189 177

4.4 Threats to the validity

In this section, we address potential limitations to the generalizability of our findings.
These limitations primarily concern the applicability of our models in industrial settings.
Although our experiments utilized three real datasets to demonstrate the performance of
the proposed models, it is essential to acknowledge that the results may vary across
specific applications. The reason is that software reliability models rely on the failure
dataset; thus, no single model is suitable for every application. Furthermore, the choice
of criteria and models used in the experiments is another issue that may impact the
outcomes. We selected three comparison criteria and seven competitor models based on
previous software reliability studies that align with our approach. We recommend using
additional criteria and expanding the set of candidate models for evaluation and
comparison to select the most suitable software reliability model for a specific
application. Expanding the evaluation's scope can give a more comprehensive
understanding of the models' performance.

5. Sensitivity analysis

A scientific model can be likened to a black box that takes inputs and produces
corresponding outputs. In the case of a mathematical model, sensitivity analysis is
employed to assess the impact of changes in input values on the model's outputs.
Sensitivity analysis serves various purposes, including prioritizing model inputs to
identify the critical drivers of model behavior. It also provides insights into the stability
of inputs. Sensitivity plots visualize how the model's output changes when inputs are
modified within predetermined small ranges. This information is valuable for managers,
decision-makers, or analysts as it offers insights into the problem. In one-way sensitivity
analysis, inputs are varied individually around a selected value of interest, and the
variations can be minor. By systematically adjusting the parameter values, we gained
insights into the model's response to parameter changes and identified the parameters
significantly impacting the model's behavior.

To assess the sensitivity and stability of the NEW1 model, we conducted a one-way
sensitivity analysis by modifying a single parameter while keeping all other parameters
fixed. This analysis aimed to identify which model parameters are sensitive to changes



and which are more stable. Specifically, we examined how variations in the estimated
parameter values obtained from Tables 3, 5, and 7, ranging from -40% to +40% at 20%
intervals, affect the estimated mean value function of the NEW1 model.

In Figures 6-8, we present the results of a sensitivity analysis performed on all five
parameters of the NEW1 model, utilizing DS1-DS3 datasets. These figures display the
mean value function, m(t), for the NEW1 model. Within each figure, we vary one
parameter value, as represented in the corresponding plots, while keeping the remaining
parameters fixed, following the details in Tables 3, 5, and 7. These figures provide
insights into the impact of parameter variations on the cumulative number of expected
faults. It is evident from Figure 6-8 that among all parameters of the NEW1 model, the
predicted number of initial defects, represented by the parameter "a", plays a critical role
in driving the behavior of the proposed model. Parameter changes "a" result in
noticeable variations in the model's output for all datasets.

Figure 6 also reveals that slight changes in parameter "s", corresponding to the
learning rate, lead to slight changes in the model's output. Parameter "w", corresponding
to the fatigue factor, remains stable, indicating that the model's output is less sensitive
to these parameter changes. Similarly, slight changes in the value "a" lead to minor
modifications in the model's output and weight "B" indicates robustness to variations.
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Figure 6. Sensitivity analysis plots for the parameters of the NEW1 model using DS1.

Figure 7 demonstrates that variations in parameter "s" has a minimal impact on the
value of the NEW1 model, reaffirming its stability. Changes in parameters "w" and "B"
do not result in noticeable modifications to the model's output. However, the slight
parameter variations "a" lead to slight model value fluctuations. Overall, the sensitivity
analyses highlight the significance of the predicted number of initial defects (parameter
"a") in driving the behaviour of the NEW1 model. Parameters "w", "s", and "B" are
considered stable and robust, while parameter "a" exhibit relatively minor effects on the
model's output.
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Figure 7. Sensitivity analysis plots for the parameters of the NEW1 model using DS2.

Figure 8 illustrates the sensitivity analysis results of the NEW1 model using DS3. It
can be observed that the parameter "s" exhibits stability, meaning that variations in its
value have minimal impact on the model's overall value. On the other hand, changes in

the parameters "w", "a", and "B" lead to minor fluctuations in the model's value.
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Figure 8. Sensitivity analysis plots for the parameters of the NEW1 model using DS3.

Similar sensitivity analyses can be performed for other models using a similar
approach.

6. Conclusion



In this study, we aimed to develop a novel software reliability model that integrates
two critical human-related factors: learning and fatigue of software debuggers. While
existing research has examined the impact of learning and experience on software
reliability, there is a noticeable gap in the literature concerning the study of other human-
related factors, such as fatigue. This work considered fatigue's effects on error-making,
incorporating fatigue as a crucial factor in constructing the software reliability model.
The findings presented in this paper demonstrate the robust performance of the model
across all the datasets examined, showcasing its efficacy in predicting software
reliability. By employing the tanh function to represent learning and the exponential
decay function to model fatigue, we have contributed to the existing knowledge in this
field. The successful application of these functions to represent the FDR highlights their
suitability for capturing the dynamics of human-related factors in the reliability
estimation process. Despite the promising results, it is essential to acknowledge the
limitations and constraints of our study. The unavailability of new datasets restricted our
ability to test the model on more recent datasets. However, the older datasets are still
relevant and valid in understanding the underlying principles in the current studied
domain, as researchers widely use them.

Additionally, the choice of the FDR function was constrained to ensure the
solvability of the resulting differential equation. For future research, we recommend
exploring the development of alternative models that incorporate other factors affecting
fault introduction. By considering a more comprehensive set of variables, we can further
enhance the accuracy and applicability of software reliability models.
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