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ARTICLE INFO ABSTRACT

Keywords: In this study, we investigated the potential use of Machine Learning algorithms (ML) to predict the
Machine Learning algorithm outcome of home-based neuro-rehabilitation video game intervention and its advantage in supporting clinical
Rehabilitation decision-making. We adopted Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) to develop
Serious Video Game multidimensional functions (multi-variable Kernel functions) since both algorithms were considered significant
Support Vector Machine

and active analysis agents for prediction and classification. Supervised SVM and KNN algorithms were trained
using the upper extremity (arm, forearm, and hand) joints’ kinematic data and hand gestures of participants
while interacting with the developed video games. Data collected from healthy and Multiple sclerosis (MS)
participants were compared and used to develop the predictive algorithm. Pre- and post-rehabilitation data of
MS subjects were investigated and used to assess the subject’s functional improvements following the program.
Bayesian optimization, Sigmoid, polynomial, and Gaussian Radial Basis functions were utilized for training
and predicting outcomes. The results showed that the first two kernel regressions had the best performance
regarding predictability and cross-validation loss. KNN’s prediction accuracy was exceeded by 91.7% versus
SVM, which was 88.0%. The effectiveness of the rehabilitation program was assessed through Spatiotemporal
control and motor assessment scale presenting 40% improvement. Our findings suggest that ML has a great
potential to be used for decision-making in neuro-rehabilitation programs.

K-Nearest Neighbors

1. Introduction serious games for rehabilitation (Esfahlani, Thompson, Parsa, Brown
and Cirstea, 2018; Jonsdottir et al., 2018; Tannous, 2018), which
Multiple sclerosis (MS) is the most prevalent autoimmune disease encourage participants’ retention and incentive to practice.
affecting the nervous system and motor control (Steinman, 1996).
Motor control is a mechanism by which individuals use their cognition
to stimulate and coordinate the muscles and limbs involved in the
administration of a motor ability (Benedict et al., 2005). Based on nu-
merous studies, continuous inpatient or outpatient rehabilitation could
lead to intensification inactivity and overall ability to engage in society

with optimal improvement and functionality (Jonsdottir et al., 2018).

A study by Jonsdottir et al. (2018) showed the clinically significant
enhancements in MS people’s arm function following interaction with
a serious game for rehabilitation. Bettger and Stineman (2007) also
suggested that regular exercises and automatic assessment of the upper
extremity through home-based rehabilitation could be advantageous
for people with motor control impairment and MS condition.

According to Kwakkel et al. (2019) UE, recovery probably occurs
through an aggregate of inevitable and learning-dependent manners,
including reestablishing the quality of movement and learning ways to
use their residual capacity in the most practical way to accomplish a
task.

MS casualties often do not adhere to recommended exercise by
clinicians due to lack of motivation (Giusti et al., 2006). However,
there is substantial evidence of the feasibility and effectiveness of using

* Corresponding author.

To facilitate a home-based rehabilitation program for MS casual-
ties, we developed mini video games using the principle of modified
constraint-induced movement theory (mCIMT) and mirror image ther-
apy. The game’s difficulty level was adjusted using the Monte Carlo
Tree Search algorithm, examined in our previous studies (Esfahlani,
Butt, & Shirvani, 2019; Esfahlani, Muresan, Sanaei and Wilson, 2018).
ML has received less attention in supporting clinical decision-making
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Abbreviations
The following abbreviations are used in this manuscript:
ML Machine Learning
mCIMT Modified Constraint-Induced Movement
Therapy
SVM Support Vector Machine
KNN K-nearest neighbors
UE Upper Extremity
RBF Radial Basis Function
EMG Electromyography
IMU Inertial Measurement Unit
BLE Bluetooth Low Energy
LOO Leave one out
AUC Area Under the curve
LDA linear discriminant analysis
ROC Receiver Operating Characteristics
PCA Principal Component Analysis

and predicting rehabilitation of upper extremity (UE) outcomes. Ma-
chine Learning (ML) algorithms were integrated to automate the pro-
cess of analyzing 3D kinematics of the UE movements and classify its
patterns based on data obtained from sensors (Microsoft Kinect, Leap
Motion, and Myo armband devices). KNN and SVM ML algorithms were
utilized due to their high accuracy and good theoretical guarantee of
overfitting.

Support Vector Machines (SVMs) and k-Nearest-Neighbors (KNNs)
are the non-probabilistic ML algorithms, which represent different
approaches to learning as active analysis agents for prediction and
classification. These algorithms function based on a statistical learning
procedure demonstrated to have high accuracy (Derie et al., 2020;
Stetter, Krafft, Ringhof, Stein, & Sell, 2020). The algorithm could
predict the players’ arm function following the rehabilitation program
and classify the arm and hand pattern and gestures. We obtained a
view-invariant representation of the 3D positions and orientation of
the skeleton joints of UE, an arm’s muscle actions, and hand gestures.
Participant’s with MS condition was distinguished from healthy sub-
jects with the algorithm followed by predicting the motor function
improvement following the intervention.

2. Background

ML has been successfully applied to several applications; ranging
from face identification (Heisele, Ho, & Poggio, 2001) to text catego-
rization (Joachims, 1998), and pattern recognition and classification
problems (Hosomi et al., 2012; Levinger, Lai, Webster, Begg, & Feller,
2007). The application of SVM to classify gait patterns of Knee os-
teoarthritis was conducted by Levinger et al. (2007) to investigate
whether ML can assess gait improvement following knee replacement
surgery. Zhang, McCullagh, Nugent, Zheng, and Baumgarten (2011)
investigated optimal model selection for posture recognition through a
supervised classification and training of a multiclass ML. They classified
nine everyday postures from a belt-worn smartphone’s accelerometer
data. Lau, Tong, and Zhu (2009) explored the use of ML to classify
different walking conditions for hemiparetic subjects. The participants
walked in five different conditions in that two portable sensor units,
comprising an Accelerometer and Gyroscope, were attached to the
lower limb on the shank and foot segments to measure the kinematic
data. Their results showed that the SVM classification method could be
applied as a tool for pathological gait analysis, pattern recognition, and
activity monitoring during the rehabilitation of daily exercises. They
also suggested that the performance of an SVM was superior to other
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ML methods. Begg, Palaniswami, and Owen (2005) integrated SVM to
perform an automated recognition of gait changes among young and
senior participants. It was used to identify the aging influence on gait
patterns and locomotor balance with the advantage of early identifica-
tion of at-risk gait and monitoring the progress of treatment outcomes.
They recommended that SVMs function as an efficient gait classifier to
recognize young and elderly gait patterns. Fleury, Vacher, and Noury
(2010) used a health smart home in that a wearable kinematic sensor
was utilized to collect postural transitions using pattern recognition and
walk periods frequency analysis. The data collected from various sen-
sors used to classify each temporal frame using SVM. Long et al. (2016)
utilized an online SVM optimized by particle swarm optimization to
identify different locomotion modes to realize a smooth and automatic
transition. Their experimental results show the effectiveness of the SVM
algorithm with high accuracy. Oskoei, Hu, et al. (2008) showed that the
SVM is computationally an efficient algorithm for classification using
electromyogram inputs.

3. Materials and methods

The task in ML involves separating data into training and testing
sets. Each instance in the training set contains one target value and
several attributes. ML produces a model based on the training data,
which predicts the target values of the test data given only the test data
attributes (Boser, Guyon, & Vapnik, 1992). In this study, ML Matlab
Toolbox was used to map the input into a high-dimensional space.

3.1. Support vector machines (SVM)

SVM constructs an optimal hyperplane as a decision surface to max-
imize the margin of separation between the two classes. An iterative
training algorithm must construct an optimal hyperplane, which is
managed to minimize an error function. Based on the error function,
SVM models can be classified into four distinct types (Joachims, 1998),
categorized as classification and regression models. The algorithm finds
optimal locations of the decision surface by using a set of mathemat-
ical functions involving classification and regression models (Cortes &
Vapnik, 1995). Training for the algorithm has two phases; (I) Remodel
predictors (input data) to a high-dimensional feature space where the
data is never explicitly transformed into the feature space. (II) Solve
an optimization problem to fit an optimal hyperplane to classify the
transformed features into two classes. The number of support vectors
determines the number of transformed features, and the process of
rearranging the objects is known as mapping or transformation.

Given a training set of instance-label pairs (x;,y;), i =1, ...,] where
x; € R" and y € {1,-1}}, the SVM require the solution for equations
listed in Table 1. Table shows two classification and two-regression
types; C-SVM and v-SVM, and e-SVM. C € [0, 0], v € [0,1] and € € [0, 1]
are regulation parameters that supports implementing a penalty on
the misclassifications that are performed while separating the classes.
It helps in improving the accuracy of the output. The regularization
parameters control the trade-off between the slack variable penalty
(misclassifications) and the width of the margin. Small value makes
the constraints be ignored, which leads to a large margin. Large value
allows the constraints difficult to be ignored, which leads to a small
margin. ¢ is the kernel function which maps x; to ¢(x;). ¢ is the slack
variable that allows regression errors to exist up to the value of ¢;
and ¢, yet still satisfy the required conditions. w € R” is inversely
proportional to margin, hence to maximize the margin, we will have to
minimize w, b € R.

K function estimates the functional dependence of the dependent
variable y on a set of independent variables x (Cortes & Vapnik, 1995).
Kernel functions are distinguished mainly based on the localization and
boundary between different classes to determine finite response across
the entire range of features. Linear, polynomial, radial basis function
(RBF), and sigmoid kernel functions were adopted, which accompanied
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Table 1
SVM algorithm with the error functions and constraints.

Classification SVM

Regression SVM

1: C-SVM classification 3: epsilon-SVM regression

. 1 ! !
min,,, - EwTer CY_ s+Cx._ ¢
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w'(x)+b—y e+
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2: nu-SVM classification 4: nu-SVM regression
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by Bayesian optimization to map data, illustrated in Eq. (1). Dot prod-
uct in the equation acts as a transformer to map input data points to the
higher dimensional feature space, and y is kernel function’s adjustable
parameter (Joachims, 1998).

X1~Xj Linear
X, - X, +C)/ Polynomial
KX X)=dX,)- X [ 1
X, X)) = ¢(X) - (X)) exp(=y | X; = X; |2) Gaussian RBF M
tanh(yX; - X; + C) Sigmoid

3.2. K-nearest neighbor

Inputs in KNN consist of k closest training examples in the feature
space. The output depends on whether KNN is qualified for classifi-
cation or regression. In regression, the output is the object’s property
value that is the average of the KNNs values. KNN regression’s output
is the object’s property value that an average of the values of CNN’s. In
KNN classification, the output is a class membership where a majority
vote of the neighbors classifies objects. KNN classifier or weighted near-
est neighbor classifier could be perceived as assigning the K-Nearest
Neighbors a weight 1. Given a X set of n points and a distance function,
KNN search finds the k most adjacent points in X to set of points Y. The
choice of K is essential and needs to be selected carefully, i.e., if K is
too large or small, some of the neighbors used to make prediction will
no longer be similar to the foreseen one, which will bias the prediction
(Hastie, Tibshirani, & Friedman, 2009). In the study, an optimal K
is selected empirically, examining cross-validation procedure on the
training set (Hastie et al., 2009).

Given the covariate vector of a new observation, x,, the goal is to
predict its response, y,. For every observation x; in the training set, let
s; = s(xg, x;) be its similarity to x,. Then the similarities are put in an
order s(;), that is, sy > s@p) 2 ++ > s(,). Similarly, if s; = s, where
x; is the kth most similar observation in training set to x, then the set
of KNNs of xy; N(x(, K), could be described as all observations whose

similarities to x, are at least sx); N(xg, K) = x; © s; > 5k

b= ZX,GN(XU,K) Yi o)
[N (xg, K)|

KNN algorithm estimates the probability of y, = 1, |[N(xy, K)| is the
number of items contained in the set N(x(, K). It generally equals K
but may exceed it depending on how ties are treated. The response is
then predicted to be one if p > ¢, where ¢ is a prespecified threshold
parameter. The overall error rate in KNN decreases as K increases and
levels off at around K = 20. In a few cases, we can see that the overall
error rate commences increasing again as K, increasing further; thus,
we chose K to be 20.
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3.3. Video game & modified constraint-induced movement therapy

Constraint-Induced Movement Therapy (CIMT) is a physical reha-
bilitation strategy that uses operant training techniques applied in the
context of rehabilitation medicine (Kwakkel, Veerbeek, van Wegen,
& Wolf, 2015), developed by Taub, Crago, and Uswatte (1998). Its
principle is to continue stretching motor capacity gradually beyond an
attained achievement level. CIMT emphasizes massed practice with the
affected upper limb by restraining the less affected limb and training
the affected one by shaping movements. CIMT is exhaustive, possibly
resulting in non-compliance with the protocol. It devotes six hours or
more of therapy while constraining the intact arm for 90% of waking
hours per day throughout two weeks (Kwakkel et al., 2015). Thus,
a modified version of it - mCIMT has been formed by Page, Levine,
Leonard, Szaflarski, and Kissela (2008) to overcome such complexity.
The mCIMT intends to overcome learned non-use in chronic hemi-
paresis, which is the behavioral conquest of purposive movement of
the more affected UE in daily living exercises. Two to three weeks
of mCIMT for stroke patients’ rehabilitation have shown significant
improvements in the spontaneous use of the paretic limb in the live
setting, in comparison with placebo control therapy or usual and cus-
tomary care (Wolf et al., 2006). Mark et al. (2008) also suggested that
slowly progressive MS conditions could take advantage of mCIMT and
achieve promising progress. Since chronic UE hemiparesis occurs in MS
casualties (Cowan, Ormerod, & Rudge, 1990), we hypothesized that
such patients could manifest learned non-use and favorably respond
to the therapy. Therefore, in this study, the mCIMT principle was
paired with mirror image therapy to acquire mini video games. It was
developed based upon repetitive task practice and the application of
behavioral techniques known as shaping. Shaping involves matching
the difficulty of tasks performed to the improvements the patients make
and providing encouraging feedback immediately after any gain in
function (Corbetta, Sirtori, Castellini, Moja, & Gatti, 2015). Shaping in
conventional mCIMT is determined by therapists based on individual
movement deficits at specific skeleton joints (joint movements) that
have the most potential for improvement according to a therapist’s
judgment (Taub et al., 2006). Whereas in our design, the process
and decision-making are conducted automatically by the algorithm.
The progression of movement tasks is made systematically, quantified,
and parametric way on personalized tasks for a patient. Duration of
intervention in conventional mCIMT could vary from [2-10] weeks.
Furthermore, the treatment time could be modified from thirty minutes
to three hours per session (Yen, Wang, Chen, & Hong, 2005). Thus,
therapy sessions are designed as follows:

1. Therapy sessions of one hour, five days a week for ten weeks.

2. Restraining the use of a non-paretic upper limb to promote the
use of the more impaired limb during sessions.

3. Adherence-enhancing behavioral methods designed to transfer
the gains obtained in the clinical setting to the patients’ real-
world environment.

4. Each task was practiced for at least five minutes before starting
the formal session.

Table 2 lists the mini-video-game tasks developed for this study
with the devices used to interact with the therapy/game. Further
explanations on devices and the game setting are followed.

1. forearm to the table, participants’ forearm reaches the high-
lighted areas presented in the virtual environment.

2. Forearm to the virtual button, and hold it in that position for
three seconds, while the visual feedback and timer are activated.

. Extend an elbow to press the virtual button.

. Hand to the table and press the virtual button at the same time.

. Hand to the virtual button and hold it for three seconds.

. Collect virtual boxes and place them on top of each other.

U AW
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Table 2
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Task-specific use of devices and computer supervised mini-video games for the rehabilitation.

Mini video games Devices
Myo Kinect Leap Motion

1. Forearm to the table v v

2. Forearm to the virtual button and hold for three sec v v

3. Extended Elbow v v

4. Hand to table 4 v

5. Hand to the virtual button and hold for three sec v v .
6. Reach virtual boxes on the table collect and place them v v v
7. Lift the virtual box to 10 cm 4 v v
8. Pull the virtual rubber string to hit virtual objects v v .
9. Grab the virtual fruit v v .
10. Lift the virtual pencil and put it on the virtual box v v v
11. Stack the virtual boxes (up to 4) v v v
12. Flip the cards v v v
13. Grip strength v v 4
14. Turn the key in the virtual lock v v .
15. Reach virtual fruits and place them in the basket v v

7. Lift virtual boxes to 10 cm (identified by highlighted areas in the
game).
8. Pull the virtual rubber sling and release it to smash/hit virtual
boxes.
9. Grab virtual objects that are spawned randomly in the space to
collect them.
10. Lift a virtual pencil and put it on the virtual box.
11. Stack virtual boxes (up to four boxes),
12. Flip the virtual cards.
13. Grip/hold an object firmly,
14. Turn a key in a virtual lock.
15. Reach virtual fruits and place them in the basket.

The video game in this work provides participants with graphical
feedback, positive rewarding and scoring system to encourage the
continuation of tasks and retention. The player acts as a controller of
the game in that body actions are transferred into the 3D environment
using the mirroring effect via Kinect and Leap Motion.

3.3.1. Myo armband

Myo armband by Thalmic Labs is a low-cost consumer-grade EMG
device integrating an ARM Cortex-M4 based microcontroller unit, a
set of eight dry EMG electrodes, a nine-axis inertial measurement
unit (IMU), and a Bluetooth Low Energy (BLE) module (Phinyomark,
Khushaba, & Scheme, 2018). The Myo is non-intrusive, as the electrodes
allow users to slip the bracelet on and off (Coté-Allard et al., 2018;
Esfahlani, Thompson et al., 2018). EMG and IMU data, were collected
for hand gestures. The optimal position of the armband placement
is determined by conducting various examinations and placed on the
widest part of the forearm (right or left). For optimal results and a
strong connection to the arm muscles, the Myo armband was warmed
up for five minutes (Phinyomark et al., 2018).

3.3.2. Microsoft kinect V2

Kinect v2 has an Infrared (IR) camera with 512 x 424 pixels. Its
RGB camera resolution is 1920 x 1080 pixels. It has a field of view
(FoV) of 70 x 60° and a frame rate of 30 Hz. Kinect was located
on top of the screen within [1.5-2.0] meters from the player. It was
elevated 45° in front of the subject (tilted toward the subject). Kinect
was used to transfer the players’ body joints to the game environment.
Skeleton joints were also used for classification and regression analysis.
To measure the dynamic range of motion of the UE joints, we employed
a sequential kinematic model based on the joint coordinate system
(JCS), which was proposed by the Standardization and Terminology
Committee (STC) of the International Society of Biomechanics (ISB)
(Wu et al., 2005). The coordinates were defined where the coronal
axis of the patient is the X-axis, the sagittal axis is the Y-axis, the
vertical axis is the Z-axis, and the idle position is the origin of the joint
coordinates (Butler, Ladd, LaMont, & Rose, 2010).

3.3.3. Leap Motion

Leap Motion peripheral uses two monochromatic IR cameras and
three IR LEDs. It observes a roughly hemispherical area to a distance
of about one meter. Leap Motion was located on the desk using a
projective interaction mode within 0.4 to 0.6 meters below the player’s
hands. Fig. 1-a, Fig. 1-b, and Fig. 1-c are the screenshots of task number
six using Leap Motion. The player should reach virtual boxes to interact
with them. In this scenario, both hands are involved in completing the
task where mirrored therapy is used in a 3D environment. The boxes
must be picked up and placed on the pads matching the cube’s color.
At the more advanced level, the player should stack boxes on top of
each other. Fig. 1-d, -e, and -f is the screenshot of task number eight
from mini-game, according to Table 2.

Fig. 1-e, and -f both show that the player should only use the left
hand to interact with the virtual ball and the elastic sling.

Fig. 2 illustrates the location of virtual fruits, task number fif-
teen in Table 2, spawned in the 3D environment. Monte Carlo Tree
Search algorithm was used to spawn objects relative to the position
of the player’s body joints and their performance. According to the
figure, the player only can interact with objects using the right hand.
Left-hand could not be used to collect things to promote the use of
the affected hand/arm. Fig. 2 displays various planes in which the
objects are spawned; abduction/adduction, forward flexion/extension,
external/internal rotation and horizontal flexion/extension.

4. Calculation
4.1. Data pre-processing and feature extraction

Myo armband, Microsoft Kinect, and Leap Motion devices enable
the player to act as a controller. Kinect collects the player’s body
joints orientation, and position, Leap Motion transfers fingers and hand
movements into the game environment.

EMG signals are formed via the superimposition of individual ac-
tion potentials generated by irregular discharges of functioning motor
units in a muscle fiber. Thus, amplitude and frequency both represent
the level of activity of motor units in the fiber. EMG raw signals
are transformed into a classification set of features following (fea-
ture extraction). There were three types of features in a different
domain; Time, Frequency, and Time-Frequency distribution (Nazmi
et al., 2016).

Data pre-processing method of baseline correlation was performed
using a 4th-order Butterworth bandpass filter with different cut-off
frequencies to improve the signal-to-noise ratio (SNR) of the signals.
Savitzky-Golay filter was integrated to remove noise from the IMU
signals. The 50 Hz notch power line noise removed using a 3 dB
passband, amplitude normalization followed by wavelet method to
localize both time and frequency segments (Phinyomark et al., 2018).
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Fig. 1. (a), (b) and (c) 6th Video game task with virtual hands following the physical hands using Leap Motion. (d), (e) and (f) Rubber sling to knock down virtual boxes (right).

EMG signals were recorded at 200 Hz with a high-pass 20 Hz cut-off
and low-pass of 500 Hz cut-off at the time domain and frequency of 24
and 2.

The EMG raw signal features were extracted for each type of hand
movement from the denoised data. Waveform length time-domain fea-
ture extraction method was used to present the characteristics of signals
for hand movements due to its high rate of accuracy and stability to
changes in segmentation method (Oskoei et al., 2008).

Four hand gestures were segmented using KNN and dynamic time
warping algorithms. Each segment consisted of 500 data points taken
from the armband. The armband’s angular and linear movements were
obtained from its Inertial Measurement Units (IMU: Gyroscope, Ac-
celerometer, and Magnetometer) sensor. The Gyroscope determines
the roll/pitch, and the magnetometer measures the yaw in various
directions. After collecting data at the local sampling frequency, linear
interpolations were performed to create a constant sampling inter-
val while maintaining time and frequency domain signal integrity to
achieve an identical sampling frequency. The signals were averaged
over a hundred and twenty readings to manage high-dimensional data
sets efficiently. Acceleration creates a force that is captured by the force
detection mechanism of the accelerometer, which measures accelera-
tion indirectly through a force applied to its axis. Linear acceleration
was measured in (G = 9.81 ) along each axes considering static (grav-
ity) and dynamic (sudden starts/stops) acceleration. The Gyroscope’s
readings were collected in (:) to calculate the angular velocity of the
orientation. The Myo armband first placed on a level tabletop and then
was slid along a straight line for a distance of one meter. The noise
in data was filtered to adjust the initial and final velocities to zero.
The velocity was obtained by integrating accelerometer measurements
once, and the position was obtained by integrating the velocity. The
sensor moved a distance of one meter, the estimated distance obtained
by double integration.

Data from the game engine was registered based on the Unity
game development platform frame-rates (60fps) and transferred to the
computer’s hardware in excel format. The average time required to
perform each movement was found to be around 500 (ms) to estimate
signal features (Lang, Bland, Bailey, Schaefer, & Birkenmeier, 2013).

4.2. Subjects

Fifty-two participants were recruited for the study (forty with MS
and twelve MS-free). Twelve MS patient’s data were excluded from
analysis as five (four male, one female) could not complete the therapy
sessions, and seven patients decided to leave the study. Forty sub-
ject’s data were used for decision-making and prediction; twenty-eight
MS casualties and twelve healthy with age ranged [28,62]. Table 4
summarizes the demographic and clinical characteristics of the forty
MS participants at the time of admission. The patients diagnosed with
relapsing-remitting MS, secondary progressive MS (47%), and pri-
mary progressive MS (53%). The institution (ARU) Research Ethics
committee- a UK Research Integrity Office (UKRIO), approved the
research. The research was performed following the Belmont principle.
Informed consent was obtained from all participants or their legal
guardians with a complete explanation of the research process. The
explicit motor learning conditions were implemented with guidance
to complete the motor tasks and learn them. It relies on maintaining
attention, processing information, reflecting and maintain awareness,
and working memory capacity. Participants were interviewed follow-
ing each rehabilitation session to receive feedback. 83% of the MS
participants had the previous experience of undertaking conventional
physical and occupational therapy with discontinuation due to the lack
of motivation. The eligibility criteria for MS patient’s participation in
the study are; slow primary and secondary progressive MS, at least 20°
active wrist extension, 10° active finger extension, and minimal sensory
or cognitive deficits (Dunham, Dunham, & Goldenson, 1978).

The healthy subjects’ data also were used to train the algorithm
accompanying MS casualties to measure the joint’s range of motion
(ROM) and hand gestures. Joint flexibility at a joint is measured by the
number of degrees from the starting position of a segment to its final
position at the end of its full range of movement. The measurements
were performed using a double-armed goniometer and Kinect devices.
In goniometer measurement, a stationary arm holding a protractor was
placed parallel with a stationary body segment, and a movable arm
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Fig. 2. 15th video-game scenario of Table 2 with the location of the fruit which is spawned in the virtual environment relative to the player’s performance (right hand).

moves along a movable body segment while the axis of the goniometer
was placed over the joint (Hamilton, 2011). Table 3 displays the UE
ROM collected from healthy subjects in degrees, using both goniometer
and Kinect devices. The control groups’ data are also used to identify
four-hand gestures through the Myo armband, where each movement
was held fixed for five seconds, and the signals were registered. The
identified four gestures are; 1. Wave hand for reach or move to a target,
2. Fist for grasp or hold on to an object (to carry virtual objects from
point A to B), 3. Release an object using the stop hand sign (spread
fingers), and 4. Idle or relaxed hand gestures.

Motor Assessment Scale (MAS) with the scale of [0,6] was con-
ducted pre-treatment, post-treatment, and four weeks follow up-
treatment for upper arm function and hand movement. Participants per-
formed each task three-time; only the best performance was recorded.
Two therapists supervised and obtained the participant’s MAS score. If
the patient could not complete any part of a section, the score is zero,
and if they complete it, the score is six.

The tasks in games are designed to incorporate the major joints
of the upper body and represent functional tasks that are feasible
yet challenging enough to engage UE and reveal motor deficits. The
game difficulty, the score, and critical timing to finish each task were
set initially through the game menu, which was consistent for all
participants.

We performed supervised ML by supplying a known set of ob-
servations of input data (predictors) and known responses by using

observations to train a model that generates predicted responses for
new input data. As previously mentioned, the control subject’s data
were used to classify hand and arm patterns while players engage with
the program. These data were utilized as a reference to compare the
patterns generated by casualties pre and post-treatment and feature
identification. The control subjects’ within and between-session coef-
ficients of variation were assessed (%) while associated with virtual

objects and completed the tasks in the games. The repeatability co-
efficient represents the absolute difference between two repeated test
results with a probability of 95%. The dispersion of the variables was
ranged [42-89]%, indicating excellent repeatability. Thus, control sub-
jects’ data was adequate to identify various patterns of hand and arm
movements and compare data. The reliability of quantitative functional
tests in patients with MS was considered to be varied by <20% of
individual mean scores on repeated testing (Schwid, Goodman, McDer-
mott, Bever, & Cook, 2002), to determine the range of measurement
variability when patients are clinically stable.

5. Results
5.1. Data collection and analysis

To develop a control strategy and prediction model of the reha-
bilitation, ML was executed in that data were collected from Myo
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Table 3
Kinematic data of upper extremity average ROM collected from healthy subjects.

Joint/Segment Movement Goniometer ROM° Kinect ROM°
Wrist Extension (Dorsiflexion) 55 64
Flexion (Palmar flexion) 75 80
Radial deviation 20 22
Ulnar deviation 32 35
Elbow Flexion 145 143
Hyperextension 8 7
Forearm Pronation 85 84
Supination 85 83
Table 4
Demographic characteristics of the participants.
Variables Results
Age 48.58 (8.52)*
Male vs Female 26 vs. 14
Time since the outset of MS symptoms in MS casualties (months) 59.9 (14.8)*
Subjects with Right upper-limb impairment 17 vs. 11
MAS: Hypotonus (low muscle tone) 3 (2.3)7

aMean (SD).

armband and Kinect devices while the players were interacting with
the game setting. The features considered for the SVM classification
are as follows: Shoulder joint orientation (flexion/abduction), Elbow
joint orientation and position (flexion/extension), and Wrist joint ori-
entation and position (flexion/extension) from Kinect (30fps), Forearm
pronation/supination (50 Hz), Hand gestures and data from 8-EMG
Electrodes (200 Hz) from Myo armband. The UE joint orientation
from the control groups helped identify the upper limb patterns while
interacting with the game. The application of SVM classification was
used to classify arm patterns pre-treatment, post-treatment, and four-
month follow-up to investigate whether SVMs could be used to predict
UE improvement following rehabilitation. A total of twelve parameters
(six-upper arm function and six-hand movement) scores give a score
between [0, 72], where 72 points represent a well-aligned upper arm
and hand function and full UE range of motion. Three sets of data were
created taken from each subject for the analysis resulting in a total data
size of 105.

The MS people were labeled +1, and —1 demonstrated healthy peo-
ple for arrangement and relapse ML utilizing lower arm developments
and MAS scores. The region of the receiver operating characteristics
(ROC) curve for single highlights was utilized to get a quantitative
proportion of individual element distinguishableness. ROC zones were
numerically approximated utilizing the trapezoidal guideline, where
more considerable qualities inferred better straight component distin-
guishableness. The exhibition of the ML models at recognizing healthy
subjects from MS people with restricted UE was portrayed by the
affectability and particularity esteems. The ROC bend territory is eval-
uated by utilizing the trapezoidal guideline for approximating zones
under bends. The order result of the ML was additionally contrasted
and linear discriminant investigation (LDA).

As mentioned in the previous section, data were recorded as the
participants interacted with fifteen mini video games. The control
subjects used their dominant arm, and the MS casualties interacted with
the more impaired limb. The orientation, velocity, and muscle activity
of the forearm, hand position, and the average MAS score of hand
and upper arm (pre/post and four-month-followup-treatment) were
used for the classifications. The set of good models was determined
by a leave one out (LOO) procedure which is a robust metric for
determining the quality of the models. All models were trained using
the linear, polynomial, Radial Basis Function (RBF), and Sigmoid ker-
nels. Bayesian optimization was employed to optimize the prediction.
Features were excluded randomly from the training data set and used
as a test sample. The trial sets were divided into training test sets
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(75:25), while the test set was not included in the training. This was
repeated until all training examples were individually tested on the
models. Our test results showed that SVM and KNN are both efficient
algorithms with reasonable accuracy. They could successfully classify
data, identify individuals, and predict the improvement following the
rehabilitation program. The mean period of completing tasks for people
with MS condition was approximately twice as long as the control
group (75 + 0.6 s versus 35 + 0.76 s).

Scatter plots and confusion matrix, and parallel coordinates plots
were combined with observing data and assessing the accuracy of the
classifier. Kernel functions with ROC areas close to unity indicated high
accuracy and robustness to variations of classification inception and
better overall execution.

The accuracy of the classifier was also identified as the rate of
correct classification to all data. It was used as the primary index
to illustrate the performance of the classification. Besides, statistical
analyses were performed to interpret the Spatiotemporal results using
a t-test in SPSS Statistics 24. The test made a statistically significant
difference with the mean standard error of MSE = 0.17.

Spatiotemporal data used were; movement duration, hand trajecto-
ries, velocities, the linear distance between the start and endpoint, and
the shoulder position during forward and upward reaching. Data were
collected, although some participants experienced difficulties in com-
pleting some tasks, including wrist flexion, elbow extension/supination,
and excessive shoulder elevation in forwarding/upward reaching and
grasp. Participants with MS performed tasks over a higher duration
than MS-free subjects 49.7% with P < 0.001. Furthermore, MS partici-
pants demonstrated reduced movement stability in terms of adjustment
5.5 vs. 1.8 (mm) and a less smooth movement in terms of frequency
of direction changes 4.2 (Hz) vs. 3.1 (Hz). The Spatiotemporal data
comparing pre and post-treatment showed a significant improvement
in real-world motor ability for at least four weeks post-treatment, and
1.65 s improved movement speed. The maximum speed progressed
to 1.7 m/s, and the timing of maximum velocity increased by 32%.
Table 5 illustrates twenty-eight participant’s MAS average upper arm
function and its standard deviation (SD). <20% change on the test
result is considered the threshold that reliably indicates an actual
change in function for an individual with MS. An unbiased training
set was derived using a leave-one-out cross-validation method in that;
an arbitrary example was excluded from the training data and used
as a test sample. This was repeated until all training samples were
individually tested on the SVM. The average accuracy is the leave-one-
out accuracy and is a robust metric for determining the quality of the
SVM model.

The features included in the classification were; Wrist, Elbow, Fore-
arm’s joint/segment Orientation, Velocity, Position, EMGs, MAS Scores,
and Time. MS patients were identified by —1 and healthy subjects as
+1. The five-fold cross-validation and holdout validation classifier were
used to overcome data overfitting. Five-fold cross-validation partitions
the data into five disjoint sets and trains the model using the out-
of-fold observations. It assesses the model’s performance using in-fold
data by studying the average test error overall folds. Table 6 lists the
standardized kernel functions and RMSEs in that the overall error rate
was used as the guiding criterion for performance. The Kernels scale
mode was set to both automatic and manual. The automatic scale uses
a heuristic procedure to select the initial kernel parameters, which the
initial values were specified in manual one.

The automatic Gaussian kernel function has the best fit with RMSE
= 0.056. The manual Gaussian kernel function with the box constraint
= 1.483, epsilon = 0.148 and scale = 21 resulted in the RMSE =
0.079. The features were reduced to Elbow, Forearm’s joint/segment
Orientation, Velocity, EMGs, MAS Scores, and Time in that the clas-
sification was improved. The residuals plot was investigated to check
model performance considering the difference between the predicted
and true responses. The kernel functions determine the correlation in
the response as a function of the distance between the predictor values.
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Table 5
MS participant’s average UE function ability.
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Upper arm Pre-treatment Post-treatment Four-week follow-up
X SD X SD X SD

1 2.29 0.85 3.14 0.71 3.36 0.62
2 2.39 0.96 3.39 0.69 3.39 0.63
3 3.00 0.77 3.86 0.65 3.75 0.65
4 2.75 0.97 3.79 0.57 3.75 0.70
5 2.79 0.74 3.82 0.61 4.00 0.72
6 2.46 0.84 3.57 0.57 3.75 0.59

Hand movement Pre-treatment

Post-treatment

Four-week follow-up

X SD X SD X SD
1 2.93 0.66 3.39 0.74 3.39 0.57
2 2.82 0.72 3.96 0.74 3.61 0.57
3 2.71 0.81 3.93 0.72 3.71 0.60
4 3.25 0.64 3.75 0.65 3.64 0.56
5 3.14 0.65 3.43 0.58 3.54 0.51
6 2.90 0.92 3.39 0.63 3.79 0.63
Table 6

SVM regression learner models using cross-validation and holdout-validation.

Binary Features Cross-validation Holdout-validation

RMSE (%) R? RMSE (%) R?
SVM kernel function
Linear (Automatic Epsilon mode) 27/27 12.4 0.98 14.8 0.97
Quadratic 27/27 12.4 0.98 14.8 0.97
Cubic 27/27 11.9 0.98 14.3 0.97
Fine Gaussian (Automatic Epsilon mode) 27/27 76.4 0.22 71.9 0.26
Medium Gaussian (Automatic Epsilon mode) 27/27 14.7 0.97 14.1 0.97
Coarse Gaussian (Automatic Epsilon mode) 27/27 6.4 0.99 7.3 0.99
Coarse Gaussian (Epsilon = 0.148; Kernel Scale = 10) 27/27 8.7 0.99 7.5 0.99
Coarse Gaussian (Epsilon = 0.148; Kernel Scale = 18) 27/27 6.1 1.00 7.8 0.99
PCA: Component reduction criteria
Linear (Automatic Epsilon mode) 10/27 8.1 0.99 7.8 0.99
Quadratic (Automatic Epsilon mode) 10/27 10.1 0.99 11.8 0.98
Cubic (Automatic Epsilon mode) 10/27 10.7 0.98 12.6 0.98
Fine Gaussian (Automatic Epsilon mode) 10/27 63.0 0.47 62.3 0.48
Medium Gaussian (Automatic Epsilon mode) 10/27 14.3 0.97 14.1 0.97
Coarse Gaussian (Automatic Epsilon mode) 10/27 6.4 0.99 19.3 0.95
Coarse Gaussian (Epsilon = 0.148; Kernel Scale = 10) 10/27 6.7 0.99 6.4 0.99
Coarse Gaussian (Epsilon = 0.148; Kernel Scale = 18) 10/27 10.5 0.99 10.4 0.99

We adopted linear, polynomial, RBF, Sigmoid kernel functions, and
Bayesian Optimization to build SVM and compared the outcomes. The
Bayesian Optimization was employed to optimize the SVM classifier fit.

Five-fold cross-validation and 25% holdout validation were utilized
to partition the data set into folds, estimate the training data accu-
racy, and avoid over-fitting. The results indicated that the SVM could
successfully identify individuals with MS from the healthy using the
data collected from sensors and predict rehabilitation outcomes. The
out-of-sample misclassification rate was 5% which indicated a reason-
able classification. 25% holdout validation classifier was used in that
medium Gaussian radial basis function had the highest accuracy, 83.8%
as displayed in Table 7. Fig. 3 shows the 3D model of the objective
functions that are used to perform optimization. The optimal values of
the decision variables result in the best possible value of the objective
function to find an input that results in the minimum/maximum cost
of a given objective function. Bayesian optimization offers a principled
technique based on the Bayes Theorem to supervise a search of a
global optimization problem that is efficient and effective. It starts
by building a probabilistic model of the objective function, known as
the surrogate function, then searched efficiently with an acquisition
function before applicant samples are collected to evaluate the actual
objective function. As illustrated in figure thirty, Objective Evaluations
and Sigmoid kernel function were adopted to train the classifier. The
results showed a good fit and low cross-validation loss of the pairs
using Bayesian Optimization. The characterization takes a shot at areas
of focuses from a Gaussian blend model with base focuses produced
arbitrarily and freely.

6. Discussion

Multiple Sclerosis (MS) is a degenerative neurological issue influ-
encing casualties freedom of everyday life; hence, causing dependency
on others (Taylor & Griffin, 2015). Studies have shown the advantage
of continuous rehabilitation and its role in a patient’s brain plasticity
and recuperation at various phases of the disease (Thomas et al., 2017).
Plasticity is the capacity of the sensory system to adjust to the ever-
changing states of the environment, experienced during improvement
and learning (Prosperini, Piattella, Gianni, & Pantano, 2015). This
study integrated the Human Machine Interface platform to facilitate
exercise and rehabilitation programs for MS casualties to reduce the
limitations resulting from the neurological deficit. ML was used for data
exploration and to gain the experience required to develop predictive
models, classify patterns, and reduce dimensionality in human UE
movement analysis. The application of ML methods to human pos-
ture and movement classification was studied to assess the movement
quality in response to the intervention. The study demonstrated the
application of KNN and SVM to predict the outcome of the home-based
neuro-rehabilitation video game and its effectiveness in supporting
clinical decision-making. KNN and SVM have the advantage of high
accuracy, good theoretical guarantees regarding overfitting. SVM per-
forms well where base feature and kinematic data are interconnected
and are not linearly separable. KNN is a high variance classifier and
demonstrates robustness towards noisy training data.

NN and SVM both showed having the ability to recognize complex
and noisy patterns available in UE (upper extremity) data. SVM and
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Table 7
Binary classification using SVM and KNN algorithms.
SVM classifier 95% PCA Linear Quadratic Cubic Fine Medium Course
Gaussian Gaussian Gaussian
RBF RBF RBF
Cross-validation
Accuracy (%) 74.8 79.7 66.1 88.0 76.6 74.8
AUC of ROC 0.56 0.82 0.64 0.93 0.83 0.81
Holdout validation
Accuracy (%) 74.9 79.5 61.0 87.8 77.2 74.9
AUC of ROC 0.66 0.83 0.57 0.92 0.83 0.80
KNN classifier 95% PCA Fine Medium Coarse Cosine Cubic Weighted
Cross-validation
Accuracy (%) 91.6 90.1 84.6 87.6 90.3 91.7
AUC of ROC 0.88 0.95 0.90 0.92 0.95 0.96
Holdout validation
Accuracy (%) 90.4 90.2 83.2 88.8 89.5 91.6
AUC of ROC 0.87 0.95 0.90 0.92 0.95 0.96

Area Under the curve (AUC);
Receiver Operating Characteristic (ROC).
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Fig. 3. Optimized SVM classifier fit using Bayesian Optimization. The output and input pairs’ of objective function model.

KNN are both efficient while using cross-validation and holdout valida-
tion. The algorithm could identify individuals with a motor deficit from
healthy participants, recognize the patterns created by joint kinematics
(both healthy and MS casualties) and create a regression model that
predicts the rehabilitation advantages post-treatment.

The prediction accuracy was in the range of [61% to 91.7%], where
Gaussian KNN exceeded other kernel functions. Bayesian optimization
resulted in an excellent classifier fit.

Spatiotemporal control and motor assessment scale used to assess
the effectiveness of the rehabilitation program. Our findings suggest
that ML has a great potential to be used for decision-making in neuro-
rehabilitation programs. It is suggested that more accurate targeting of
rehabilitation programs could result in the more efficient and effective
use of health care resources, which results in the reduction of health
care costs. The outcomes also illustrate that repetitive movement of
the affected UE enables neuro-plasticity in MS casualties. Real-time
graphical feedback provided in the invention offered a suitable plat-
form for self-assessment, suggested prescriptive input about what to
do following a mistake/dysfunction, thus, reducing the cognitive load.
The participants agreed that the video game platform increased their
motivation and retention compared to their experiences with conven-
tional therapies. The theory and mechanism behind the improvements

in outcomes following the interaction with the rehabilitation program
indicated the adequacy of computer games and visual-input practices
in improving parity in MS patients.

7. Conclusion

With the expanded use of standardized information systems in many
parts of the health system, there is great potential for enhanced use
of sophisticated computer modeling and statistical analysis techniques
to inform clinical decision-making and health system planning (Zhu,
Chen, Hirdes, & Stolee, 2007). Data selection to train SVM and KNN
models requires randomly selected large samples to achieve satisfactory
models. However, many training data will raise the computation cost
for model training and data testing. Thus, it is crucial to reduce the
training dataset without degrading the final classification result. The
results showed that to train a multiclass support vector machine (SVM),
a small training set is sufficient since an initial model is improved
iteratively and incrementally, which complies with the study of Zhang
et al. (2011). It is important to choose the right parameters to achieve
testing accuracy rather than using conventional models with large
sample sizes. Our models were evaluated and validated against the
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classification approach in literature; Fleury et al. (2010), Keerthi and
Lin (2003) and Lau et al. (2009). The classification derived from the
small training set improved computational efficiency by 28%.

The use of the proposed rehabilitation study could be considered ex-
perimental in MS people. Thus further research with rigorous method-
ology and reliable outcome measures could be beneficial to provide
higher-level support of the effectiveness of the intervention for MS
people. The future work will focus on using the classification data to
achieve a dynamical coupling between a player and a prosthetic armor
artificial limb. This could lead to an expansion of ML functionality in
developing advanced online training schemes to support the long-term
operation.
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