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Abstract

In this study, we investigated the potential use of Machine Learning algorithms (ML) to predict

the outcome of home-based neuro-rehabilitation video game intervention and its advantage in

supporting clinical decision-making. We adopted Support Vector Machines (SVM) and K-Near-

est Neighbours (KNN) to develop multidimensional functions (multi-variable Kernel functions)

since both algorithms were considered significant and active analysis agents for prediction and

classification. Supervised SVM and KNN algorithms were trained using the upper extremity

(arm, forearm, and hand) joints’ kinematic data and hand gestures of participants while interact-

ing with the developed video games. Data collected from healthy and Multiple sclerosis (MS)

participants were compared and used to develop the predictive algorithm. Pre- and post-rehabili-

tation data of MS subjects were investigated and used to assess the subject’s functional improve-

ments following the program.

Bayesian optimization, Sigmoid, polynomial, and Gaussian Radial Basis functions were utilized

for training and predicting outcomes. The results showed that the first two kernel regressions

had the best performance regarding predictability and cross-validation loss. KNN’s prediction

accuracy was exceeded by 91.7% versus SVM, which was 88.0%. The effectiveness of the re-

habilitation program was assessed through Spatiotemporal control and motor assessment scale

presenting 40% improvement. Our findings suggest that ML has a great potential to be used for

decision-making in neuro-rehabilitation programs.

Keywords: Machine Learning algorithm, Rehabilitation, Serious Video Game, Support Vector

Machine, K-Nearest Neighbours

1. Introduction1

Multiple sclerosis (MS) is the most prevalent autoimmune disease affecting the nervous sys-2

tem and motor control (Steinman 1996). Motor control is a mechanism by which individuals3

Preprint submitted to Elsevier May 31, 2021
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use their cognition to stimulate and coordinate the muscles and limbs involved in the admin-4

istration of a motor ability (Benedict et al. 2005). Based on numerous studies, continuous in-5

patient or outpatient rehabilitation could lead to intensification inactivity and overall ability to6

engage in society with optimal improvement and functionality (Jonsdottir et al. 2018). Accord-7

ing to (Kwakkel et al. 2019) UE, recovery probably occurs through an aggregate of inevitable8

and learning-dependent manners, including reestablishing the quality of movement and learning9

ways to use their residual capacity in the most practical way to accomplish a task.0

MS casualties often do not adhere to recommended exercise by clinicians due to lack of mo-1

tivation (Giusti et al. 2006). However, there is substantial evidence of the feasibility and effec-2

tiveness of using serious games for rehabilitation (Esfahlani, Thompson, et al. 2018; Jonsdottir3

et al. 2018; Tannous 2018), which encourage participants’ retention and incentive to practice.4

A study by (Jonsdottir et al. 2018) showed the clinically significant enhancements in MS peo-5

ple’s arm function following interaction with a serious game for rehabilitation. (Bettger and6

Stineman 2007) also suggested that regular exercises and automatic assessment of the upper ex-7

tremity through home-based rehabilitation could be advantageous for people with motor control8

impairment and MS condition.9

To facilitate a home-based rehabilitation program for MS casualties, we developed mini video0

games using the principle of modified constraint-induced movement theory (mCIMT) and mir-1

ror image therapy. The game’s difficulty level was adjusted using the Monte Carlo Tree Search2

algorithm, examined in our previous studies (Esfahlani, Muresan, et al. 2018; Esfahlani, Butt,3

and Shirvani 2019). ML has received less attention in supporting clinical decision-making and4

predicting rehabilitation of upper extremity (UE) outcomes. Machine Learning (ML) algorithms5

were integrated to automate the process of analyzing 3D kinematics of the UE movements and6

classify its patterns based on data obtained from sensors (Microsoft Kinect, Leap Motion, and7

Myo armband devices). KNN and SVM ML algorithms were utilized due to their high accuracy8

and good theoretical guarantee of overfitting.9

Support Vector Machines (SVMs) and k-Nearest-Neighbours (KNNs) are the non-probabilistic0

ML algorithms, which represent different approaches to learning as active analysis agents for1

2
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prediction and classification. These algorithms function based on a statistical learning procedure2

demonstrated to have high accuracy (Stetter et al. 2020; Derie et al. 2020). The algorithm could3

predict the players’ arm function following the rehabilitation program and classify the arm and4

hand pattern and gestures. We obtained a view-invariant representation of the 3D positions and5

orientation of the skeleton joints of UE, an arm’s muscle actions, and hand gestures. Partici-6

pant’s with MS condition was distinguished from healthy subjects with the algorithm followed7

by predicting the motor function improvement following the intervention.8

2. Background9

ML has been successfully applied to several applications; ranging from face identification0

(Heisele, Ho, and Poggio 2001) to text categorization (Joachims 1998), and pattern recognition1

and classification problems (Levinger et al. 2007; Hosomi et al. 2012). The application of SVM2

to classify gait patterns of Knee osteoarthritis was conducted by (Levinger et al. 2007) to in-3

vestigate whether ML can assess gait improvement following knee replacement surgery. (Zhang4

et al. 2011) investigated optimal model selection for posture recognition through a supervised5

classification and training of a multiclass ML. They classified nine everyday postures from a6

belt-worn smartphone’s accelerometer data. (Lau, Tong, and H. Zhu 2009) explored the use of7

ML to classify different walking conditions for hemiparetic subjects. The participants walked8

in five different conditions in that two portable sensor units, comprising an Accelerometer and9

Gyroscope, were attached to the lower limb on the shank and foot segments to measure the kine-0

matic data. Their results showed that the SVM classification method could be applied as a tool1

for pathological gait analysis, pattern recognition, and activity monitoring during the rehabili-2

tation of daily exercises. They also suggested that the performance of an SVM was superior to3

other ML methods. (Begg, Palaniswami, and Owen 2005) integrated SVM to perform an auto-4

mated recognition of gait changes among young and senior participants. It was used to identify5

the aging influence on gait patterns and locomotor balance with the advantage of early identi-6

fication of at-risk gait and monitoring the progress of treatment outcomes. They recommended7

that SVMs function as an efficient gait classifier to recognize young and elderly gait patterns.8

3
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(Fleury, Vacher, and Noury 2010) used a health smart home in that a wearable kinematic sensor9

was utilized to collect postural transitions using pattern recognition and walk periods frequency0

analysis. The data collected from various sensors used to classify each temporal frame using1

SVM. (Long et al. 2016) utilized an online SVM optimized by particle swarm optimization to2

identify different locomotion modes to realize a smooth and automatic transition. Their experi-3

mental results show the effectiveness of the SVM algorithm with high accuracy. (Oskoei, Hu, et4

al. 2008) showed that the SVM is computationally an efficient algorithm for classification using5

electromyogram inputs.6

3. Materials and Methods7

The task in ML involves separating data into training and testing sets. Each instance in the8

training set contains one target value and several attributes. ML produces a model based on the9

training data, which predicts the target values of the test data given only the test data attributes0

(Boser, Guyon, and V. N. Vapnik 1992). In this study, ML Matlab Toolbox was used to map the1

input into a high-dimensional space.2

3.1. Support Vector Machines (SVM)3

SVM constructs an optimal hyperplane as a decision surface to maximize the margin of4

separation between the two classes. An iterative training algorithm must construct an optimal5

hyperplane, which is managed to minimize an error function. Based on the error function, SVM6

models can be classified into four distinct types (Joachims 1998), categorized as classification7

and regression models. The algorithm finds optimal locations of the decision surface by using8

a set of mathematical functions involving classification and regression models (Cortes and V.9

Vapnik 1995). Training for the algorithm has two phases; (I) Remodel predictors (input data) to0

a high-dimensional feature space where the data is never explicitly transformed into the feature1

space. (II) Solve an optimization problem to fit an optimal hyperplane to classify the transformed2

features into two classes. The number of support vectors determines the number of transformed3

features, and the process of rearranging the objects is known as mapping or transformation.4

4



Journal Pre-proof

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10
 Jo
ur

na
l P

re
-p

ro
of

Given a training set of instance-label pairs (, y), i = 1,...,l where  ∈ Rn and y ∈ {1,−1},5

the SVM require the solution for equations listed in Table 1. Table shows two classification and6

two-regression types; C-SVM and ν-SVM, and ε-SVM.C ∈ [0,∞], ν ∈ [0,1] and ε ∈ [0,1]7

are regulation parameters that supports implementing a penalty on the misclassifications that are8

performed while separating the classes. It helps in improving the accuracy of the output. The9

regularization parameters control the trade-off between the slack variable penalty (misclassifica-0

tions) and the width of the margin. Small value makes the constraints be ignored, which leads to1

a large margin. Large value allows the constraints difficult to be ignored, which leads to a small2

margin. ϕ is the kernel function which maps  to ϕ(). ζ is the slack variable that allows3

regression errors to exist up to the value of ζ and ζ∗ , yet still satisfy the required conditions.4

 ∈ Rn is inversely proportional to margin, hence to maximize the margin, we will have to min-5

imize , b ∈ R.6

K function estimates the functional dependence of the dependent variable y on a set of inde-7

pendent variables  (ibid.). Kernel functions are distinguished mainly based on the localization8

and boundary between different classes to determine finite response across the entire range of9

features. Linear, polynomial, radial basis function (RBF), and sigmoid kernel functions were0

adopted, which accompanied by Bayesian optimization to map data, illustrated in Eqn.1. Dot1

product in the equation acts as a transformer to map input data points to the higher dimensional2

feature space, and γ is kernel function’s adjustable parameter (Joachims 1998).3

K(X, Xj) = ϕ(X) · ϕ(Xj)





X · Xj Lner

(γX · Xj + C)d Poynom

ep(−γ | X − Xj |2) Gssn RBF

tnh(γX · Xj + C) Sgmod

(1)

4

3.2. K-Nearest Neighbour5

Inputs in KNN consist of k closest training examples in the feature space. The output depends6

on whether KNN is qualified for classification or regression. In regression, the output is the7

5
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Table 1: SVM algorithm with the error functions and constraints.

Classification SVM Regression SVM

1: C-SVM Classification 3: epsilon-SVM Regression

mn,b,ζ
1
2

T + C
∑
=1

ζ
Subject to the constraints:

y(Tϕ() + b) ¾ 1 − ζ
ζ ¾ 0,  = 1, . . . , 

mn,b,ζ
1
2

T + C
∑
=1

ζ + C
∑
=1

ζ∗
Subject to the constraints:

Tϕ() + b − y ¶ ϵ + ζ∗
y − Tϕ() − b ¶ ϵ + ζ

ζ, ζ∗ ¾ 0,  = 1, . . . , 

2: nu-SVM Classification 4: nu-SVM Regression

mn,b,ζ
1
2

T − υρ + 1
 C
∑
=1

ζ
Subject to the constraints:

y(Tϕ() + b) ¾ ρ − ζ
ρ ¾ 0, ζ ¾ 0,  = 1, . . . , 

mn,b,ζ
1
2

T − C(υϵ + 1
 C
∑
=1
(ζ + ζ∗ ))

Subject to the constraints:
(Tϕ() + b) − y ¶ ϵ + ζ
y − (Tϕ() + b) ¶ ϵ + ζ∗

ζ, ζ∗ ¾ 0,  = 1, . . . , 

object’s property value that is the average of the KNNs values. KNN regression’s output is the8

object’s property value that an average of the values of CNN’s. In KNN classification, the output9

is a class membership where a majority vote of the neighbors classifies objects. KNN classifier or0

weighted nearest neighbor classifier could be perceived as assigning the K-Nearest Neighbours1

a weight 1k . Given a X set of n points and a distance function, KNN search finds the k most2

adjacent points in X to set of points Y . The choice of K is essential and needs to be selected3

carefully, i.e., if K is too large or small, some of the neighbors used to make prediction will4

no longer be similar to the foreseen one, which will bias the prediction (Hastie, Tibshirani, and5

Friedman 2009). In the study, an optimal K is selected empirically, examining cross-validation6

procedure on the training set (ibid.).7

Given the covariate vector of a new observation, 0, the goal is to predict its response, y0. For8

every observation  in the training set, let s = s(0, ) be its similarity to 0. Then the9

similarities are put in an order s(), that is, s(1) ¾ s(2) ¾ · · · ¾ s(n). Similarly, if sj = s(k),0

where j is the kth most similar observation in training set to 0 then the set of KNNs of 0;1

N(0, K), could be described as all observations whose similarities to 0 are at least s(K);2

6
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N(0, K) = { : s ¾ s(K).3

p̂ =

∑
∈N(0,k) y
|N(0, K)|

(2)

KNN algorithm estimates the probability of y0 = 1, |N(0, K)| is the number of items con-4

tained in the set N(0, K). It generally equals K but may exceed it depending on how ties are5

treated. The response is then predicted to be one if p̂ ¾ c, where c is a prespecified thresh-6

old parameter. The overall error rate in KNN decreases as K increases and levels off at around7

K = 20. In a few cases, we can see that the overall error rate commences increasing again as K ,8

increasing further; thus, we chose K to be 20.9

3.3. Video Game & Modified Constraint-Induced Movement Therapy0

Constraint-Induced Movement Therapy (CIMT) is a physical rehabilitation strategy that uses1

operant training techniques applied in the context of rehabilitation medicine (Gert Kwakkel et al.2

2015), developed by (Taub, Crago, and Uswatte 1998). Its principle is to continue stretching mo-3

tor capacity gradually beyond an attained achievement level. CIMT emphasizes massed practice4

with the affected upper limb by restraining the less affected limb and training the affected one by5

shaping movements. CIMT is exhaustive, possibly resulting in non-compliance with the proto-6

col. It devotes six hours or more of therapy while constraining the intact arm for 90% of waking7

hours per day throughout two weeks (Gert Kwakkel et al. 2015). Thus, a modified version of8

it - mCIMT has been formed by (Page et al. 2008) to overcome such complexity. The mCIMT9

intends to overcome learned non-use in chronic hemiparesis, which is the behavioral conquest0

of purposive movement of the more affected UE in daily living exercises. Two to three weeks1

of mCIMT for stroke patients’ rehabilitation have shown significant improvements in the spon-2

taneous use of the paretic limb in the live setting, in comparison with placebo control therapy3

or usual and customary care (Wolf et al. 2006). (Mark et al. 2008) also suggested that slowly4

progressive MS conditions could take advantage of mCIMT and achieve promising progress.5

Since chronic UE hemiparesis occurs in MS casualties (Cowan, Ormerod, and Rudge 1990),6

we hypothesized that such patients could manifest learned non-use and favorably respond to the7

therapy. Therefore, in this study, the mCIMT principle was paired with mirror image therapy8

7
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to acquire mini video games. It was developed based upon repetitive task practice and the ap-9

plication of behavioral techniques known as shaping. Shaping involves matching the difficulty0

of tasks performed to the improvements the patients make and providing encouraging feedback1

immediately after any gain in function (Corbetta et al. 2015). Shaping in conventional mCIMT is2

determined by therapists based on individual movement deficits at specific skeleton joints (joint3

movements) that have the most potential for improvement according to a therapist’s judgment4

(Taub, Uswatte, et al. 2006). Whereas in our design, the process and decision-making are con-5

ducted automatically by the algorithm. The progression of movement tasks is made systemati-6

cally, quantified, and parametric way on personalized tasks for a patient. Duration of intervention7

in conventional mCIMT could vary from [2-10] weeks. Furthermore, the treatment time could be8

modified from thirty minutes to three hours per session (Yen et al. 2005). Thus, therapy sessions9

are designed as follows:0

1. Therapy sessions of one hour, five days a week for ten weeks.1

2. Restraining the use of a non-paretic upper limb to promote the use of the more impaired2

limb during sessions.3

3. Adherence-enhancing behavioral methods designed to transfer the gains obtained in the4

clinical setting to the patients’ real-world environment.5

4. Each task was practiced for at least five minutes before starting the formal session.6

Table 2 lists the mini-video-game tasks developed for this study with the devices used to interact7

with the therapy/game. Further explanations on devices and the game setting are followed.8

1. forearm to the table, participants’ forearm reaches the highlighted areas presented in the9

virtual environment.0

2. Forearm to the virtual button, and hold it in that position for three seconds, while the visual1

feedback and timer are activated.2

3. Extend an elbow to press the virtual button.3

4. Hand to the table and press the virtual button at the same time.4

5. Hand to the virtual button and hold it for three seconds.5

8
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Table 2: Task-specific use of devices and computer supervised mini-video games for the rehabilitation.

Devices
Mini Video Games Myo Kinect Leap Motion

1. Forearm to the table Ø Ø ·
2. Forearm to the virtual button and hold for three sec Ø Ø ·
3. Extended Elbow Ø Ø ·
4. Hand to table Ø Ø ·
5. Hand to the virtual button and hold for three sec Ø Ø ·
6. Reach virtual boxes on the table collect and place them Ø Ø Ø
7. Lift the virtual box to 10 cm Ø Ø Ø
8. Pull the virtual rubber string to hit virtual objects Ø Ø ·
9. Grab the virtual fruit Ø Ø ·
10. Lift the virtual pencil and put it on the virtual box Ø Ø Ø
11. Stack the virtual boxes (up to 4) Ø Ø Ø
12. Flip the cards Ø Ø Ø
13. Grip strength Ø Ø Ø
14. Turn the key in the virtual lock Ø Ø ·
15. Reach virtual fruits and place them in the basket Ø Ø ·

6. Collect virtual boxes and place them on top of each other.6

7. Lift virtual boxes to 10 cm (identified by highlighted areas in the game).7

8. Pull the virtual rubber sling and release it to smash/hit virtual boxes.8

9. Grab virtual objects that are spawned randomly in the space to collect them.9

10. Lift a virtual pencil and put it on the virtual box.0

11. Stack virtual boxes (up to four boxes),1

12. Flip the virtual cards.2

13. Grip/hold an object firmly,3

14. Turn a key in a virtual lock.4

15. Reach virtual fruits and place them in the basket.5

The video game in this work provides participants with graphical feedback, positive rewarding6

and scoring system to encourage the continuation of tasks and retention. The player acts as a7

controller of the game in that body actions are transferred into the 3D environment using the8

mirroring effect via Kinect and Leap Motion.9

9
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3.3.1. Myo Armband0

Myo armband by Thalmic Labs is a low-cost consumer-grade EMG device integrating an1

ARM Cortex-M4 based microcontroller unit, a set of eight dry EMG electrodes, a nine-axis2

inertial measurement unit (IMU), and a Bluetooth Low Energy (BLE) module (Phinyomark, N3

Khushaba, and Scheme 2018). The Myo is non-intrusive, as the electrodes allow users to slip4

the bracelet on and off (Côté-Allard et al. 2018; Esfahlani, Thompson, et al. 2018). EMG and5

IMU data, were collected for hand gestures. The optimal position of the armband placement is6

determined by conducting various examinations and placed on the widest part of the forearm7

(right or left). For optimal results and a strong connection to the arm muscles, the Myo armband8

was warmed up for five minutes (Phinyomark, N Khushaba, and Scheme 2018).9

3.3.2. Microsoft Kinect V20

Kinect v2 has an Infrared (IR) camera with 512 × 424 pixels. Its RGB camera resolution is1

1920 × 1080 pixels. It has a field of view (FoV) of 70 × 60◦ and a frame rate of 30Hz. Kinect2

was located on top of the screen within [1.5-2.0] meters from the player. It was elevated 45◦ in3

front of the subject (tilted toward the subject). Kinect was used to transfer the players’ body joints4

to the game environment. Skeleton joints were also used for classification and regression analysis.5

To measure the dynamic range of motion of the UE joints, we employed a sequential kinematic6

model based on the joint coordinate system (JCS), which was proposed by the Standardization7

and Terminology Committee (STC) of the International Society of Biomechanics (ISB) (Wu et8

al. 2005). The coordinates were defined where the coronal axis of the patient is the X-axis, the9

sagittal axis is the Y-axis, the vertical axis is the Z-axis, and the idle position is the origin of the0

joint coordinates (Butler et al. 2010).1

3.3.3. Leap Motion2

Leap Motion peripheral uses two monochromatic IR cameras and three IR LEDs. It observes3

a roughly hemispherical area to a distance of about one meter. Leap Motion was located on4

the desk using a projective interaction mode within 0.4 to 0.6 meters below the player’s hands.5

Figure 1-a, Figure 1-b, and Figure 1-c are the screenshots of task number six using Leap Motion.6

10
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Figure 1: (a), (b) and (c) 6th Video game task with virtual hands following the physical hands using Leap Motion. (d),
(e) and (f) Rubber sling to knock down virtual boxes (right).

11
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The player should reach virtual boxes to interact with them. In this scenario, both hands are7

involved in completing the task where mirrored therapy is used in a 3D environment. The boxes8

must be picked up and placed on the pads matching the cube’s color. At the more advanced level,9

the player should stack boxes on top of each other. Figure 1-d, Figure 1-e, and Figure 1-f is the0

screenshot of task number eight from mini-game, according to Table 2.1

Figure 1-e, and Figure 1-f both show that the player should only use the left hand to interact with2

the virtual ball and the elastic sling. Figure 2 illustrates the location of virtual fruits, task number3

fifteen in Table 2, spawned in the 3D environment. Monte Carlo Tree Search algorithm was4

used to spawn objects relative to the position of the player’s body joints and their performance.5

According to the figure, the player only can interact with objects using the right hand. Left-hand6

could not be used to collect things to promote the use of the affected hand/arm. Figure 2 displays7

various planes in which the objects are spawned; abduction/adduction, forward flexion/extension,8

external/internal rotation and horizontal flexion/extension.9

4. Calculation0

4.1. Data Pre-processing and Feature Extraction1

Myo armband, Microsoft Kinect, and Leap Motion devices enable the player to act as a con-2

troller. Kinect collects the player’s body joints orientation, and position, Leap Motion transfers3

fingers and hand movements into the game environment.4

EMG signals are formed via the superimposition of individual action potentials generated by5

irregular discharges of functioning motor units in a muscle fibre. Thus, amplitude and frequency6

both represent the level of activity of motor units in the fibre. EMG raw signals are transformed7

into a classification set of features following (feature extraction). There were three types of fea-8

tures in a different domain; Time, Frequency, and Time-Frequency distribution (Nazmi et al.9

2016).0

Data pre-processing method of baseline correlation was performed using a 4th-order Butterworth1

bandpass filter with different cut-off frequencies to improve the signal-to-noise ratio (SNR) of2

the signals. Savitzky-Golay filter was integrated to remove noise from the IMU signals. The 503
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(a) Abduction/Adduction (b) Forward Flexion/Extension

(c) External/Internal-Rotation around shoulder/torso
height

(d) External/Internal-Rotation around shoulder/torso
height

(e) Horizontal Flexion/Extension

Figure 2: 15th video-game scenario of Table 2 with the location of the fruit which is spawned in the virtual environment
relative to the player’s performance (right hand).
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Hz notch power line noise removed using a 3 dB passband, amplitude normalization followed4

by wavelet method to localize both time and frequency segments (Phinyomark, N Khushaba,5

and Scheme 2018). EMG signals were recorded at 200 Hz with a high-pass 20 Hz cut-off and6

low-pass of 500 Hz cut-off at the time domain and frequency of 24 and 2.7

The EMG raw signal features were extracted for each type of hand movement from the denoised8

data. Waveform length time-domain feature extraction method was used to present the charac-9

teristics of signals for hand movements due to its high rate of accuracy and stability to changes0

in segmentation method (Oskoei, Hu, et al. 2008).1

Four hand gestures were segmented using KNN and dynamic time warping algorithms. Each2

segment consisted of 500 data points taken from the armband. The armband’s angular and linear3

movements were obtained from its Intertial Measurement Units (IMU: Gyroscope, Accelerome-4

ter, and Magnetometer) sensor. The Gyroscope determines the roll/pitch, and the magnetometer5

measures the yaw in various directions. After collecting data at the local sampling frequency,6

linear interpolations were performed to create a constant sampling interval while maintaining7

time and frequency domain signal integrity to achieve an identical sampling frequency. The sig-8

nals were averaged over a hundred and twenty readings to manage high-dimensional data sets9

efficiently. Acceleration creates a force that is captured by the force detection mechanism of the0

accelerometer, which measures acceleration indirectly through a force applied to its axis. Linear1

acceleration was measured in (G=9.81m
s2

) along each axes considering static (gravity) and dy-2

namic (sudden starts/stops) acceleration. The Gyroscope’s readings were collected in (
◦
sec ) to3

calculate the angular velocity of the orientation.The Myo armband first placed on a level tabletop4

and then was slid along a straight line for a distance of one meter. The noise in data was filtered5

to adjust the initial and final velocities to zero. The velocity was obtained by integrating ac-6

celerometer measurements once, and the position was obtained by integrating the velocity. The7

sensor moved a distance of one meter, the estimated distance obtained by double integration.8

Data from the game engine was registered based on the Unity game development platform frame-9

rates (60fps) and transferred to the computer’s hardware in excel format. The average time re-0

quired to perform each movement was found to be around 500 (milliseconds) to estimate signal1

14
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features (Lang et al. 2013).2

4.2. Subjects3

Fifty-two participants were recruited for the study (forty with MS and twelve MS-free).4

Twelve MS patient’s data were excluded from analysis as five (four male, one female) could5

not complete the therapy sessions, and seven patients decided to leave the study. Forty sub-6

ject’s data were used for decision-making and prediction; twenty-eight MS casualties and twelve7

healthy with age ranged [28,62]. Table 4 summarises the demographic and clinical characteris-8

tics of the forty MS participants at the time of admission. The patients diagnosed with relapsing-9

remitting MS, secondary progressive MS (47%), and primary progressive MS (53%). The institu-0

tion (ARU) Research Ethics committee- a UK Research Integrity Office (UKRIO), approved the1

research. The research was performed following the Belmont principle. Informed consent was2

obtained from all participants or their legal guardians with a complete explanation of the research3

process. The explicit motor learning conditions were implemented with guidance to complete the4

motor tasks and learn them. It relies on maintaining attention, processing information, reflecting5

and maintain awareness, and working memory capacity. Participants were interviewed following6

each rehabilitation session to receive feedback. 83% of the MS participants had the previous7

experience of undertaking conventional physical and occupational therapy with discontinuation8

due to the lack of motivation. The eligibility criteria for MS patient’s participation in the study9

are; slow primary and secondary progressive MS, at least 20◦ active wrist extension, 10◦ active0

finger extension, and minimal sensory or cognitive deficits (C. S. Dunham, J. R. Dunham, and1

Goldenson 1978).2

The healthy subjects’ data also were used to train the algorithm accompanying MS casualties to3

measure the joint’s range of motion (ROM) and hand gestures. Joint flexibility at a joint is mea-4

sured by the number of degrees from the starting position of a segment to its final position at the5

end of its full range of movement. The measurements were performed using a double-armed go-6

niometer and Kinect devices. In goniometer measurement, a stationary arm holding a protractor7

was placed parallel with a stationary body segment, and a movable arm moves along a movable8

body segment while the axis of the goniometer was placed over the joint (Hamilton 2011). Ta-9

15



Journal Pre-proof

30

30

30

30

30

30

30

30

30

30

31

31

31

31

31

31

31

31

31

31

32

32

32

32

32

32

32

32
 Jo
ur

na
l P

re
-p

ro
of

ble 3 displays the UE ROM collected from healthy subjects in degrees, using both goniometer0

and Kinect devices. The control groups’ data are also used to identify four-hand gestures through1

the Myo armband, where each movement was held fixed for five seconds, and the signals were2

registered. The identified four gestures are; 1. Wave hand for reach or move to a target, 2. Fist3

for grasp or hold on to an object (to carry virtual objects from point A to B), 3. Release an object4

using the stop hand sign (spread fingers), and 4. Idle or relaxed hand gestures.5

Motor Assessment Scale (MAS) with the scale of [0,6] was conducted pre-treatment, post-6

treatment, and four weeks follow up-treatment for upper arm function and hand movement.7

Participants performed each task three-time; only the best performance was recorded. Two ther-8

apists supervised and obtained the participant’s MAS score. If the patient could not complete9

any part of a section, the score is zero, and if they complete it, the score is six.0

The tasks in games are designed to incorporate the major joints of the upper body and represent1

functional tasks that are feasible yet challenging enough to engage UE and reveal motor deficits.2

The game difficulty, the score, and critical timing to finish each task were set initially through3

the game menu, which was consistent for all participants.4

We performed supervised ML by supplying a known set of observations of input data (predictors)5

and known responses by using observations to train a model that generates predicted responses6

for new input data. As previously mentioned, the control subject’s data were used to classify7

hand and arm patterns while players engage with the program. These data were utilized as a8

reference to compare the patterns generated by casualties pre and post-treatment and feature9

identification. The control subjects’ within and between-session coefficients of variation were0

assessed (σμ ) while associated with virtual objects and completed the tasks in the games. The1

repeatability coefficient represents the absolute difference between two repeated test results with2

a probability of 95%. The dispersion of the variables was ranged [42-89]%, indicating excellent3

repeatability. Thus, control subjects’ data was adequate to identify various patterns of hand and4

arm movements and compare data. The reliability of quantitative functional tests in patients with5

MS was considered to be varied by <20% of individual mean scores on repeated testing (Schwid6

et al. 2002), to determine the range of measurement variability when patients are clinically stable.7
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Table 3: Kinematic data of Upper Extremity average ROM collected from healthy subjects.

Joint/Segment Movement Goniometer ROM◦ Kinect ROM◦
Wrist Extension (Dorsiflexion) 55 64

Flexion (Palmar flexion) 75 80
Radial Deviation 20 22
Ulnar Deviation 32 35

Elbow Flexion 145 143
Hyperextension 8 7

Forearm Pronation 85 84
Supination 85 83

Table 4: Demographic Characteristics of the participants.

Variables Results
Age 48.58 (8.52)∗

Male vs Female 26 vs 14
Time since the outset of MS symptoms in MS casualties (months) 59.9 (14.8)∗

Subjects with Right upper-limb impairment 17 vs 11
MAS: Hypotonus (low muscle tone) 3 (2.3)∗

∗Mean (SD)

Table 5: MS Participant’s average UE Function Ability.

Upper Arm Pre-treatment Post-treatment Four-week Follow-up

X̄ SD X̄ SD X̄ SD
1 2.29 0.85 3.14 0.71 3.36 0.62
2 2.39 0.96 3.39 0.69 3.39 0.63
3 3.00 0.77 3.86 0.65 3.75 0.65
4 2.75 0.97 3.79 0.57 3.75 0.70
5 2.79 0.74 3.82 0.61 4.00 0.72
6 2.46 0.84 3.57 0.57 3.75 0.59

Hand Movement Pre-treatment Post-treatment Four-week Follow-up

X̄ SD X̄ SD X̄ SD
1 2.93 0.66 3.39 0.74 3.39 0.57
2 2.82 0.72 3.96 0.74 3.61 0.57
3 2.71 0.81 3.93 0.72 3.71 0.60
4 3.25 0.64 3.75 0.65 3.64 0.56
5 3.14 0.65 3.43 0.58 3.54 0.51
6 2.90 0.92 3.39 0.63 3.79 0.63
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5. Results8

5.1. Data Collection and Analysis9

To develop a control strategy and prediction model of the rehabilitation, ML was executed0

in that data were collected from Myo armband and Kinect devices while the players were in-1

teracting with the game setting. The features considered for the SVM classification are as fol-2

lows: Shoulder joint orientation (flexion/abduction), Elbow joint orientation and position (flex-3

ion/extension), and Wrist joint orientation and position (flexion/extension) from Kinect (30fps),4

Forearm pronation/supination (50Hz), Hand gestures and data from 8-EMG Electrodes (200Hz)5

from Myo armband. The UE joint orientation from the control groups helped identify the upper6

limb patterns while interacting with the game. The application of SVM classification was used7

to classify arm patterns pre-treatment, post-treatment, and four-month follow-up to investigate8

whether SVMs could be used to predict UE improvement following rehabilitation. A total of9

twelve parameters (six-upper arm function and six-hand movement) scores give a score between0

[0, 72], where 72 points represent a well-aligned upper arm and hand function and full UE range1

of motion. Three sets of data were created taken from each subject for the analysis resulting in a2

total data size of 105.3

The MS people were labeled +1, and -1 demonstrated healthy people for arrangement and re-4

lapse ML utilizing lower arm developments and MAS scores. The region of the receiver operat-5

ing characteristics (ROC) curve for single highlights was utilized to get a quantitative proportion6

of individual element distinguishableness. ROC zones were numerically approximated utilizing7

the trapezoidal guideline, where more considerable qualities inferred better straight component8

distinguishableness. The exhibition of the ML models at recognizing healthy subjects from MS9

people with restricted UE was portrayed by the affectability and particularity esteems. The ROC0

bend territory is evaluated by utilizing the trapezoidal guideline for approximating zones under1

bends. The order result of the ML was additionally contrasted and linear discriminant investiga-2

tion (LDA).3

As mentioned in the previous section, data were recorded as the participants interacted with4

fifteen mini video games. The control subjects used their dominant arm, and the MS casual-5
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ties interacted with the more impaired limb. The orientation, velocity, and muscle activity of6

the forearm, hand position, and the average MAS score of hand and upper arm (pre/post and7

four-month-followup-treatment) were used for the classifications. The set of good models was8

determined by a leave one out (LOO) procedure which is a robust metric for determining the qual-9

ity of the models. All models were trained using the linear, polynomial, Radial Basis Function0

(RBF), and Sigmoid kernels. Bayesian optimization was employed to optimize the prediction.1

Features were excluded randomly from the training data set and used as a test sample. The trial2

sets were divided into training test sets (75:25), while the test set was not included in the training.3

This was repeated until all training examples were individually tested on the models. Our test4

results showed that SVM and KNN are both efficient algorithms with reasonable accuracy. They5

could successfully classify data, identify individuals, and predict the improvement following the6

rehabilitation program. The mean period of completing tasks for people with MS condition was7

approximately twice as long as the control group (75 ± 0.6s versus 35 ± 0.76s).8

Scatter plots and confusion matrix, and parallel coordinates plots were combined with ob-9

serving data and assessing the accuracy of the classifier. Kernel functions with ROC areas close0

to unity indicated high accuracy and robustness to variations of classification inception and better1

overall execution.2

The accuracy of the classifier was also identified as the rate of correct classification to all data.3

It was used as the primary index to illustrate the performance of the classification. Besides, sta-4

tistical analyses were performed to interpret the Spatiotemporal results using a t-test in SPSS5

Statistics 24. The test made a statistically significant difference with the mean standard error of6

MSE=0.17.7

Spatiotemporal data used were; movement duration, hand trajectories, velocities, the linear dis-8

tance between the start and endpoint, and the shoulder position during forward and upward reach-9

ing. Data were collected, although some participants experienced difficulties in completing some0

tasks, including wrist flexion, elbow extension/supination, and excessive shoulder elevation in1

forwarding/upward reaching and grasp. Participants with MS performed tasks over a higher du-2

ration than MS-free subjects 49.7% with P < 0.001. Furthermore, MS participants demonstrated3
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reduced movement stability in terms of adjustment 5.5 vs. 1.8(mm) and a less smooth move-4

ment in terms of frequency of direction changes 4.2(Hz) vs. 3.1(Hz). The Spatiotemporal data5

comparing pre and post-treatment showed a significant improvement in real-world motor abil-6

ity for at least four weeks post-treatment, and 1.65s improved movement speed. The maximum7

speed progressed to 1.7m/s, and the timing of maximum velocity increased by 32%. Table 58

illustrates twenty-eight participant’s MAS average upper arm function and its standard deviation9

(SD). <20% change on the test result is considered the threshold that reliably indicates an ac-0

tual change in function for an individual with MS. An unbiased training set was derived using a1

leave-one-out cross-validation method in that; an arbitrary example was excluded from the train-2

ing data and used as a test sample. This was repeated until all training samples were individually3

tested on the SVM. The average accuracy is the leave-one-out accuracy and is a robust metric for4

determining the quality of the SVM model.5

The features included in the classification were; Wrist, Elbow, Forearm’s joint/segment Orien-6

tation, Velocity, Position, EMGs, MAS Scores, and Time. MS patients were identified by -17

and healthy subjects as +1. The five-fold cross-validation and holdout validation classifier were8

used to overcome data overfitting. Five-fold cross-validation partitions the data into five disjoint9

sets and trains the model using the out-of-fold observations. It assesses the model’s performance0

using in-fold data by studying the average test error overall folds. Table 6 lists the standardized1

kernel functions and RMSEs in that the overall error rate was used as the guiding criterion for2

performance. The Kernels scale mode was set to both automatic and manual. The automatic3

scale uses a heuristic procedure to select the initial kernel parameters, which the initial values4

were specified in manual one.5

The automatic Gaussian kernel function has the best fit with RMSE=0.056. The manual Gaus-6

sian kernel function with the box constraint=1.483, epsilon=0.148 and scale=21 resulted in the7

RMSE=0.079. The features were reduced to Elbow, Forearm’s joint/segment Orientation, Veloc-8

ity, EMGs, MAS Scores, and Time in that the classification was improved. The residuals plot was9

investigated to check model performance considering the difference between the predicted and0

true responses. The kernel functions determine the correlation in the response as a function of1

20



Journal Pre-proof

41

41

41

41

41

41

41

41

42

42

42

42

42

42

42

42

42

42

43

43

43

43

43

43

43

43

43
 Jo
ur

na
l P

re
-p

ro
of

the distance between the predictor values. We adopted linear, polynomial, RBF, Sigmoid kernel2

functions, and Bayesian Optimization to build SVM and compared the outcomes. The Bayesian3

Optimization was employed to optimize the SVM classifier fit.4

Five-fold cross-validation and 25% holdout validation were utilized to partition the data set into5

folds, estimate the training data accuracy, and avoid over-fitting. The results indicated that the6

SVM could successfully identify individuals with MS from the healthy using the data collected7

from sensors and predict rehabilitation outcomes. The out-of-sample misclassification rate was8

5% which indicated a reasonable classification. 25% holdout validation classifier was used in9

that medium Gaussian radial basis function had the highest accuracy, 83.8% as displayed in0

Table 7. Figure 3 shows the 3D model of the objective functions that are used to perform op-1

timization. The optimal values of the decision variables result in the best possible value of the2

objective function to find an input that results in the minimum/maximum cost of a given objec-3

tive function. Bayesian optimization offers a principled technique based on the Bayes Theorem4

to supervise a search of a global optimization problem that is efficient and effective. It starts5

by building a probabilistic model of the objective function, known as the surrogate function,6

then searched efficiently with an acquisition function before applicant samples are collected to7

evaluate the actual objective function. As illustrated in figure thirty, Objective Evaluations and8

Sigmoid kernel function were adopted to train the classifier. The results showed a good fit and9

low cross-validation loss of the pairs using Bayesian Optimization. The characterization takes a0

shot at areas of focuses from a Gaussian blend model with base focuses produced arbitrarily and1

freely.2

6. Discussion3

Multiple Sclerosis (MS) is a degenerative neurological issue influencing casualties freedom4

of everyday life; hence, causing dependency on others (Taylor and Griffin 2015). Studies have5

shown the advantage of continuous rehabilitation and its role in a patient’s brain plasticity and6

recuperation at various phases of the disease (S. Thomas et al. 2017). Plasticity is the capac-7

ity of the sensory system to adjust to the ever-changing states of the environment, experienced8
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Table 6: SVM Regression Learner models using Cross-validation and Holdout-Validation.

Cross-Validation Holdout-Validation

Binary Features RMSE (%) R2 RMSE (%) R2

SVM Kernel Function

Linear (Automatic Epsilon mode) 27/27 12.4 0.98 14.8 0.97
Quadratic 27/27 12.4 0.98 14.8 0.97
Cubic 27/27 11.9 0.98 14.3 0.97
Fine Gaussian (Automatic Epsilon mode) 27/27 76.4 0.22 71.9 0.26
Medium Gaussian (Automatic Epsilon mode) 27/27 14.7 0.97 14.1 0.97
Coarse Gaussian (Automatic Epsilon mode) 27/27 6.4 0.99 7.3 0.99
Coarse Gaussian (Epsilon=0.148; Kernel Scale=10) 27/27 8.7 0.99 7.5 0.99
Coarse Gaussian (Epsilon=0.148; Kernel Scale=18) 27/27 6.1 1.00 7.8 0.99

PCA: Component Reduction Criteria

Linear (Automatic Epsilon mode) 10/27 8.1 0.99 7.8 0.99
Quadratic (Automatic Epsilon mode) 10/27 10.1 0.99 11.8 0.98
Cubic (Automatic Epsilon mode) 10/27 10.7 0.98 12.6 0.98
Fine Gaussian (Automatic Epsilon mode) 10/27 63.0 0.47 62.3 0.48
Medium Gaussian (Automatic Epsilon mode) 10/27 14.3 0.97 14.1 0.97
Coarse Gaussian (Automatic Epsilon mode) 10/27 6.4 0.99 19.3 0.95
Coarse Gaussian (Epsilon=0.148; Kernel Scale=10) 10/27 6.7 0.99 6.4 0.99
Coarse Gaussian (Epsilon=0.148; Kernel Scale=18) 10/27 10.5 0.99 10.4 0.99

Table 7: Binary Classification using SVM and KNN algorithms.

Fine Medium Course
SVM Classifier 95% PCA Linear Quadratic Cubic Gaussian Gaussian Gaussian

RBF RBF RBF
Cross-Validation

Accuracy (%) 74.8 79.7 66.1 88.0 76.6 74.8
AUC of ROC 0.56 0.82 0.64 0.93 0.83 0.81

Holdout Validation
Accuracy (%) 74.9 79.5 61.0 87.8 77.2 74.9
AUC of ROC 0.66 0.83 0.57 0.92 0.83 0.80

KNN Classifier 95% PCA Fine Medium Coarse Cosine Cubic Weighted

Cross-Validation
Accuracy (%) 91.6 90.1 84.6 87.6 90.3 91.7
AUC of ROC 0.88 0.95 0.90 0.92 0.95 0.96

Holdout Validation
Accuracy (%) 90.4 90.2 83.2 88.8 89.5 91.6
AUC of ROC 0.87 0.95 0.90 0.92 0.95 0.96

Area Under the curve (AUC);
Receiver Operating Characteristic (ROC).
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Figure 3: Optimized SVM classifier fit using Bayesian Optimization. The output and input pairs’ of objective function
model.

during improvement and learning (Prosperini et al. 2015). This study integrated the Human Ma-9

chine Interface platform to facilitate exercise and rehabilitation programs for MS casualties to0

reduce the limitations resulting from the neurological deficit. ML was used for data exploration1

and to gain the experience required to develop predictive models, classify patterns, and reduce2

dimensionality in human UE movement analysis. The application of ML methods to human3

posture and movement classification was studied to assess the movement quality in response4

to the intervention. The study demonstrated the application of KNN and SVM to predict the5

outcome of the home-based neuro-rehabilitation video game and its effectiveness in supporting6

clinical decision-making. KNN and SVM have the advantage of high accuracy, good theoretical7

guarantees regarding overfitting. SVM performs well where base feature and kinematic data are8

interconnected and are not linearly separable. KNN is a high variance classifier and demonstrates9

robustness towards noisy training data.0

NN and SVM both showed having the ability to recognize complex and noisy patterns available1

in UE (upper extremity) data. SVM and KNN are both efficient while using cross-validation and2
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holdout validation. The algorithm could identify individuals with a motor deficit from healthy3

participants, recognize the patterns created by joint kinematics (both healthy and MS casualties)4

and create a regression model that predicts the rehabilitation advantages post-treatment.5

The prediction accuracy was in the range of [61% to 91.7%], where Gaussian KNN exceeded6

other kernel functions. Bayesian optimization resulted in an excellent classifier fit.7

Spatiotemporal control and motor assessment scale used to assess the effectiveness of the reha-8

bilitation program. Our findings suggest that ML has a great potential to be used for decision-9

making in neuro-rehabilitation programs. It is suggested that more accurate targeting of rehabili-0

tation programs could result in the more efficient and effective use of health care resources, which1

results in the reduction of health care costs. The outcomes also illustrate that repetitive move-2

ment of the affected UE enables neuro-plasticity in MS casualties. Real-time graphical feedback3

provided in the invention offered a suitable platform for self-assessment, suggested prescriptive4

input about what to do following a mistake/dysfunction, thus, reducing the cognitive load. The5

participants agreed that the video game platform increased their motivation and retention com-6

pared to their experiences with conventional therapies. The theory and mechanism behind the7

improvements in outcomes following the interaction with the rehabilitation program indicated8

the adequacy of computer games and visual-input practices in improving parity in MS patients.9

7. Conclusion0

With the expanded use of standardized information systems in many parts of the health sys-1

tem, there is great potential for enhanced use of sophisticated computer modeling and statistical2

analysis techniques to inform clinical decision-making and health system planning (M. Zhu et al.3

2007). Data selection to train SVM and KNN models requires randomly selected large samples4

to achieve satisfactory models. However, many training data will raise the computation cost for5

model training and data testing. Thus, it is crucial to reduce the training dataset without degrad-6

ing the final classification result. The results showed that to train a multiclass support vector7

machine (SVM), a small training set is sufficient since an initial model is improved iteratively8

and incrementally, which complies with the study of (Zhang et al. 2011). It is important to9

24



Journal Pre-proof

48

48

48

48

48

48

48

48

48

48

49

49

49

49

49

49

49

49

49

49

50

50

50

50

50

50
 Jo
ur

na
l P

re
-p

ro
of

choose the right parameters to achieve testing accuracy rather than using conventional models0

with large sample sizes. Our models were evaluated and validated against the classification ap-1

proach in literature; (Fleury, Vacher, and Noury 2010; Keerthi and Lin 2003; Lau, Tong, and2

H. Zhu 2009). The classification derived from the small training set improved computational3

efficiency by 28%.4

The use of the proposed rehabilitation study could be considered experimental in MS people.5

Thus further research with rigorous methodology and reliable outcome measures could be bene-6

ficial to provide higher-level support of the effectiveness of the intervention for MS people. The7

future work will focus on using the classification data to achieve a dynamical coupling between a8

player and a prosthetic armor artificial limb. This could lead to an expansion of ML functionality9

in developing advanced online training schemes to support the long-term operation.0
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Highlights: Machine Learning in Neuro-Rehabilitation Video Game

1. Using Supervised learning algorithms; Support Vector Machines (SVM) 
and K-Nearest Neighbours (KNN), for motor function classification and 
regression analysis

2. To achieve clinical decision-making and prediction of motor function of 
participant’s with Multiple sclerosis

3. Mini video games was developed for upper limb rehabilitation

1
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