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Abstract:  
Risk management plays a vital role in tackling cyber threats within the Cyber-Physical System 
(CPS). It enables identifying critical assets, vulnerabilities, and threats and determining suitable 
proactive control measures for the risk mitigation. However, due to the increased complexity of 
the CPS, cyber-attacks nowadays are more sophisticated and less predictable, which makes risk 
management task more challenging.  This paper aims for an effective Cyber Security Risk 
Management(CSRM) practice using assets criticality, predication of risk types and evaluating the 
effectiveness of existing controls. We  follow a number of techniques for the proposed  unified 
approach including  fuzzy set theory for the asset criticality, machine learning classifiers  for the 
risk predication and Comprehensive Assessment Model (CAM) for evaluating the effectiveness of 
the existing controls. The proposed approach  considers relevant CSRM concepts such as asset,  
threat actor,  attack pattern, Tactic, Technique and Procedure (TTP), and  controls  and maps these 
concepts with the VERIS community dataset (VCDB) features for the risk predication. The 
experimental results reveal that using the fuzzy set theory in assessing assets criticality, supports 
stakeholder for an effective risk management practice. Furthermore, the results have demonstrated 
the machine learning classifiers exemplary performance to predict different risk types including 
denial of service, cyber espionage, and crimeware. An accurate prediction of risk  can help 
organisations  to determine the suitable controls in proactive manner to manage the risk.  
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1. INTRODUCTION 
  
The primary objective of  CPS  is resilience by delivering it’s users an  uninterrupted services 
based on  relying on the most valuable assets such as information and communication networks, 
and digital data for reliable  service delivery  [1, 2]. These assets require the attainment of stability, 
reliability, efficiency which need tight integration of computing, communication and control 
technological systems [3]. However, CPS faces  different types of  cyber threats which are  
constantly  evolving  and  more  sophiscated which makes the  risk management task more  
challenging [4].  A recent survey result from experian shows that almost half of business 
organisations suffer at least one security incident per year [5]. Therefore,  
global cybersecurity spending is continuously rising to 96 billion US dollars in 2018 [6]. Despite 

https://securityintelligence.com/news/cybersecurity-spending-poised-to-rise-in-2018-gartner-reports/


of the efforts for implementing controls to secure the CPS, large organisations are still facing cyber  
attacks which could pose severe business interruption. It is really challenging to eliminate the cyber 
attacks, but organisations should aim to predicate the risks so that necessary actions can be taken 
for its mitigation.  We advocate considering the risk prediction as a part of overall risk management 
practice. Machine Learning (ML) can particularly be beneficial for predicting risk. There are 
number of  works that proposed prediction models which allowed for the adoption of preventive 
actions to avoid the disruption of critical services. These papers examined the demographics of 
users' and  network connectivity behaviour [6], web browsing behaviour [7], website features [8], 
network mismanagement details [9]and historical incident reports of organisations [10] to predict 
cyber incidents. Despite of these contributions, there is a lack of focus on integrating ML for 
predicting risk types to support overall risk management process  .Additionally, there is a need to 
determine the effectiveness of existing controls taking into account the predicated risks so that 
organisation can identify the additional controls to tackle the risks.  

Within the above context, this paper contributes for an effective risk management practice and its 
novelty is in four folds. Firstly, we propose to use fuzzy logic to determine Asset Criticality (AC). 
In doing so, five primary security goals are used as input factors i.e. Confidentiality (C), Integrity 
(I), Availability (A), Accountability (ACC) and Conformance (CON). The AC is the fuzzy output 
based on the assessment outcomes of identified assets. Secondly, ML models such as K-Nearest 
Neighbours (KNN), Neural Networks (NN), Decision Tree (DT), Random Forest (RF), Logistic 
Regression (LR), Naïve Bayes Multinomial (NB-Multi) and Naive Bayes (NB) are used  to 
predicate the risk types.  We extract the features based on CSRM concepts such as threat actor, 
assets, controls and TTP for the risk prediction. Thirdly, we consider  Comprehensive Assessment 
Model (CAM)  to determine the effectiveness of existing controls and propose additional controls 
to tackle the predicated risks. Finally, we use VERIS community database (VCDB) to predicate 
the risks. The result shows that asset criticality and risk predication can effectively support the 
overall risk management process. The result also confirms that some controls such as network 
intrusion, authentication, and anti-virus show high efficacy in controlling risks by following the 
CAM approach. 

 The rest of the paper is structured as follows. Section 2 we provide a brief introduction of the 
related works. Section 3 explains the concepts necessary for “cybersecurity risk management 
(CSRM)”. In section 4, we introduced the experimental methodology for determining the 
cybersecurity risk type. Section 5 explains the experimental results obtained from the different 
classifiers using the VCDB dataset. Section 6 concludes our research and provides future work 
based on our findings.  

 

2. RELATED WORKS 
This section provides state-of-the-art contributions which are relevant with our work  in the area 
of CSRM and  ML classifiers for the overall cyber security  .  
 
2.1. Machine learning and cybersecurity 
Machine learning classifiers are widely used in several application domains such as text 
categorisation[11], internet traffic classification [12], recommender systems[13], and malicious 
“uniform resource locator (URL)” detection [14]. However, the benefit of machine learning 
techniques for risk management is still at an early stage. In [15] proposed an intrusion detection 



system (IDS) for synchro-phasor systems that detect cyber-attacks but is limited to man-in-the-
middle (MITM) and denial of service (DoS) cyber-attacks against synchro-phasor devices only. In 
the work of[16], they applied multiple learning algorithms to Modbus return terminal unit (RTU) 
data in order to demonstrate an ability to discriminate command and data injection attacks on the 
supervisory control and data acquisition systems (SCADA) of a pure gas pipeline system. In [17], 
the authors proposed a Siamese Network Classification Framework (SNCF) that can map the 
Siamese network to a classification based on the similarity to alleviate imbalance for risk 
prediction. However, comprehensive evaluation for other ML classifiers was not carried out to see 
which one gives the best predictive accuracy result. The work of [18] presents a RiskTeller system 
that analyses binary file appearance logs of machines to predict future machines that are at risk of 
infection. However, the RiskTeller is only able to predict a risk level and the not the specific risk 
type. [19] Presents an algorithm model to predict cyber risks by using social media big data 
analytics and statistical machine learning. However, the proposed algorithm only uses 
vulnerability information to predict risk types, other features such as: TTP, IOC, and Assets etc. 
are not considered.  In [20], the authors proposed a model that integrates fault tree analysis, 
decision theory and fuzzy theory to ascertain the current causes of cyber-attack prevention failures 
and determine the vulnerability of a given cybersecurity system. However, predicting risk type 
within a risk management framework is not the focus of this paper. In[21]a novel multi-model-
based hazardous incident prediction approach is designed which has the ability to assess the risk 
caused by unknown attacks. However, the model has no ability for self-learning, and the sub 
second computation time cannot meet some hard real-time systems requirements. Machine 
learning techniques have been used in cloud computing for different purposes. In [22] the authors 
proposed a Periodicity-based Parallel Time Series Prediction (PPTSP) algorithm for large-scale 
time-series data and implemented in the Apache Spark cloud computing environment.  The result 
shows that the PPTSP algorithm is significant in predicting accuracy and performance [23].  
However,  this algorithm has not been used for the risk type prediction. The authors in [24] used a 
realistic patient data to develop a patient treatment time consumption model. The model is 
developed based on important parameters to calculate different waiting times for different patients 
based on their conditions and operations performed during treatment. 
 
 
2.2. Cybersecurity risk management (CSRM) 
The authors in [25] discussed the challenges for securing critical infrastructure and analysed 
security mechanisms for prevention, detection and recovery, resilience and deterrence of attacks 
for securing CPS. In [26], a layered approach is proposed for evaluating risk based on security to 
prevent, mitigate and tolerate attacks both on real power applications and cyber infrastructures. 
In[1], the authors proposed a quantitative risk assessment model that provides users with attack 
information such as the type of attack, frequency, and target and source host identity. Authors in 
[27] proposed a new approach for critical infrastructure asset identification using multi-criteria 
decision theory to resolve the challenges of identifying critical assets. The approach didn’t provide 
a systematic process for arriving at criticality decision.  In [28] a framework that can automatically 
identify critical components and dependency structural risks is presented. The framework models 
the connections of assets and devices to depict their interdependencies on a company’s business 
process to reduce their overall risk against cybersecurity threats. However, this framework doesn’t 
predict risk types and implement effective control measures.  
 

https://www.sciencedirect.com/topics/mathematics/time-series-prediction
https://www.sciencedirect.com/topics/computer-science/apache-spark


There are existing industry specific standards that focus on providing guidelines for risk 
management and cyber security improvement. NIST framework [29] is considered a practical 
approach to improving cyber  security focusing on the the Critical Infrastrcuture (CI).  The 
framework considers four implementation tiers(i.e., partial, risk informed, repeatable, adaptive ) 
to demonstrate the organisation view about cyber-security risks and the processes in place to 
manage those risks. The tiers consider three main components. i.e., risk management process, 
program and external participation.  However, the framework doesn’t provide any detailed 
guideline how the tier should be measured and move from lower tier to higher tier. The ISO 
27005:2011 [42] standard provides for a detailed guideline for the information security risks 
management. The rationale for choosing these methods is that they are widely accepted standards 
for raising security awareness by identifying some of the most severe cyber-physical organisations' 
faces. ISO 27001 : 2017 [47 ] also emphasizes on the information security risk assessment and 
treatment process for the overall security management.  
 
To summarise the literature mentioned above, there are several contributions that uses the ML 
approach in different application domains. However, a little effort is taken relating to how risk 
prediction can be integrated to support the risk management activities and adoption of  the 
effectiveness of existing controls. The existing standards only  provide a high level guideline for 
the risk assessment and management.  Finally, there is a lack of guideline on how to determine the 
asset criticality for CPS. Our work contributes to address these limitations by proposing an 
effective CSRM approach based on asset criticality, risk prediction and effectiveness of security 
control. 
 
 
3. Proposed Unified Approach  
The unified approach aims for an effective risk management practice using asset criticality, risk 
predication and effectiveness of existing controls based on a number of CSRM concepts,  as 
presented in Figure 1. This work extends our previous work [31] by integrating  the use of fuzzy 
logic to determine critical assets and ML for the  risk type prediction. Fuzzy logic is a powerful 
tool to handle the uncertainty and provides solution where  there are no sharp boundaries and 
precise values. It  provides a way of absorbing the uncertainty inherent to phenomena whose 
information is unclear and uses a strict mathematical framework to ensure the precision and 
accuracy. Additionally , it is flexible to deal with both  the quantitative and qualitative variables 
[32].  The proposed approach considers Fuzzy logic based on the relative importance among the 
fuzzy input values (C, I, A, CON, ACC) by assessing individual assets to different levels of 
criticality and ranks  the values within each output category simply by using the fuzzy inputs. The 
proposed approach also integrates the ML classifiers for the risk type predication. ML is 
particularly beneficial of using large data to discover hidden patterns. Hence, the unified approach 
aims to predicate the risk types that can potentially affect an organisation using the ML techniques.    



 
Figure 1: Proposed Approach  

 
3.1. CSRM Conceptual view 
 
Concepts serve as a common language for describing the properties necessary for CSRM to 
proactively assess and manage risks. This section presents the CSRM concepts and its unique 
properties that are important for risk prediction.  
 
Actor: An actor is an entity, generally a human user, a system, an organization, or a process each 
with a specific strategic goal within its organizational setting and carries out specific activities to 
generate cybersecurity risk management actions or receive the generated cybersecurity risk 
management actions by another actor. Threat actor is a special type of actor with malicious intent. 
Their identity can characterise them such as suspected motivation, intended goals, skills, resources, 
past activities, tactics, techniques and procedures (TTP) used to generate a cyber-attack and their 
location (within a network, adjacent network, local network or physical) within the organisation. 
All these are unique properties of the threat actor that serve as features and passed to the 
classification algorithms for the process of risk prediction.  
 
Assets: Assets are entities which are necessary and have values to the critical infrastructure 
organisation. The asset properties include server, network, media, people, terminal, user device. 
All these assets are aimed by threat actors to attack and cause a significant impact on the 
organisation. However, some assets are more critical than other assets and require a high level of 
controls because they are more likely to be attacked and when attacked they cause more loss to the 
organisation. So, predicting the risk type helps organisations to protect those assets way before 
any attack is carried out on them. 
 
Goals: The goal of any CPS  includes; the concealment of sensitive data against unauthorised 
users, ensuring the assets of the organisation are made available and accessible to the end-users, 
and the ability of the assets to perform their required functions effectively and efficiently without 
any disruption or loss of service. Therefore, this concept identifies the goals of each asset in terms 
of security and organisational context, and it is carried out by the security analyst. 



Tactics Techniques and Procedures (TTP): TTP involves the pattern of activities used by a 
threat actor to plan and manage an attack, thereby compromising assets. They are used to help 
categorise attacks, generalise specific attacks to the patterns that they follow and provide detailed 
information about how various software tools perform attacks; they include malware, hacking, 
misuse, social and many other mentioned in section 4, which serve as the features for machine 
learning classifiers. In order to predict risk and to know the appropriate controls to be used to 
protect the assets of the organisation, information about TTP must be known. 
 
Controls: These are the course of action taken either to prevent an attack or to respond to the 
attack in progress Centre for Internet Security and Critical Security Controls (CIS_CSC) provides 
basic controls that mitigate the most common attacks against systems and networks and achieve 
cybersecurity. We categorised the controls types into; detective controls designed to detect 
irregularities or errors which have already occurred and to assure immediate correction and 
corrective controls help to mitigate damage once a risk has materialised. Preventive controls are 
designed to keep errors or irregularities from occurring. This means that the level of attack 
determines the type of control to be used and the effectiveness of the existing controls is evaluated. 
 
Indicator of Compromise: Indicator concept contains a pattern that can be used to detect 
suspicious or malicious cyber activity. They are detective in nature and are for specifying 
conditions that may exist to indicate the presence of a threat along with relevant contextual 
information. Organisations should be aware of the data associated with cyber-attacks, which are 
known as indicators of compromise (IOC). IOC is commonly partitioned into three distinct sub-
classes. The sub-classes include network indicator, host-based indicator and email indicator. These 
sub-classes have their own sub-classes. For instance, email indicators have sub-class email 
attachment, email link. Network indicators have sub-class IP address. 

Incidents: The incident is the type of event that represents information about an attack.  The 
incident is defined by its types and linked with the indicator and the actor.  

Vulnerability: Vulnerability is the weakness or mistake in an organisations security program, 
software, systems, networks or configurations that are targeted and exploited by a threat actor to 
gain unauthorised access to an asset (system or network) using TTP. It consists of sub-classes such 
as vulnerability types and assets targeted. 

Threat: Threats are potential dangers that might exploit vulnerability within the critical 
infrastructure and cause possible harm to one or many asset components to deter security goals or 
hinder the business process. Each risk is associated with a specific threat, and the threats are 
categorised to evaluate their severity to assets. Also, threats are considered from different sources 
that elaborate more about security threats associated with critical infrastructure such as 
ENISA[25]. 

Risks: The risk is defined as the potential consequence of failure that obstructs the achievement 
of goals, which mainly caused by threat actors. Due to the evolving nature of the threat landscape, 
it is challenging for the organisation to mitigate all possible cybersecurity risks completely. It is 
the role of the actors to ensure that risks are kept to a minimum level to achieve the overall business 
continuity. It includes properties like type, level, and control. 
 



The Meta-model, illustrated in figure 2 , shows the relationship among the concepts.  The actor is 
represented as having an interest in the organisation's assets. The threat actor is a type of actor with 
malicious intent characterised by their  motivation, skills, resources available to carry out a 
successful attack. Assets in general  have security goals such as confidentiality, integrity and 
Availability and the attainment of the goals is based on the specific organisation context. 
Vulnerability is the weakness within the  security program, software, systems, networks, or 
configurations targeted and exploited by a threat actor to gain unauthorised access to an asset 
(system or network) using TTP. Risk is the failure of an organisation or individual to achieve its 
goals due to the malicious attempt to disrupt its critical services by a threat. The incident is the 
type of event that represents information about an attack on the organisation. The  components 
determine the type of incident include threat types, threat actor's skill, capability, asset, and 
location. With a specific attack pattern, the organisation tends to think broadly by developing a 
range of possible outcomes to increase their readiness for a range of possibilities in the future. 
With Indicators, a pattern that can be used to detect suspicious or malicious cyber activity is 
gathered. Finally, there are controls which aim to mitigate the risk.  

 
Figure 2.Conceptual Meta Model 

 
3.2. Asset Criticality  
The asset criticality is the first activity of the unified approach aims to identify and prioritise critical 
asset by assessing the primary security goals of those assets. The criticality assessment of all assets 
is carried out by a team of experts within the organisation. To ensure validity, consistency and 
support stakeholders in assessing the criticality of each asset, a decision support system using fuzzy 
set theory is created. Fuzzy set theory plays a vital role in the decision process enhancement it 
helps to deal with or represent the meaning of vague concepts usually in situation characterisation 
such as linguistic expressions like “very critical”. Fuzzy logic introduced by[26], is one of the best 
ways to deal with all the types of uncertainty including lack of knowledge or vagueness[27]. This 
section includes an running example to demonstrate how the asset criticality is determined. 



3.2.1. Running Example 
This running example is from the data set which is explained in the section 3.3.1. A highly skilled 
external attacker gained access to the master terminal unit (MTU) of the power grid system through 
a remote access point by exploiting the weak password and firewall. The attacker was able to 
disrupt communications, access database storing company and customer critical data such as 
passwords and operating plans as well as the SCADA system. Thereby, monitoring the status of 
the system and injecting malicious control commands as well as forging data into the control 
centre. This action led the system operators into taking inappropriate actions that interrupted the 
availability of electricity. 
 
3.2.2. Development of a Fuzzy Asset Criticality System (FACS)  
Criticality is the major indicator used to determine the importance of the assets to the organisation. 
After the different assets have been identified, we determine the criticality based on their relative 
importance using Fuzzy Asset Criticality System (FACS). 

Fuzzification: FACS determines asset criticality by using (C, I, A, CON and ACC) as the five 
fuzzy inputs for assessing the criticality of individual assets and assigning level of criticality. Each 
input is assigned five fuzzy labels Very Low (VL), Low (L), Medium (M), High (H) and Very 
High (VH) for assessing the level of the fuzzy output Asset criticality (AC) value which is assigned 
five fuzzy labels Very Low Critical (VLC), Low Critical (LC), Medium Critical (MC), High 
Critical (HC) and Very High Critical (VHC) of individual assets. Table 1 shows the numerical 
ranges which fuzzy sets are selected based on them. The membership functions for AC also are 
depicted in a scale of 1 to 5. 

Table 1: Fuzzy Ratings  
 

Features Asset 
Factors 

Description Linguistic 
Terms 

Crisp 
Rating 

Fuzzy Rating Interpretation 

Input Confidentialit
y 

( C) 

How much data 
could be 

disclosed and 
how sensitive is 

it? 

Very High 
(VH) 

5 3.5 ≤ 𝐶𝐶 ≤ 5 All data disclosed 

High (H) 4 2.5 ≤ 𝐶𝐶 < 5 Extensive critical data 
disclosed 

Medium (M) 3 1.5 ≤ 𝐶𝐶 ≤ 4.5 Extensive non-sensitive data 
disclosed 

Low (L) 2 1 ≤ 𝐶𝐶 ≤ 3.5 Minimal critical data 
disclosed 

Very Low 
(VL) 

1 1 < 𝐶𝐶 ≤ 2.5 Minimal non-sensitive data 
disclosed 

Availability 

(A) 

How many 
services could be 
lost and how vital 

is it? 

Very High 
(VH) 

5 3.5 ≤ 𝐴𝐴 ≤ 5 All services completely lost 

High (H) 4 2.5 ≤ 𝐴𝐴 < 5 Extensive primary services 
interrupted 



 Medium (M) 3 1.5 ≤ 𝐴𝐴 ≤ 4.5 Extensive secondary services 
interrupted 

Low (L) 2 1 ≤ 𝐴𝐴 ≤ 3.5 Minimal primary services 
interrupted 

Very Low 
(VL) 

1 1 < 𝐴𝐴 ≤ 2.5 Minimal secondary services 
interrupted 

Integrity 

(I) 

How much data 
could be 

corrupted and 
how damaged is 

it? 

Very High 
(VH) 

5 3.5 ≤ 𝐼𝐼 ≤ 5 All data corrupt 

High (H) 4 2.5 ≤ 𝐼𝐼 < 5 Extensive seriously corrupt 
data 

Medium (M) 3 1.5 ≤ 𝐼𝐼 ≤ 4.5 Extensive slightly corrupt 
data 

Low (L) 2 1 ≤ 𝐼𝐼 ≤ 3.5 Minimal seriously corrupt 
data 

Very Low 
(VL) 

1 1 < 𝐼𝐼 ≤ 2.5 Minimal slightly corrupt data 

Accountabilit
y (ACC) 

Are the threat 
actors traceable 
to an individual? 

Very High 
(VH) 

5 3.5 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 5 Completely anonymous 

High (H) 4 2.5 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 < 5 Fully traceable 

Medium (M) 3 1.5 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 4.5 Highly traceable 

Low (L) 2 1 ≤ 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 3.5 Possibly Traceable 

Very Low 
(VL) 

1 1 < 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 2.5 Minimal Traceable 

Conformance 
(CON) 

How much 
deviation from 

specified 
behaviour 
constitutes 

conformance? 

Very High 
(VH) 

5 3.5 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 5 Full variation 

High (H) 4 2.5 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 < 5 High profile variation 

Medium (M) 3 1.5 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 4.5 Clear variation 

Low (L) 2 1 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 3.5 Low variation  

Very 
Low(VL) 

1 1 < 𝐶𝐶𝐶𝐶𝐶𝐶 ≤ 2.5 Very low variation 

Output Asset 
Criticality 

(AC) 

How critical is 
the asset to the 
organisation? 

Very Critical 
(VC) 

5 3 ≤ 𝐴𝐴𝐴𝐴 < 5 Extremely critical and high 
value to the Critical 
Infrastructure( CI) 

organization, requires an 
extreme level of protection 

Highly 
Critical (HC) 

4 2 ≤ 𝐴𝐴𝐴𝐴 < 4 High importance to the 
organization and requires a 

high level of protection. 



Medium 
Critical (MC) 

3 1 ≤ 𝐴𝐴𝐴𝐴 ≤ 3 Moderately important to the 
organization and requires 

moderate protection 

Low Critical 
(LC) 

2 0 < 𝐴𝐴𝐴𝐴 ≤ 2 Minimal importance and 
does not require many levels 

of protection. 

Very Low 
Critical 
(VLC) 

1 0 ≤ 𝐴𝐴𝐴𝐴 ≤ 1.5 Non-critical and requires a 
very low level of protection 

 
Rules : We follow the Min–Max fuzzy inference method proposed  by Mamdani  due to the 
following advantages  [28, 29 ]. 

• It is suitable for engineering systems because its inputs and outputs are real-valued 
variables 

• It provides a natural framework to incorporate fuzzy IF–THEN rules from human experts 
• It allows for a high degree of freedom in the choices of fuzzifier, fuzzy inference engine, 

and defuzzifier, so that the most suitable fuzzy logic system for a particular problem is 
obtained. It provides a natural framework to include expert knowledge in the form of 
linguistic rules.  

We used 125 IF-THEN rules to provide a database by mapping between five input parameters (C, 
A, I, CON and ACC) and AC value. The rules are designed to follow the logic of the Asset 
criticality evaluator. A number of the IF-THEN rules of the developed system are shown in Figure 
3. 

 
Figure 3: Rules Set for FACS 

Inference Engine: An inference engine attempts to create solutions from the database. In this 
paper, the inference engine maps input fuzzy sets (C, A, I, ACC and CON) into fuzzy output set 
(AC). For example, if SCADA system is given the input values (C=1), (I=2), (A=1), (ACC=3), 



(CON=4) by an assessor, the output value will be (AC = “2.5”) using the FACS. Traditionally, 
different sets of fuzzy input (C, A, I, ACC, CON) may generate an identical value of the fuzzy 
output (AC); however the assets may not necessarily be the same. Figure 4 shows a number of IF-
THEN rules in order to provide a more understanding the proposed FACS model.  

 
Figure 4: Sample of Rules 

 
Defuzzification: There are different methods for converting the fuzzy values into crisp values 
such as, Centre of Gravity (COG), Maximum Defuzzification Technique and Weighted Average 
Defuzzification Technique. One of the most commonly used defuzzification method is COG. The 
COG technique can be expressed as follows, where x* is defuzzified output, µi(x) is aggregated 
membership function and x is the output variable.  

𝑿𝑿∗ =   ∫𝝁𝝁𝒊𝒊(𝒙𝒙)𝒙𝒙 𝒅𝒅𝒅𝒅
∫𝝁𝝁𝒊𝒊 (𝒙𝒙) 𝒅𝒅𝒅𝒅

                               (2) 

3.3. Machine learning classifiers for predicting cybersecurity risk 
 
As mentioned before, the proposed unified approach considers  ML classifiers for the risk 
predication.  This section provides an overview of the risk predication.  Figure 5 shows how the 
features are extracted from the data sets and used by ML classifiers for the purpose of risk 
prediction.  The data were partitioned into 80% training and 20% testing. We used the widely 
known 5-fold cross-validation scheme to split the given data into testing and training set and 
reported the average results obtained over the five folds. Predictions are carried out on the testing 
dataset and accuracy measures the prediction. The performance of each algorithm is being 
assessed. This section considers three sequential steps for prediction of the risk type and provides 
an overview of the experimental steps. 
 



 
Figure 5: Feature Extraction and Risk Prediction 

 
3.3.1. Dataset Description 
We used the dataset from “Veris Community Database (VCDB)”[30] which aims to collect and 
disseminate data breach information for all publicly disclosed data breaches, to test our classifiers. 
It provides some of the enormous available collection of datasets that consists of a collective 
intelligence report datasets allowing us to test the performance of the classifiers in predicting risk 
type. We further created a mapped version of this dataset by selecting some features in the dataset 
and mapping them to TTP, Threat Actor, Asset and Control categories. For example brute force is 
mapped to TTP. We extracted the features in VCDB that are of interest in training and testing our 
classifiers. A validation team is formed to support this mapping The total features are 1,122 and 
the sample size is 7,834. In [31], data on reported cybersecurity incidents are needed to serve as 
ground-truth for their study. Such data is required to train the classifiers as well as assess its 
accuracy in predicting incidents. Therefore data from the VCDB is collected to obtain proper 
coverage. In [32] VCDB is used to train and test a sequence of classifiers/predictors. The data for 
each CSRM feature is mapped to the VCDB dataset as shown below:  

• Discovery and Response: This entry in the VCDB dataset is our Control feature. It focuses 
on the timeline of the events and how the incident was discovered. It provides useful 
insights into the detection and defensive capabilities of the organisation and helps identify 
corrective actions needed to detect or prevent similar incidents from occurring.  

• Incident Description: this entry is mapped to our Threat Actor, TTP and Assets features. 
It focuses on “whose actions affected the assets”, what actions affected the assets” and 
which assets were affected”. Threat Action (TTP) describes what the Threat Actor did to 
cause or contributes to the incident such as Malware, Hacking and Misuse. Actors (Threat 
Actors) are entities that cause or contribute to any particular incident and their actions can 
be malicious, intentional or unintentional. Threat Actors are recognised in VCDB as 
external, internal and partner. Assets (Assets) describe the information assets that were 
compromised during an incident. Compromised means the loss of confidentiality, integrity, 
availability and authenticity. Assets are categorised into Variety (such as SCADA), 
Ownership, Management, Hosting, Accessibility and Cloud.  

 



3.3.2. Mapping  
In this section, we explain how we map the existing dataset features to the CSRM  concepts. 
The features extracted from VCDB are used for training and testing our classifiers. Details 
documented in the incidents include the TTP used, assets compromised, threat actor type and 
motive and controls in place. The list of features extracted from the VCDB dataset that are mapped 
to CSRM concepts are shown in tables 2, 3, 4 and 5below.    
• Threat Actor: The first set of mapping is information regarding the threat actor including  

individual, group of individuals or organisations that are believed to have operated with 
malicious intent, as shown in Table 2. Therefore, each incident is put in one of the four 
categories: External, internal, partner and unknown threat actor types. Each category includes 
additional features that further differentiate the threat actor type. For instance, an external 
threat actor is further categorised as organised crime, former employee, competitor, espionage 
and grudge. The Partner is further categorised as the industry. The internal threat actor is 
categorised as hired, demoted, personal issues, resigned, auditor, cashier and developer. 
Therefore, we train our classifiers based on the threat actor responsible for the incident. 
Predicting risk requires information about the threat actor type and motive, this allows 
organisations to determine the policies to educate their employees, access to their data, 
safeguard their networks from attackers and perform due diligence when selecting partners as 
third party.  

•  
Table 2: Feature vector for threat actor for VCDB dataset  

Threat 
Actor 
Type 

Espionage Competitor Grudge System 
Admin 

Financial Fun End-
User 

……… Developer 

Number 
of 

features 

1 2 3 4 5 6 7 ……... 80 

 
• Assets:  The asset mapping considers six categories of asset types: server, media, user device, 

terminal, people and networks, shown in Table 3. Knowing the type of assets that are more 
likely to be affected can help organisations to improve their ability to predict risk following 
security incidents significantly. Organisations can further implement appropriate controls such 
as network administrators keeping regular backups on media and server assets. 

•  
Table 3: Feature vector for asset for VCDB dataset 

Asset 
Type 

Disk 
drive 

Documents  Access 
reader 

LAN Router/Switch Patch 
Management  

RTU ....... Database 

Number 
of 

features 

1 2 3 4 5 6 7 …... 234 

 
• TTP: This set of mapping relates with  the type of attack the threat actor exploited taking into 

account the Tactic, Technique and Procedure(TTP). We consider seven general categories of 
TTP including  Environmental, error, hacking, malware, misuse, physical and social, as 
shown in Table 4.  Each category of TTP includes additional features that can help to 
differentiate incidents further. For instance, SQL injection and brute force are identified 
as hacking. Hacking incidents involve data breach through compromised credentials. 



Knowing the TTP type can provide organisations with valuable information on the types 
of preventive measures to be used to reduce risk.  

•  
Table 4: Feature vector TTP for VCDB dataset 

TTP 
Type 

Remote 
access 

Ransomware Remote 
injection 

SQL 
injection 

Spyware/ 
keylogger 

Brute 
force 

Buffer 
overflow 

… Email 
attachment 

Number 
of 

features 

1 2 3 4 5 6 7 … 155 

 
• Controls: The control types fall into one the two categories detective and corrective controls 

, as shown in Table 5. We train our classifiers based on the controls available at the time of the 
attack. We further categorise detective into sub-categories: Internal (log review, antivirus, data 
loss prevention, fraud detection) and external (actor disclose, incident response, monitoring 
service, suspicious traffic). Assessing the risk associated with controls prompts organisations 
to determine the set of security protections or countermeasures further to minimise risk. Some 
of the controls might be insufficient to mitigate risk, so, these different control types that were 
compromised at the time of the attack are the properties that serve as features for machine 
learning classifiers to predict risk type and appropriate controls implemented.  

•  
Table 5: Feature vector for control for VCDB dataset  

Control 
Type 

Fraud 
detection 

Incident 
response 

Monitoring 
service 

Anti-
virus 

IT 
Revie

w 

Log 
Revie

w  

Security 
alarm  

…
….
. 

Law 
enforcem

ent 
Number 

of 
features 

1 2 3 4 5 6 7 …
…. 

42 

 
3.3.3. Experimental Setup  
In our experiments, we used VCDB dataset because it has been used in literature providing easier 
benchmarking and we have feature information about cybersecurity. Further, in our experiments 
we used PyCharm and python 3.6 interpreters to run our codes.. The procedure works as follows: 
the dataset is divided into sub samples. A sample is chosen as testing data and the remaining sample 
as training data.  
 
3.3.4. Feature Extraction  
Feature extraction is the first step to start a machine learning process because it is a technique that 
aims at finding specific pieces of data in natural language and then converts them into a suitable 
format for machine learning classifiers. Our research draws from a variety of data sources that 
collectively characterise the security posture of organisations as well as the security incident report 
used to determine their security outcomes. In this step, we extract all the necessary features from 
the dataset to map our CSRM concepts, which are presented in the previous section. Every concept 
has properties, and those properties are considered as features, for example: 
• Asset concept features include; Server, media, people, networks, user device and terminal. 
• Threat actor features include; External, Internal and supply chain partner. 
• Control features include; corrective, detective and preventive. 
• TTP features include; Malware, hacking, social, physical, environmental, misuse and error. 



The features are further converted into a format suitable for the machine learning classifiers by 
assigning a weight between 1 and 0.  
 
3.3.5. Features and classification labels 
This step presents the values of the data type used in the experiments and includes a list of features 
extracted from the dataset. The reason for choosing these feature types is because they are salient, 
straightforward and intuitive, and any machine learning classifier can be trained over them. Asset, 
threat actor and controls are assigned binary numerical data type and given a possible value 
between 0 and 1. It consists of two sub-steps.  
 
3.3.5.1. Features weights and labels  
Dataset is collected from the “Veris Community Database (VCDB)”[30]. We then mapped 
the features in the dataset to the CSRM concepts, which are used as features for the 
classification and assigned their weights. We used the feature extraction techniques coupled 
with human annotation for extracting the essential features from the dataset. The risk type is 
the output class we are predicting; an ordinal categorical data type is used with possible values 
from 1 to 10.(Refer to table 13).  
 
Output Feature 
We have used 10 output categories of risks and the value range for the features is from (R1 = 
Crimeware, R2 = Cyber espionage, R3 = Denial of service, R4 = everything else, R5 = lost 
and stolen assets, R6 = miscellaneous errors, R7 = payment card skimmers, R8 = point of sale, 
R9 = privilege misuse and R10 = web applications) with possible classes. This is a multi-class 
problem and we have the following risk types as output features explained in Table 6. The input 
features are shown in tables 7, 8, 9 and 10. These features are used to categorise the input 
features (threat actor, control, assets and TTP) into ten categories. The classification model 
is trained on the following categories listed in the table below: 

Table 6: Feature vector as output features for control for VCDB dataset  
Feature name Possible classes Range of 

values 
Crimeware 

Cyber Espionage 
Denial of Service 
Everything Else 
Lost and Stolen 

Assets 
Miscellaneous 

Errors 
Payment Card 

Skimmers 
Point of Sale 

Privilege Misuse 
Web Applications 

𝑹𝑹 = {R1, R2, R3 … R10} 
Where: 

𝑹𝑹𝟏𝟏 = Crimeware 
𝑹𝑹𝟐𝟐= Cyber Espionage 
𝑹𝑹𝟑𝟑= Denial of Service 
𝑹𝑹𝟒𝟒= Everything Else 

𝑹𝑹𝟓𝟓= Lost and Stolen Assets 
𝑹𝑹𝟔𝟔= Miscellaneous Errors 

𝑹𝑹𝟕𝟕= Payment Card 
Skimmers 

𝑹𝑹𝟖𝟖= Point of Sale 
𝑹𝑹𝟗𝟗= Privilege Misuse 
𝑹𝑹𝟏𝟏𝟏𝟏= Web Applications 

{1,2, . .10} 

 
 
 



Input features 
We consider different classes of input feature such as threat actor, asset, TTP, and control. 
Table 7 shows the threat actor feature types with possible classes {t1, t2, t3}, which represents 
the different threat actor feature types. They are trained on the proposed classifiers, and the 
possible values are between{0, 1}. 
 

T abl e  7 :Threat Actor type feature detail 
Feature name Possible classes Range of values 

External, Internal 
Supply chain Partner 

𝒕𝒕 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑} 
𝒕𝒕𝟏𝟏 = External 
𝒕𝒕𝟐𝟐= Internal 
𝒕𝒕𝟑𝟑= Partner 

{0, 1} 

 
Table 8 shows the different asset feature types used as an input parameter for risk type 
prediction. The asset features are given as {A1, A2…A6} representing the different asset types 
and are trained on the proposed classifiers. The possible values are between{0, 1}. 
 

T abl e  8 .Asset type feature detail 
Feature name Possible classes Range values 

Server, Terminal, Media 
People, Networks,User device 

𝑨𝑨 = {𝐴𝐴𝟏𝟏,𝐴𝐴𝟐𝟐 …𝐴𝐴𝟔𝟔} {0, 1} 

 
Table 9 below shows the list of the control feature types extracted from the applied dataset. 
The control features include the different control types such as  detective, corrective and 
preventive which are used as part of the input parameters for predicting risk type. These 
types allow to choose the right control actions for mitigating the risks. They include {c1, c2, 
c3} representing the different types of control types with possible values between{0, 1}. 
 

T abl e  9 .Control type feature detail 
Feature 
name 

Possible classes Range of values 

Detective 
Corrective 
Preventive 

𝑪𝑪 = {𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐, 𝒄𝒄𝟑𝟑} 
Where: 

𝒄𝒄𝟏𝟏 = Detective 
𝒄𝒄𝟐𝟐= Corrective 
𝒄𝒄𝟑𝟑= Preventive 

{0, 1} 

 
The list of the TTP features extracted from the applied dataset is shown in Table 10. The 
different TTP feature types used as input features that are trained on the classifiers. These 
are the possible technique that the threat actor can be exploited to attack any system.  They 
are given possible values as {TTP1, TTP2….TTP7} which represents the different TTP 
feature names and are given possible values between{0, 1}. 
 
 
 



T abl e  1 0 : TTP type feature detail 
Feature name Possible classes Range of  

values 
Malware, Hacking, Social, Physical 
Misuse, Error, Environmental 

𝑻𝑻𝑻𝑻𝑻𝑻 = {𝑻𝑻𝑻𝑻𝑻𝑻𝟏𝟏,𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐, . . ,𝑻𝑻𝑻𝑻𝑻𝑻𝟕𝟕} {0, 1} 

 
3.3.5.2. Assigning Weights to Feature Vectors 
This section presents the features used for the experiment. There are five feature vectors 
considered for the experiment and each feature vector is assigned  with binary values of 
either 0 or 1 {0, 1} as shown in Table 11. A model can easily be trained over these feature 
vectors, which can predict any risk type. 

T abl e  1 1 . Feature vector weights 
Feature Vector Feature vector Weights 

TTP 
Control 

TA 
Asset 
Full 

𝑉𝑉𝐵𝐵∈ {0, 1}For a given feature vector ′𝐹𝐹′, the value ′𝑣𝑣′, of any 
feature ′𝑥𝑥′  is determined using the following rule: 

𝑣𝑣𝐵𝐵𝑥𝑥 =   � 1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
0,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� 

The output value for any feature is {1} in case the 
corresponding feature occurs in the dataset. Otherwise, its 

value is recorded{0} 

 
3.3.6. Classification 
Classification is an essential step for machine learning to understand and assign data 
categories for accurate risk prediction. Once we have extracted all the features, the next step 
is to classify the features. In order to achieve the classification, we follow seven different 
algorithms to generalise our findings of integrating machine learning with CSRM to predict 
a certain risk type. The classifiers calculate both the likelihood and impact and can find 
complex relationships in data to produce better results than rest. To manually evaluate the 
effectiveness of each feature, we created four different partitions of the datasets as described 
above. Once the feature weights are defined, we train the machine learning classifiers over 
the training data. For given partition and classifier, the results are shown using the following 
notation: (refer to Table 12) 

 
Table 12.Classification Models and feature description 

Scenarios  Assets Controls Threat actor TTP Models  

𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵  
PCA is not 
applied 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵∈ {0, 1} 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵∈ {0, 1} 𝑇𝑇𝑇𝑇𝐵𝐵∈ {0, 1} 𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵∈ {0, 1} 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

where  
𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵∈ {Assets, 

Controls, Threat actor, 
TTP} 

𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵∈ {0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵∈  𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵∈ {0, 1} 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵 
∈ {0, 1} 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  



PCA is 
applied 

where  
𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵∈ {Assets, 
Controls, Threat actor, 
TTP} 

 
We used the notation,𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃 to denote the feature sets that have been reduced by applying PCA. 
For example, the feature vector control is denoted by  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵 moreover, in case, this feature 
vector has been transformed by PCA; we denote it by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵. Similarly, the model built 
over feature set transformed by PCA is denoted by𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
 
3.3.7. Training the machine learning classifiers  
This section describes the training of machine learning classifiers using training data. We use 
extracted features enclosed in the training examples to find a model𝑴𝑴:𝑫𝑫 → 𝑹𝑹, which 
approximates𝑻𝑻. The function 𝑹𝑹 defines the class to which the learned model assigns the given 
sample 𝑑𝑑 and is used for classification of new scenarios. The model 𝑴𝑴 (𝒅𝒅) denotes a machine 
learning classifier. The objective here is to find a model, which maximizes the accuracy (assigns a 
scenario to the most proper class).  

 
T ab l e  1 3 :  Notations used for building the classifier 

Notation Description 
𝐷𝐷 The collection of cyber-attack scenarios 

𝑑𝑑′ =  {𝑑𝑑1,𝑑𝑑2, . . ,𝑑𝑑𝑁𝑁} N number of scenarios to be classified 

𝑅𝑅 = {𝑅𝑅1,𝑅𝑅2,𝑅𝑅3,𝑅𝑅4,𝑅𝑅5 …𝑅𝑅10} R is the number of possible risks 
categories 

𝑑𝑑′ =  {𝑑𝑑1,𝑑𝑑2, . . ,𝑑𝑑𝑁𝑁} The training set consisting of N scenarios 
with corresponding actual class labels 
𝑦𝑦 = 𝑅𝑅 =  {𝑅𝑅1, . . ,𝑅𝑅10} 

𝑇𝑇 A target concept T: D → R, which maps 
given a scenario to a class (we assume the 
categories are disjoint, i.e. each given 
scenario can only be categorized into one 
of the categories, and there is no 
overlapping between categories) 

𝑀𝑀:𝐷𝐷 → 𝑅𝑅 A machine learning model, which 
approximates T (i.e. close to T) 

𝑀𝑀 (𝑑𝑑) The model predicts unknown scenario ‘d’ 
(i.e. using a classification algorithm) 

 
The Accuracy matric can be formally defined as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 1M(d)=Rdx ∈d′

|d′|
(3) 



Where |d′| is the size of the test set (number of scenarios to be classified), and 1M(d)=Rd Is an 
indicator function that output one if the model predicted the class for test scenario is the same as 
actual test class and zero otherwise. Formally: 

                        1M(x)=Rx =  �   One if M(𝑥𝑥) = R𝑥𝑥        
0      otherwise

(4) 
The right controls also increase the accuracy score, which corresponds to the low rate of a 
classification error. 
 
3.3.8. Evaluation measures  
There are several parameters used to measure the evaluation including precision, recall and F-1. 
These metrics are used for validating accuracy in different ways, yet they can be applied to other 
purposes also and are useful in describing how risk prediction methods are successful.  
 
The precision gives us the probability that a selected value is true. It can be formally defined as:  

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 
(5) 

 
The Recall gives us the probability that the true value is selected. It can be formally defined as:  
 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 =
𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 
(6) 

 
The F1 Score is a function of the precision and recall and can be formally defined as: 

𝑭𝑭𝑭𝑭 = 𝟐𝟐 ∗
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 ∗ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 + 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

(7) 
 
 
3.4. Determine the Control Effectiveness 
The final step of the unified approach  involves assessing the effectiveness of existing controls, 
determining the necessity of additional controls. The existing controls are assessed to ensure the 
its effectiveness. If a control is not effective , this may cause vulnerabilities leading to any potential 
risk. Therefore, the  consideration should be given to the situation where a selected control fails in 
operation, whether there is need for additional controls  for  addressing the identified risk. There 
are various industry standards that provide recommendations on basic security controls were 
considered. For example, Critical Security Controls [33] publishes a set of 20 controls and best 
practice guidelines that organisations should adopt to control security risks. In assessing the 
effectiveness of existing controls, an assessment of each control objective is carried out by an 
assessor team. The controls are evaluated in terms of relevance, strength, coverage, integration, 
and traceability  for this purpose by following the Comprehensive Assessment Model (CAM) as 
presented in [34] . The control rating and overall control effectiveness are in accordance with ISO 
27005:2011 [41]. For each criterion, a rating score from 1 to 5 is given to measure which control 
addresses the specific control objective. Table 14 shows the five different criteria rating by 
following the CAM, which are adopted and reformed to the context of the critical infrastructure to 
serve as a control criteria for assessing the effectiveness of existing controls.   

 



Table 14: Control criteria 
Criteria Description 

Relevance The level to which the control addresses the relevant 
control objectives under analysis. 

Strength The strength of the control is determined by a series 
of factors 

Coverage The level in which all significant risks are addressed. 
Integration The degree and manner in which the control 

reinforces other control processes for the same 
objective 

Traceability How traceable the control is, which allows it to be 
verified subsequently in all respects 

 
The assessemnt is helped by criteria, each criterion, a rating score from 1 to 5 is given to measure 
which control addresses the specific control objective. Table 15 shows the five different control 
rating while  table 16 shows the overall effectiveness of the controls.  
 

Table 15: Control rating 
Rating Description 

5 Adequate control The control achieves the objectives intended to mitigate 
the risks. 

4 
 

Adequate control with 
some areas of 
improvement 

The control achieves the objectives intended to mitigate 
the risks with evidence of some areas, though not 

critical, subject to improvement to meet the requisites of 
sound controls. 

3 
 

Generally adequate 
control, with some 

critical areas 

The control mostly mitigates the risks intended to 
mitigate the risks. However, the characteristics of some 

of the controls are not entirely consistent with basic 
sound controls 

2 
 

Inadequate control, 
subject to significant 

improvement 

The control partially achieves the control objectives 
intended to mitigate the risks 

1 
 

Insufficient control The control is not sufficient to achieve the control 
objectives intended to mitigate the risks. 

To find the overall evaluation of each control, equation four below is given: 
𝑶𝑶𝑶𝑶 = 𝑹𝑹 + 𝑺𝑺 + 𝑪𝑪 + 𝑰𝑰 + 𝑻𝑻                                                           ( 8) 

Where: 
OE = Overall Effectiveness , R = Relevance , S = Strength, C = Coverage , I = Integration 
T = Traceability  

Table 16: Overall control effectiveness 
Description Overall Effectiveness 
Insignificant 0-5 

Minor 6-10 
Moderate 11-15 



Major 16-20 
Critical 21-25 

 
 
4. Experimental Finding and Discussion  
This section presents the criticality level determined and assessed for assets in greater detail as part 
of asset criticality using the running example. It further shows the experiment results obtained 
from the different ML classifiers using the mapped CSRM features from the VCDB dataset to 
perform risk prediction. The aim of the experiment is to explore the ability of machine learning 
classifiers to: 

• Predicate a risk type out of the ten risks  
• Determine the accuracy of each of the classifiers in predicting risk type. 

Six machine learning classifiers were used for the classification process. We have formed an 
assessor team and  used the dataset that was selected from VCDB dataset with the objective of 
evaluating the performance of the classifiers in predicting known risks for future occurrence and 
how this can help in improving the classification accuracy. Lastly, we evaluate the effectiveness 
of existing controls and recommend new controls. 
 
4.1. Asset Criticality  
The result of the asset criticality is presented based on the running example presented in section 
3.2.1.  We follow the Fuzzy Asset Criticality System (FACS) to determine the asset criticality 
and result is shown in Table 17.  

 

Table 17: Asset criticality results 

Asset Name Asset Description Asset Goals Fuzzy 
output 

Asset 
Criticality 

Level Fuzzy input 

C A I CON ACC 

Master Terminal 
Unit (MTU) 

A controller that acts as 
a server that hosts the 
control software that 

communicates remote 
terminal units and 

programmable logic 
controllers over a 

network. 

1 3 4 4 1 

 

2.5 MC 

Databases Stores information 
about the organisations 
customers, personnel, 

marketing, transactions, 
assets, finances, and 

other information about 
the organisations 
business process. 

4 4 3 4 5 4 HC 



Company and 
customer data 

Sensitive and private 
information about 

employees, finances, 
assets, etc. 

3 3 3 4 4 3.5 MC 

Firewalls  

Network security 
system that monitors 

and controls incoming 
and outgoing network 

traffic.  

1 3 3 1 1 

 

2 LC 

SCADA Systems Gathers and analyses 
real time data 

2 5 5 1 4 

 

3 MC 

 
4.2. Machine Learning Results  
This section explains the experimental results obtained from the different classifiers using the 
datasets. 

4.2.1. Risk type Prediction Result  
Table 18 presents the accuracy performance details of the six classifiers in predicting the different 
risk types based on the given CSRM features (Assets, Controls, Threat Actor and TTP). Based on 
the Asset features, LR, DT and NB-Multi achieved 95%, 93% and 92% respectively for predicting 
risk type “Lost and Stolen Assets”, “Everything Else”, “Crimeware”, “Cyber Espionage” and 
“Denial of Service”. They failed to identify risk types “Point of Sale” and “Web Application”. RF, 
KNN and NB achieved 87%, 86% and 71% respectively for predicting risk type “Crimeware”, 
“Cyber Espionage” and “Lost and Stolen Assets”. NN failed to predict any risk type and achieved 
4%. Based on the TTP features, KNN, LR, NB-Multi and DT achieved an accuracy of 80% for 
predicting risk type “Denial of Service”, “Cyber Espionage” and “Everything Else”. RF achieved 
an accuracy of 72% for predicting risk type “cyber espionage” and “Everything Else”, NN failed 
to predict any risk type and achieved 4%. Based on the Threat Actor features, LR, NB-Multi and 
RF achieved 79% accuracy for predicting risk type “Everything Else”, “Cyber Espionage” 
“Privilege Misuse” and “Crimeware”. KNN could predict risk type “Everything Else”, “Cyber 
Espionage” and “Privilege Misuse” while DT could predict risk type “Everything Else”, “Cyber 
Espionage” and “Crimeware” both classifiers with 76% accuracy. The NB achieved 63% accuracy 
for predicting risk types “”Cyber Espionage” and “Privileged Misuse”. NN achieved 3% accuracy 
and failed to predict any risk type. Lastly, based on the control features, KNN achieved the highest 
accuracy of 40% in predicting risk type “Everything Else”. LR, DT, NB-Multi and RF achieved 
39% for predicting risk type “Everything Else”.  NB and NN achieved an accuracy of 5% and 3% 
respectively. Both classifiers failed to predict any risk type. Asset and TTP features performed 
well on all the different classifiers except NN.  Comparing the performance of all the features, it 
shows that NB failed to perform risk type prediction based on control features and NN achieved 
very low risk type prediction based on all the features. Therefore, for the risk types “Everything 
Else”, “Privilege Misuse”, “Denial of Service” and “Cyber Espionage” all the input features 
achieved high prediction. Table 18shows that Asset and TTP are the best features to predict risk 
types presented in this work. 

 



Table 18: Performance of the features on each of the classifiers for predicting risk types 
 

Accuracy Risk Type Prediction Features  

Asset TTP Threat 
Actor 

Control  

LR  95% 80% 79% 39% 

DT 93% 80% 76% 39% 

NB-Multi 92% 80% 79% 39% 

RF 87% 72% 79% 39% 

KNN 86% 80% 76% 40% 

NB 71% 56% 63% 5% 

NN 4% 4% 3% 3% 

  
 

 
Figure 6: Performance of the features on each of the classifiers for predicting risk types 
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4.2.2. Prediction Accuracy 
Once the risk type is predicated, the next step is to interpret the accuracy result of the different 
classifiers for various types of input features. The best overall predictive accuracy including all 
input features is recorded with Decision Tree (DT) for Asset is  (92.92%) , Controls (79.26%), 
TTP (62.73%), Threat Actor (61.32%), and Full features (39.12%). The next  best algorithm is NB 
Multi which gave us (91.90%) on asset , control  (78.88%), threat actor (61.33%), TTP (59.54%) 
and full features gave us (39.05%). The third best algorithm is RF, it performed well on Asset 
features with (87.36%), control (78.75%), TTP (62.03%), Threat Actor (61.01%) and full features 
(38.93%). The fourth best algorithm is KNN, it performed well on almost all the input features, 
Asset features (85.77%), Controls (67.96%), TTP (58.07%), Threat Actor (56.80%) and the full 
features produced the least accuracy with (29.99%). The fifth best algorithm is the NB algorithm 
that performed well on the asset features with (71.03%), controls (55.90%), Threat Actor 
(19.85%), TTP (18.38%) and full features with (05.42%). The sixth algorithm which is NN didn’t 
perform well on all the features, control features is (04.02%), Asset features is (03.51%), Full 
feature is (03.32%), TTP (03.13%) and threat actor (03.06%). This shows that the Asset features 
performed well with DT (92.92%), NB-Mult (91.90%), RF (87.36%), KNN (85.77%) and NB 
(71.03%). NN did not perform well with (03.51%). The control features also performed well with 
DT (79.25%), NB Multi (78.88%), RF (78.74%) and KNN (67.96%). On the other hand, Neural 
Networks (NN) and Naïve Bayes (NB) did not make satisfactory prediction accuracy on all the 
features. It can be noted that the most prominent features to detect risk types are Assets and control 
features. The result clearly shows that DT outperformed other classifiers giving the highest 
satisfactory accuracy for the VCDB dataset for risk type prediction.  
 
4.2.2.1. Results of the different classifier for the input features 
Figure 7 shows the accuracy results of different classifiers for the various kinds of input features. 
The most prominent features to detect the risk type are found to be Assets and Controls where 
accuracy is above 70%. From left to right (top to bottom), X-axis denotes different types of 
classifiers and Y-axis denotes the corresponding accuracy for a given feature set. It can be seen 
from the descriptive result shown in figure 8 below that  based on the asset features KNN, NB 
Multi, RF and DT have produced the most accurate predictions by giving the accuracy value of 
above 70% compared to NB and NN classifiers. The predictive results for control features in the 
graph indicate that DT produced the maximum accuracy with a value of 79% compared to other 
classifiers. Therefore, DT for Control features is the best predictive classifier. The different 
algorithms were used to determine the predictive accuracy for Threat Actor features. DT, RF, KNN 
and NB Multi produced maximum accuracy, however, DT and NB Multi produced the most 
accuracy with (61%).Further, and we checked the performance of the different algorithms under 
the TTP features. DT, RF, KNN and NB Multi produced good accuracy but DT outperformed 
other algorithms with 62%. NN and NB algorithms did not give us excellent results. Lastly, the 
Full feature result in the graph below shows all the classifiers produced accuracy of 39% and less. 
The result shows that Full features did not perform well on all the classifiers. Therefore, we can 
conclude that the best algorithm that performed well on all the input features except the full feature 
is DT and NB Multi.  



 
Figure 7: The accuracy of different classifiers for various types of input features.  

 
4.2.2.2. Results of the different classifiers transformed by PCA 
Figure 8 shows the results of different classifiers for various kinds of input features that have been 
transformed by applying PCA. We figure out that, PCA does improve accuracy for TTP and 
Control features where the accuracy is above 79%.  

 
Figure 8: The accuracy of classifiers for various types of features transformed by applying 

PCA.  
 
4.2.4. Results of Confusion Matrix  
While accuracy provides a general indicator of classifier performance, recall, precision, and F 
measure values give a more complete picture of how the classifier produces errors. Recall 



measures the true positive rate, precision measures the positive predictive value, and the F 
measure is the harmonic mean of precision and recall. For these measures, values approaching 
1.0 indicate strong classification performance. This section describes the performance of the 
classifiers on the test data for which the true values are known. This allows for the visualization 
of the performance of an algorithm. In this case, the best overall predictive accuracy was recorded 
with KNN which produced better result compared to other classifiers as shown in table 19. 

 
Table 19: performance measure for KNN classifier for the various risk types  

Output Precision Recall F1-Score 

1 1.000 0.525 0.689 

2 0.700 0.687 0.693 

3 0.729 0.501 0.694 

4 0.766 0.578 0.659 

5 0.735 0.561 0.636 

6 0.614 0.340 0.438 

7 0.820 0.432 0.566 

8 0.815 0.373 0.512 

9 0.950 0.710 0.813 

10 0.264 0.711 0.385 

Accuracy 0.576 0.576 0.576 

 
 
4.2.4.1. Analyzing the results of the KNN algorithm for identifying the different types of 
risk 
KNN provides better results comparing to other algorithms. This section provides precision 
metrics obtained from the KNN classifier. As presented in  Figure 9, Crimeware risk type (R1) 
shows the highest precision which is  almost 100%, cyber espionage (R2) shows  70% , while 
73% precision for Denial of Service (R3).   



 
 

Figure 9: Precision result performance measure for KNN classifier for the various risk types 
based on the different features 

 
The KNN classifier shows a recall of 53% in identifying Crimeware (R1), 69% recall was 
obtained for cyber espionage (R2), 50% recall for Denial of Service (R3), 58% recall for 
everything else (R4) and 56% recall for lost and stolen assets (R5).  Recall of 34% for 
Miscellaneous Error (R6), Recall of 43% for payment card skimmer (R7), recall of 37% for point 
of sale (R8), recall of 71% for privilege misuse (R9) and a recall of 71% for web application 
(R10).  
 

 
Figure 10: Recall result performance measure for KNN classifier for the various risk types based 

on the different features 
 

The KNN classifier shows F1-score  of 69% in identifying Crimeware (R1), 69% F1-score was 
obtained for cyber espionage (R2), 69% F1-score for Denial of Service (R3), 66% F1-score for 
everything else (R4) and 64% F1-score for lost and stolen assets (R5).  F1-score of 44% for 
Miscellaneous Error (R6), F1-score of 57% for payment card skimmer (R7), F1-score of 51% for 
point of sale (R8), F1-score of 81% for privilege misuse (R9) and a F1-score of 39% for web 
application (R10).   
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Figure 11: F1 result performance measure for KNN classifier for the various risk types based on 

the different features 
 
Therefore, KNN achieved very high precision of 100% in identifying Crimeware (R1) and 
precision of 95% in identifying privilege misuse (R8).  KNN achieved high Recall of 71% in both 
identifying privilege misuse (R9) and web application (R10). Finally, f1-score of 81% for 
identifying privilege misuse (R9) is achieved.  
 
4.3. Controls  
We  identified the existing controls and determine the effectiveness of the controls. Table 20 
presents the control and its  types and overall effectiveness. Two factor authentication provides the 
highest effectiveness. It also provides a list of recommended controls. 

Table 20: Control Effectiveness 
Control Type Control 

Description 
Criteria Overall 

Effectiveness 
Recommended 

Controls S R C I T 
Preventive Account lockout policies 

after a certain number of a 
failed login attempt to 

prevent passwords from 
being guessed. 

4 4 3 4 3 18 Training and 
awareness  for incident 
handling  
 
Relevant identify and 
access management 
 
Business continuity 
and incident recovery 
plan  
 
A balanced incident 
response team 
 
Recommend network 
segmentation 

Proper process, registry 
and file permission should 

be in place. 

4 4 4 3 2 17 

Detective Identify unnecessary 
system utilities or 

potentially malicious 
software. 

3 4 4 3 2 16 
 

Network intrusion 
prevention systems should 

be put in place. 

5 4 3 4 3 19 

Corrective Limit access to remote 
services through centrally 

managed VPNs. 

4 4 5 2 1 16 

Use strong two-factor or 
multi-factor 

authentication. 

5 5 3 4 3 20 

11%

11%

12%

11%
11%

7%

9%

9%

13%

6%

F1-Score
Crimeware

Cyber Espionage

Denial of Service

Everything Else

Lost and Stolen
Asset
Miscellaneous
Errors
Payment Card
Skimmers



Ensure that administrator 
accounts have complex, 

unique passwords. 

4 3 2 2 2 13 

Use of two-factor 
authentication for public-
facing webmail servers is 

recommended. 

5 5 3 2 3 18 

Training required for the 
DisCos employees to 

raise awareness. 

3 4 5 3 4 19 

Anti-virus to 
automatically isolate 

suspicious files 

2 3 4 2 4 15 

 
 

5. DISCUSSION 
Proactive management of cybersecurity risk is essential for the CPS. However, due to the constant 
changing of the threat landscape and sophisticated technology used to exploit the attack, this task 
becomes more challenging. The proposed unified approach  aims to contribute for an  effective 
cyber security risk management practice based on assets criticality, risk predication and 
effectiveness of existing controls. One of the most important aspects of CSRM is to determine the 
critical assets within a CPS that can be affected by potential risks.  The use of fuzzy set theory 
allows us to determine the asset criticality based on the relative importance of security goals.  The 
proposed approach considers various ML techniques and extracts CSRM features which are 
relevant for the risk prediction. The risk predication allows organizations  to give an early warning 
of the security issues that needs adequate attention. Organisation of any size must understand the 
existing critical assets, cybersecurity risks, and effectiveness of existing controls. It helps to 
understand the current status of security control and undertakes strategic decision for the 
improvement of overall cybersecurity .   The overall predication  results of the different risk types 
based on the given CSRM features indicated that NB-Multi and DT are the best  ML classifiers 
because they performed better by predicting seven different risk types such as “Crimeware”, 
“Cyber Espionage”, Denial of Service”, Everything Else”, “Lost and Stolen Assets”, “privilege 
Misuse” and “Point of Sale” while others predicted six or less. Following the above discussion, 
we observe that CSRM features (TTP, Assets, Controls and Threat Actor) types could actually be 
used to predict risk type. Therefore, as security threats grow, organisations need to identify 
cybersecurity threats and its trend and also be able to detect and respond to both known and 
unknown risks. This supports organisations to determine the right risk type and implement 
appropriate controls. 
 
5.1. Comparison with the other study results 
In this section, we compare the results of our approach with other study results from the literature 
to generalize our findings.In [43] Fuzzy Risk Analysis and Management for Critical Asset 
Protection (RAMCAP) is introduced in order to risk analysis and management for pipeline 
systems. However, the Fuzzy RAMCAP considers the relative importance among vulnerability, 
threat, and consequence but not the relevant goals for the assets. The authors in [44] focus on the 
manual and automatic asset identification, annotation and tracking as well as on the assignment of 
graded application security controls (ASCs) that can benefit from a comprehensive and formalized 
asset management. However, this process is not feasible in a heavily regulated business domain 
and can easily be a target to threat actors leading to a cyber-attack. Also, the work didn’t consider 



the use of key primary indicators (KPI) to determine the criticality. A framework that models the 
connections of assets and identify critical components is presented [28]. However, the framework 
works best for network assets grouping only and doesn’t consider other assets within the 
organisation. Also a robust calculation is required to determine critical assets. Our work presents 
FACS to analyze critical assets in CI. The main purpose was to investigate the major security risk 
associated to critical assets and effectively reduce and organisations overall risk against cyber 
security threats. The FACS considers the relative importance among the goals of the assets (C, I, 
A, CON and ACC).  We test the implementation of FACS on a real-life power grid system and 
demonstrate its effectiveness. The result shows that FACS provides an accurate asset criticality 
ranking for risk analysis in CI.  
 
In [12], an adaptive intrusion detection system is proposed that detects different types of attacks 
in adversarial network environments. However, the proposed framework needs to be applied to 
other information security problems. In [45]an investigation on detecting and categorizing 
anomalies is carried out using LR and RF ML techniques. The result demonstrates that RF 
technique with feature selection scheme can achieve 99% accuracy with anomaly detection. Much 
research has been carried out in this domain without paying attention to identifying risk and 
imposing appropriate countermeasures against different types of attacks. In [13], the authors 
reviewed the most commonly used machine learning algorithms, which are primary tools for 
analyzing network traffic, intrusion detection, DDoS attack detection, web applications, and 
detecting anomalies. However, detecting risk type is still an ongoing plan. In [40]the result 
demonstrates how and to what extent business details about an organisation can help forecast its 
relative risk of experiencing different types of data incidents using incident report collected in the 
VCDB to achieve some level of protection. In [9] RF classifier is used to train more than 1,000 
incidents taken from the VCDB to predict an organisations network breaches. Our work also used 
ML techniques in the cybersecurity domain but differentiated from other existing works with 
specific focus on cybersecurity risk prediction.  Also, [34] proposed a comprehensive assessment 
model (CAM) that provides ways to measure internal controls. However, the criteria for 
assessment are complex and include some predefined rules that may be hard to follow.  Our 
observation is that it would be useful in determining critical assets, predicting risk types and 
evaluating the effective of existing controls for an effective CSRM.  
 
6. CONCLUSION 
 
The cyber  threat landscape is evolving rapidly with new techniques and more sophisticated attacks 
and risk management certainly plays an important role to understand the threats and associated 
risks to choose the suitable controls. This paper proposes a novel unified CSRM approach that 
systematically determines critical asset, predicts the risk types for an effective risk management 
practice and evaluate the effectiveness of the existing controls.  Our experimental results identify 
five critical assets by following the fuzzy set theory. Our observation is that the input and output 
information in the fuzzy logic is described as linguistic terms, which are more realistic and flexible 
in reflecting real situations. Furthermore, risk types are analysed using a predictive model 
influenced by the vulnerabilities and relevant threat, and TTP of the organisation to provide 
accurate risk level. The results also revealed that decision tree-based algorithms (DT and RF) are 
well suited for the risk prediction problem with 93% accuracy  and further to 96% using PCA. 
The reason being that the decision tree can easily identify the most prominent feature to construct 



tree and can stop induction of the model before over fitting happens, which give  the better 
generalization error for the test set. We notice that the accuracy is comparatively lower in our case 
for the classifiers. One possible reason can be the nature of the data, which is highly imbalanced 
and sparse. As a future endeavor, we intend to use oversampling and sparsity reduction techniques 
before applying classification algorithms, which might increase the performance of various 
models. Also, the risk predication part only considers supervised learning method, which requires 
effort for the dataset labeling, so we plan to use our approach on unsupervised data. It is necessary 
to create a process for integrating machine learning for an effective cybersecurity risk 
management practice. We are also planning to handle the zero-day attacks by using our approach. 
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