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Abstract: COVID-19 has been spreading rapidly, affecting billions of people globally, with significant 1

public health impacts. Biomedical imaging, like Computed Tomography (CT), has significant po- 2

tential as a possible substitute for the screening process. Because of this, automatic segmentation of 3

images is highly desirable as clinical decision support for an extensive evaluation of disease control 4

and monitoring. It is a dynamic tool and performs a central role in precise or accurate segmentation 5

of infected areas or regions in CT scans, thus, helping in the screening, diagnosing, and disease 6

monitoring. For this purpose, we introduced a deep learning framework for automated segmen- 7

tation of COVID-19 infected lesions/regions in lung CT scan images. Specifically, we adopted a 8

segmentation model, i.e., U-Net, and utilized an attention mechanism to enhance the framework’s 9

ability for the segmentation of virus-infected regions. Since all the extracted or obtained features 10

from the encoders are not valuable for segmentation; thus we applied the U-Net architecture with a 11

mechanism of attention for a better representation of the features. Moreover, we applied a boundary 12

loss function to deal with small and unbalanced lesion segmentation’s. Using different public CT 13

scan image data sets, we validated the framework’s effectiveness in contrast with other segmentation 14

techniques. Experimental outcomes showed the improved performance of the presented framework 15

for automated segmentation of lungs and infected areas in CT scan images. We also considered both 16

boundary loss and weighted binary cross-entropy dice loss function. The overall dice accuracy of the 17

framework is 0.93 and 0.76 for lungs and COVID-19 infected areas/regions. 18

Keywords: Sustainability, Artificial Intelligence, Biomedical Images, Deep Learning, COVID-19. 19

1. Introduction 20

Coronavirus epidemic was reported in late December 2019 in Wuhan city; after its 21

emergence, it spread rapidly worldwide [1]. It is a deadly viral infection/illness caused 22

due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It retains several 23

properties that make it highly contagious; therefore, enforcing people to adopt government 24

safety and prevention measures like social distancing [2], and [3] and raising the necessity 25

for rapid and reliable diagnosis of the infection. As far as July 2, 2022, based on the reports 26

and statistics of the World Health Organization shown in Figure 11, over 545, 226, 550 27

people have been affected by COVID-19 infection, and 6, 334, 728 have lost their lives, 28

around the globe. Thus, reliable and timely testing is essential to control the transmission 29

and increase of the deadly virus. 30

31

1 https://worldhealthorg.shinyapps.io/covid/
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Figure 1. Recent number of confirmed cases, in different regions around the globe, from date of
report, until July 2, 2022.

Biomedical image technology has been developing over the past few years as a promis- 32

ing tool for automatically quantifying and diagnosing different diseases. The medical 33

image data is obtained via (magnetic resonance imaging, CT, X-ray, microscopy, and pathol- 34

ogy) which is used to perform particularly diagnosis-oriented investigations, analyzing 35

important diseases like human brain disorders and different kinds of cancer. Lungs and 36

Chest CT imaging are also strongly suggested as a regular/ conventional diagnostic tool 37

for pneumonia and is now also recommended to identify COVID-19 infection for early as- 38

sessment and follow-up cases. These are very helpful in identifying common radio-graphic 39

characteristics of COVID-19 infection [4]. Furthermore, a systematic study [5] revealed 40

that CT images of the chest are delicate for monitoring COVID-19 even before clinical 41

signs and symptoms are recognized. More particularly, CT scan images of patients show 42

ground-glass opacity or bilateral patchy shadows on the infected region [6], which are 43

usually not visible in standard X-ray images [7]. 44

Medical specialists usually need to examine several CT scans, which is a time consum- 45

ing and error-prone method. For this purpose, automated deep learning techniques are 46

introduced in order to segment Regions of Interest (ROIs) of various sizes and shapes, for 47

example, lungs, buds, and lesions, in high-resolution CT scan images. These techniques 48

may help medical specialists in the diagnostic process. In literature, researchers presented 49

various methods based on image processing, machine learning, and deep learning for 50

automatic segmentation of CT scans [8], [9]. However, deep learning models/ techniques 51

have surpassed feature-based methods, which have been widely and successfully used/ 52

implemented to automatically segment ROIs in CT scan images. More particularly, ap- 53

plications of deep learning models/techniques [10], and [11], biomedical imaging mainly 54

target lungs [12], lungs infections [13], pathological lungs [14], lungs and COVID-19 le- 55

sions [15]. Mostly deep learning based techniques are derived from a Fully Convolutional 56

Networks (FCN) architecture, in which the fully connected layers are used instead of the 57

convolutional layers [16]. The widely used U-Net model is a variant of FCN that has been 58

developed as the de facto model for tasks of object segmentation in images because of its 59

learnable up-convolution layers and multi-scale skip connections. [17]. Researchers used it 60

for automatic COVID-19 lesions segmentation in CT scans. 61

Motivated by excellent results of deep learning architectures, we introduced an au- 62

tomated framework using deep learning to classify and segment deadly COVID-19 viral 63

infection in CT scan images. We adopt a U-Net segmentation paradigm to detect and seg- 64

ment infected areas (regions/ lesions) in CT scans. Since all the features obtained from the 65

encoders are not valuable; thus, we apply U-Net architecture with an attention mechanism 66

for better feature representation. In this way, it allows highlighting of salient ROI features 67

and control activations of features by irrelevant regions. However, the architecture faces 68
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difficulty during balancing recall and precision due to the small ROI located in CT scan 69

images. Thus addressing the issues of small and unbalanced data and training performance, 70

we combined attention U-Net with the boundary loss function, which is quite fitted for 71

small lesion segmentation. The principal contributions of the presented work are given as 72

follows: 73

• To introduce a framework for automated segmentation of infected regions of COVID- 74

19 virus in lungs/chest CT scans by using deep learning architecture. 75

• To utilize the soft attention mechanism in order to enhance the framework’s capability, 76

extract more silent features, and identify and segment virus-infected regions in CT 77

scans. 78

• To address the issues of unbalanced data, attention U-Net architecture is combined 79

with boundary loss function for small regions/lesion segmentation. 80

• To validate the effectiveness of the framework with other segmentation techniques in 81

terms of segmentation accuracy. 82

The presented work in the paper is arranged as follows: an overview of different 83

methods suggested for segmentation of infection in CT scans is presented in Section 2. 84

Section 3 discussed the detail of the developed framework utilized for segmentation of in- 85

fected regions/ lesions in CT scans images, including the U-Net architecture with attention 86

mechanism and boundary loss function. The data set used to evaluate the framework is 87

presented in Section 4. Furthermore, experimental results along with evaluation parameters 88

are also addressed in Section 4. Lastly, the presented work with some future guidelines is 89

concluded and summarized in Section 5. 90

2. Related Work 91

In an effort against COVID-19, researchers pay serious attention in order to introduce 92

efficient and effective deep learning based techniques, for example, [18], [19], [20], [21], [22], 93

[23], [24], [25], and [26]. These techniques are widely adopted for classification, detection, 94

and segmentation of COVID-19 images and infection. [27], [28], and [20] used biomedical 95

image data, mostly including Chest/lungs CT scans and X-rays in their work. 96

Hemdan et al., [29] applied and compared various neural network models for the 97

classification of COVID-19 X-ray images. [30] introduced a CNN based system for analyzing 98

and classifying three categories of X-ray images, including pneumonia, COVID-19, and 99

regular images. Pathak et al. [31] suggested a deep learning process along with transfer 100

learning to classify infected cases using CT scan data set. Authors in [32] studied a residual 101

neural network model for analyzing X-rays of normal, viral, and infected pneumonia. [33] 102

introduced convolutional neural networks based on a multi-objective differential evolving 103

model to distinguish the coronavirus patients utilizing CT scan data of the chest. Hossain 104

et al., [34], proposed a healthcare system using artificial intelligence to detect the virus 105

using chest CT scans and radiology images. 106

Muhammad et al., [35], presented a multi-layers fusion model for the classification 107

of COVID-19 utilizing ultrasound images of lungs. Researchers in [36] presented a neural 108

network model using contrastive loss to detect COVID-19 in radiology pictures. Apos- 109

tolopoulo et al., [37] introduced a detection system using neural networks and transfer 110

learning to analyze chest X-rays. [38] made COVID-19 identification using their own devel- 111

oped data set, containing a total of 1144 radiology images. [39], adopted a Faster-RCNN, a 112

detector model for monitoring of COVID-19 virus in X-ray images. Authors in [40] and [41] 113

trained 2D CNN model for data set collected from [42]. [40], authors combined different 114

pre-trained designs with regularization of the support vector machine. 115

In [41], researchers introduced a network by leveraging the power of capsule networks 116

with different architectures to increase classification accuracies. Song et al., [43] produced a 117

deep learning diagnosis framework to assist medical experts in identifying patients with 118

symptoms of COVID-19 virus and pneumonia in CT scan data. [44] proposed a 3D deep 119

network comprised of a pre-trained U-Net and two 3D residual blocks. [45] also used 3D 120

deep networks for segmentation of CT images. In [46], authors used GAN incorporated 121
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data to enhance the learning of a discriminating paradigm for diseased lung segmentation. 122

Jiang et al., [47] produced deep neural networks for tumor segmentation in lung CT slices 123

by combining various residual layers of modifying resolutions. In another work [48], 124

researchers developed an explainable method for diagnosing viral infection by shared 125

segmentation and classification approach. [49], aims to offer an automated system to 126

segment viruses caused by COVID-19 and presented a quantitative measure of infections to 127

medical experts. The method involves segmentation of lung segmentation infection based 128

on U-Net architecture. 129

Yan et al., [13], recommended a deep neural network model called COVID-SegNet 130

to segment infection in CT scans. A small network for the effective segmentation of the 131

deadly viral diseases in CT scans is presented by [50]. Authors in [51] presented a U-Net 132

based computerized model for infection segmentation in lung CT scans. Shan et al., [15], 133

introduced a deep learning design defined as VB-Net for segmenting infection lesions in 134

the CT scan data set. [52], studied five convolutional neural network pre-trained models for 135

classifying and analyzing infected patients utilizing a chest X-ray data set. A deep learning 136

model for lung disease segmentation named Inf-Net is presented by [53]. The model 137

automatically recognizes infected regions in CT scan data. Authors used an identical partial 138

decoder to combine the distinctive characteristics and produced a global map. To enhance 139

the representations and the boundaries, authors applied reverse and specific edge-attention. 140

Ahmed et al., [54] recently presented an Internet of Things (IoT) enabled deep learning 141

model for screening of COVID-19 in X-ray images. Authors in [55], and [56], presented an 142

automated COVID-19 CT scans segmentation method which is based on U-Net. 143

Researchers presented various techniques to classify, detect and segment chest or lung 144

X-rays, CT scan images, and infected areas (regions and lesions) of COVID-19 patients. 145

Mostly researchers adopted state-of-the-art methods and approaches to classify, analyze and 146

differentiate contagious diseases, but they used a limited data set. This paper introduced 147

a deep learning framework based on U-Net architecture for segmentation of COVID-19 148

infected lesions/regions in chest/lung CT scan data set. In addition to segmentation, the 149

developed framework can also highlight the severity of the disease in CT scans. 150

3. Methodology 151

This work introduced an automated framework using deep learning for the segmenta- 152

tion of infected regions/areas in the COVID-19 CT scan image data set. The framework 153

provides a classification of viral infections and assists medical experts in order to analyzing 154

the severity of infection. The overall technical flow of the designed framework is explained 155

in Figure 2. The method involves five steps: pre-processing, data augmentation, lung 156

segmentation, infection segmentation, and infection classification. The data sets used for 157

experimentation are collected from different available online resources. 158

A widely utilized deep learning model named U-Net is utilized to segment lungs and 159

infected areas. Data normalization is performed during the pre-processing step, and the 160

input image pixel values are converted in the range [0.1], ensuring that all input pixels 161

have the same data distribution. This increases convergence while training the network. 162

Moreover, data augmentation is applied, e.g., random scaling, brightness, rotation, crop, 163

contrast, and flip. Data augmentation enables the deep learning network to learn a wide 164

variety of variations in the given data set and enhance the framework’s performance. 165

In order to learn target features of varying shapes and sizes, the U-Net architecture is 166

combined with an attention mechanism. 167

In addition, a boundary loss function and integrals interface between ROIs are applied 168

to decrease the complexity of unbalanced areas. After segmentation, different metrics 169

are estimated to quantify the infected areas, like volumes of an infected region or regions 170

within the lungs. Additionally, to estimate the severity of diseases and the spread of viral 171

infection in the lungs, the percentage of infection in the lungs is determined. For that 172

reason, we used the Hounsfield unit, histogram of the infected area to envision Ground 173

Glass Opacification/opacity (GGO), and consolidation segments inside the infected region. 174
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Figure 2. General flow chart of the framework developed for biomedical image examination of
COVID-19 infection found in CT scans of chest/lungs. The workflow starts with the collection of
the data set, the pre-processing step, data augmentation, and train/test split. In addition, the U-Net
model is utilized for lung segmentation and infection in CT images. Finally, the detected infection
mask is classified into three stages, i.e., early, progressive, and severe. The flowchart concludes with
the estimated results of the assessment for a 5-fold cross-validation.

3.1. Pre-processing and Data Augmentation 175

As the data set collected from different resources is limited thus, data augmentation 176

is performed. Its purpose is to generate large data on acceptable modifications of the 177

needed configuration and artificially increases the amount of training images. We con- 178

ducted extensive data augmentation and made an increase in data by utilizing the batch 179

generators interface inside MIScnn 2. We executed three kinds of augmentations: first 180

one is the spatial augmentation, which involves (rotations, mirroring, scaling, and elastic 181

deformations ), color augmentation (contrast, brightness, and gamma adjustments), and 182

noise augmentations. After performing pre-processing and data augmentation, the data set 183

images are randomly splitted into training and testing samples. 184

3.2. Lungs and Infection Segmentation using U-Net with attention mechanism 185

For segmentation of lungs and infected areas in CT scan images, we applied the 186

U-Net model. [17] introduced this model that is practically developed using end-to-end 187

fully convolutional networks rather than dense layers. The general design of the model 188

is presented in Figure 3 (adopted from [17]); it can be seen that the model can handle 189

arbitrary/variable size images. The overall model is basically divided into two parts, 190

namely encoder and decoder. The first part is used to get the context of the image, which is 191

named an encoder. This part is mainly based on a traditional pile of convolutional layers 192

followed by max-pooling layers. In contrast, the other part is the symmetric/ balanced 193

expanding path named decoder is used to provide accurate localization using transposed 194

or reversed convolutions. The first part is also named the downsampling path, which 195

implements various classification models as the backbone. All step generally uses two 196

convolution layers (3× 3) with batch normalization followed by a max-pooling layer (2× 2), 197

as illustrated in Figure 3. The parallel bottleneck contains two convolution layers and up 198

convolution layers of size ( 3 × 3 ) and (2 × 2 ), respectively. The upsampling path has four 199

phases, the decoder with two convolutional layers followed by an upsampling layer of size 200

3 × 3 and 2 × 2, respectively. The feature maps become half after each step. 201

2 https://github.com/MIC-DKFZ/batchgenerators

https://github.com/MIC-DKFZ/batchgenerators
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Figure 3. U-Net architecture with attention mechanism utilized for segmentation of lungs and
COVID-19 infected virus.

From Figure 3, it can be observed that to produce global and local information through-
out upsampling. The architecture skips connections within downsampling and upsampling
paths. The pre-processed input images with 3-channel are provided to the architecture for
segmentation. Finally, the segmented map is given, using a convolutional layer of 1 × 1
at the output. The extracted feature maps are of identical size to desired output segments.
Thus, a function is defined over the absolute feature map with pixel-wise soft-max and
cross-entropy loss as [17]. It is described as follows;

pk(x) =
exp(ak(x))

∑K
k′=1 exp(a′k(x))

(1)

In Equation.1, ReLu is an activation function (Rectified Linear Unit) used for feature
maps and it is defined as ak. The number of classes are represented with K, and approx-
imation for maximum value is represented as pk(x). For maximum ak(x), its value is
approximately equal 1, and considered as pk(x) ≈ 0 for other values. The function defined
in Equation.1 is penalized and given as [17];

E = ∑
w(x)ϵΩ

log(pl(x)(x)) (2)

In Equation.2, true label or ground truth of all pixels is described as l : Ω → 1, 2, ..., K.
The weight map that is used throughout training for additional attention to pixels is
provided as w : Ω → IR [17]. For various frequency pixels, the true segmentation is pre-
calculated. Applying morphological operations for different classes in the training data set;
the weight map value is estimated as follows;

w(x) = wc(x) + wo.exp
(−(d1(x) + d2(x))2)

2σ2

)
(3)

Therefore, the weight map used for balancing frequencies of different classes is repre- 202

sented with wc : Ω → IR. The distance value between the initial edge and second nearby 203

edge is denoted with d1 and d2. The value of wo is set to 10 and σ ≈ 5. (Readers are referred 204

to the actual work [17] for more details) 205

During upsampling, the recreated spatial information in the expanding path lack 206

accuracy. To counter this issue, the U-Net applies to skip connections that integrate spatial 207

information from the down sampling path to the upsampling path. However, this causes 208
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several unnecessary extractions of low-level features, as feature description is not good 209

in the primary layers. Thus, the attention mechanism is implemented or applied at the 210

skip connections, vigorously overcoming activations in inappropriate areas or regions and 211

decreasing redundant features. 212

The attention gates introduced by [57] use additive soft attention as shown in Figure 213

4. These gates take two input vectors that are represented as x and g. The vector, g, is 214

obtained from the following lowest/deepest layer of the network. It has improved feature 215

description and small dimensions. In Figure 4 vector x has 64 × 64 × 64 (height x width 216

x filters) and vector g has 32 × 32 × 32 dimensions. The x and g pass through a strided 217

convolution and 1 × 1 convolution layers, respectively, such that their dimensions become 218

64x32x32. The two vectors are added element-wise, resulting in aligned weights being 219

more extensive while unaligned weights are becoming comparatively smaller. 220

The resultant output vector is passed through a activation layer ReLU, and a convo- 221

lution layer of 1 × 1 that drops the dimensions to 1 × 32 × 32. Moreover, it passes within 222

a sigmoid layer, which computes the vector in the range of [0,1], providing the weights 223

(attention coefficients), where coefficients nearer to 1 exhibit more important characteristics. 224

These coefficients are also up-sampled to the real dimensions 64 × 64 of the x utilizing the 225

trilinear interpolation. Next, element-wise multiplication of the attention coefficients is 226

performed to the real x, scaling the vector according to their significance and crossing along 227

in the skip connection as usual. 228

Figure 4. Schematic design of additive attention gate used in attention mechanism. Input features
x are estimated with coefficients σ to develop important features for the output of the x̂ (decoding
layer). The spatial gating g signal gives contextual knowledge, while spatial fields from the x input
are location information. Bilinear interpolation is used for feature map re-sampling.

In this work, we used a boundary loss function that applies a distance metric on the 229

shapes or contours instead of considering whole areas or regions [58]. The boundary loss is 230

highly used for unbalanced segmentation tasks. In this way, it tackles the difficulties posed 231

by local losses for highly unbalanced segmentation tasks. The boundary loss function is 232

defined as; 233

Dist(∂G, ∂S) =
∫

∂G
||y∂G(p)− p||2dp (4)

In above equation, pϵΩ, where Ω is a limit on boundary at specific region ∂G and 234

y∂G(p) shows the corresponding boundary point ∂S, and the normal direction to ∂S as 235

shown in Figure 4. y∂G(p) represents intersection of ∂S and the line, normal to ∂S at p . || 236

represents the L2 norm. (For more information about the boundary loss function we refer 237

reader to [58]). 238

3.3. Classification of infection severity 239

After segmentation of the lungs and infection area (regions/lesions) in the CT scan 240

data set, the severity of the viral infection needs to be analyzed. The infected areas are 241

described as air space consolidation and ground-glass opacity, or complete opacity. Their 242

level of concentration observed in lung and infected regions/lesions assists in determining 243

the different stages of the severity of infection. In the initial stage, the appearance of 244
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ground-glass opacity is usually found in one or different shapes, like in the form of a 245

fine mesh or shadow/cloud of light. Infrequently, the concentration is found near the 246

bunches of blood vessels (bronchial) or under the pleura. In the progressive stage, the 247

GGO/shadows increase, or the infected region expands, starting to absorb, therefore 248

resulting in consolidation at a large scale. Finally, in the critical or severe stage, the 249

consolidation of the bilateral or unilateral lungs diffuses, identified by GGO and symptoms 250

of the bronchial disease. 251

In the diffusion or absorption step, the primary regions/ lesions are entirely absorbed 252

and grown. Therefore, to control the severity of the viral infection in the lungs (the 253

proportion between the size of the infected area and lungs), it is essential to estimate 254

the degree of concentration/consolidation of the infected regions. Therefore, sub-areas 255

of these segmented lesions are categorized as consolidated in case the voxel intensity is 256

more prominent than 0 Hounsfield units (HU), and else, it is categorized as GGO [7], [59]. 257

Therefore, it is reasonable to estimate the variation in the concentration of the lesions caused 258

by a viral infection, e.g., COVID-19. Figure 2 presents an illustration of the classification of 259

infected regions into three different stages of severity. In addition, the results of infection 260

severity classified in lung CT scans are shown in Section.4. 261

4. Experimental Results 262

Experimentation of the above-discussed model is presented in this section. Firstly, we 263

discussed training and testing observation—secondly, the output results of the segmenta- 264

tion model employed for monitoring and screening of viral COVID-19 infection in CT scan 265

images. Finally, the model evaluation results are discussed, showing the model’s perfor- 266

mance. The introduced framework has been implemented using a python programming 267

language (Keras library) with OpenCV 3.6. 268

4.1. COVID-19 CT scan data set 269

The data sets utilized in the experiments are collected from different online repositories 270

e.g., COVID-19 CT scans from Italian Society of Medical and Interventional Radiology 3, 4
271

and 5. More than 800 CT scans of patients suffering from COVID-19 have been obtained 272

from these sources. The data set includes CT scans of diagnosed patients with viral infection 273

and lung segmentation and infections analyzed by experts. The size of images is 512 × 512 274

pixels. The images have been resized, grey scaled, and compiled into a separate NIFTI file. 275

Images are segmented by radiologists utilizing three labels: consolidation, ground-glass, 276

and pleura effusion. The total number of training and testing CT scan slices used for 277

experimentation after data augmentation and pre-possessing is provided in Table 1. 278

Table 1. Description of data set used for experimentation.

S.No Images COVID-19 Non-COVID-19 Total
1 Training Slices 800 1000 1800
2 Testing Slices 200 1200 1400
3 Total 1000 2200 3200

4.2. Training and Validation 279

These observations, including training and validation loss and accuracy curves of the 280

above discussed segmentation architecture with attention mechanism, are illustrated in 281

Figure 5. Training of the model is performed for 100 epochs. It has been observed that 282

after the 10th epoch, the loss values decline for training and validation. Both values are 283

contrasted in Figure 5. During training, when validation is performed, no over-fitting is 284

3 https://sirm.org/category/senza-categoria/covid-19/
4 https://radiopaedia.org/playlists/25887
5 http://medicalsegmentation.com/covid19/

 https://sirm.org/category/senza-categoria/covid-19/
 https://radiopaedia.org/playlists/25887
 http://medicalsegmentation.com/covid19/
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noted, showing no notable difference between them. While the validation performance is 285

settled down during fitting, at a loss value of around 0.3, and the training performance is 0.2. 286

Due to the robust training method externally, without any implications of over-fitting, we 287

determined that adapting randomly generated patches using increased data and arbitrary 288

cropping from varying data sets is very effective for limited image data. As a result, the 289

overall loss values after the 10th epoch are improved to 0.89. In Figure 5, we show the 290

training and validation accuracy of the model during training, which is 0.99 at the end of 291

the 20th epoch. 292

(a)

(b)

Figure 5. (a) Loss curve during the validation and training process. (b) Accuracy curve during the
validation and training process for training. The lines [validation (orange) and training (blue)] are
estimated using binary cross-entropy dice loss and represent the weight loss across all folds.

4.3. Visualization results of infected regions segmentation 293

The segmentation and classification results of the segmentation framework are illus- 294

trated in Figure 6. We can see that the segmentation model effectively segmented the 295

infection regions in CT scans. It can also be observed that the boundary loss function 296

improves the segmentation results of unbalance regions or data. In Figure 6(a) and Figure 297

6(b), we demonstrate the example results of infection segmentation at an early stage of 298

diagnosis. It can be seen that the segmented regions are so small and cannot be easily 299

analyzed in original CT scans. While all small spots of segmented infection using the above 300

model might help medical experts to effectively analyze and diagnoses the virus at its 301

earlier stages. 302

Similarly, in Figure 9(c) and Figure 9(d), we show the output results for progressive 303

stages; it can be seen from the images that the virus is growing at different places irregularly; 304
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(a)

(b)

Figure 6. Infection segmentation results of CT scans, the sample images shows the early stage of
viral infection. Columns 1 to 3 shows Original CT scan image, original infection mask, and predicted
infection mask, respectively.

(a)

(b)

Figure 7. Infection segmentation results of CT scans, the sample images shows the progressive stage
of viral infection. It can be seen that both lungs are affected from the virus, and infection is growing
at different locations of lungs. Columns 1 to 3 shows Original CT scan image, original infection mask,
and predicted infection mask, respectively.
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at different locations in lungs. Such output results also help to analyze the progressive rate 305

of the viruses. Moreover, along with the large regions, a small art is detected. 306

Figure 8(e) and Figure 8(f) we have shown the output results for the severe stage of 307

the infected virus. As can be seen in the example images, the virus badly affected the lungs 308

of the patients. In both sample Figures, it can be observed that the growth of infection is 309

severe in both lungs and is spreading badly in the lungs of the patients. The results of the 310

segmentation models can be really useful for medical specialists in order to analyze the 311

effect of the virus on patients’ lungs. 312

(a)

(b)

Figure 8. Infection segmentation results of CT scans, sample images show the severe stage of viral
infection. It can be seen that, both lungs are badly affected from COVID-19 infection. Columns 1 to 3
shows Original CT scan image, original infection mask, and predicted infection mask, respectively.

4.4. Evaluation and Comparison results 313

After training and validation, we used three commonly adopted evaluation parameters 314

for biomedical image investigations. First, to perform performance analysis to determine 315

the overlap of segmentation between prediction and true labels/ground truth, we used the 316

Dice similarity coefficient, described in Equation 5. It is the most widely applied parameter 317

in segmentation applications. In addition, specificity and sensitivity discussed in Equation 318

6 and Equation 7 are also applied in the most popular pharmaceutical fields. All parameters 319

are calculated using the confusion matrix, including True Positive (TP), True Negative 320

(TN), False Positive (FP), and False Negative (FN). 321

Dice =
2 × TP

2TP + FP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Sensitivity =
TP

TP + FN
(7)
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We determined the evaluation parameters in the cross-validation for each fold and, 322

therefore, for all CT images in the collected data set. Overall, the cross-validation of the 323

segmentation model obtained a Dice similarity coefficient of around 0.93 for lungs and 0.76 324

for infected regions segmentation, as depicted as box plots in Figure 9. 325

Figure 9. Result distribution of 5-fold cross-validation is presented using box plots for lung and
infected region segmentation.

The average performance values of the above discussed segmentation model are 326

shown in Figure 10. The segmentation model delivers an average rate of 0.932, 0.936, and 327

0.946, Dice similarity coefficient, Sensitivity, and Specificity for lung segmentation, respec- 328

tively. While for COVID-19 infected regions segmentation, the Dice similarity coefficient, 329

Sensitivity, and Speci f icity are 0.764, 0.736, and 0.888, respectively. 330

Figure 10. Average values of Dice similarity coefficient, Sensitivity and Speci f icity.

The inference performance details for each fold during cross validation are listed in 331

Table 2. From a medical perspective, segmentation of infected regions is a difficult task and 332

one reason for the lower value of segmentation accuracy as corresponded to the accuracy 333

results of segmentation of the lungs. The infer for this may be the difference between 334

pulmonary consolidation and GGO morphology. Although, our deep learning based 335

segmentation model obtained considerably good results and segmented COVID-19 infected 336

regions with state-of-the-art efficiency comparable to other segmentation techniques. 337

Table 3 presents the comparative analysis of different methods used to segment 338

COVID-19 infection in lungs CT Scan images. The U-Net [17] model achieves an average 339

accuracy of 0.966, while the attention U-Net [60] obtained average accuracy is 0.978. Other 340

two segmentation model also achieve good accuracy results as U-Net++ [61], and SD- 341

UNet [62] accuracy is 0.971 and 0.981 respectively. Our proposed model shows excellent 342
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Table 2. Obtained results for each cross-validation fold.

Fold Lungs COVID-19 Infection
Dice Similarity Sensitivity Specificity Dice Sensitivity Specificity

1 0.89 0.9 0.95 0.6 0.57 0.92
2 0.9 0.96 0.96 0.8 0.87 0.93
3 0.96 0.94 0.95 0.81 0.89 0.89
4 0.95 0.95 0.95 0.75 0.55 0.8
5 0.96 0.93 0.92 0.86 0.8 0.9

Average 0.932 0.936 0.946 0.764 0.736 0.888

results as we apply the boundary loss function. As discussed earlier, highly unbalanced 343

segmentations, like regional summations where values are different in magnitude across 344

types, affect training stability and performance. Thus, we applied a boundary loss, which 345

uses the distance metric on the area of contours, not regions. Furthermore, it might mitigate 346

the highly unbalanced problems by utilizing integrals instead of unbalanced integrals over 347

the interface between regions. We can see the results from Table 3, as the Dice similarity of 348

our proposed model is 0.763, higher than other methods. 349

Table 3. Comparison analysis of different segmentation methods.

S.No Methodology Average Dice Similarity Average Accuracy
1 U-Net [17] 0.563 0.966
2 Attention U-Net [60] 0.507 0.978
3 U-Net++ [61] 0.586 0.971
4 SD-UNet [62] 0.593 0.981

5 Ours Attention U-Net
with boundary loss function 0.763 0.982

5. Conclusion and Future Directions 350

This work introduced an automated framework using deep learning for segmentation 351

of infected regions/lesions/areas of the COVID-19 virus in the CT scan data set. We adopted 352

a U-Net model for segmenting lungs and infected regions of the virus and employed the 353

soft attention mechanism to increase the framework’s ability. Moreover, we performed pre- 354

processing and extensive data augmentation to improve the segmentation model’s accuracy. 355

Furthermore, a boundary loss function is used to deal with small and unbalanced lesions 356

or regions segmentations. We validated the framework’s effectiveness in contrast with 357

other segmentation techniques with publicly available CT image data sets. Experimental 358

outcomes show the excellent performance of our framework for automated segmentation of 359

lungs and infected in chest/lungs CT scan images. We also consider both boundary loss and 360

weighted binary cross-entropy dice loss functions. The overall accuracy of the framework 361

is 0.93 and 0.76 for lung segmentation and infected regions segmentation, respectively. In 362

the future, this work might be extended to analyze and segment other viral infections; we 363

might use other segmentation techniques based on deep learning applications to analyze, 364

detect, and classify different viral diseases. 365
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