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ABSTRACT 

Background: Impaired response inhibition in individuals with cocaine use disorder (CUD) is 

hypothesised to depend on deficient noradrenergic signalling in cortico-striatal networks. 

Remediation of noradrenergic neurotransmission with selective norepinephrine reuptake 

inhibitors such as atomoxetine may therefore have clinical utility to improve response 

inhibitory control in CUD.    

Methods: We carried out a randomised, double-blind, placebo-controlled, crossover study 

with 26 CUD participants and 28 control volunteers investigating the neural substrates of 

stop-signal inhibitory control. The effects of a single dose of atomoxetine (40 mg) were 

compared with placebo on stop-signal reaction time performance and functional network 

connectivity using dynamic causal modelling. 

Results: We found that atomoxetine speeded Go response times in both control and CUD 

participants. Improvements in stopping efficiency on atomoxetine were conditional on 

baseline (placebo) stopping performance and were directly associated with increased inferior 

frontal gyrus activation. Further, stopping performance, task-based brain activation and 

effective connectivity were similar in the two groups. Dynamic causal modelling of effective 

connectivity of multiple prefrontal and basal ganglia regions replicated and extended 

previous models of network function underlying inhibitory control to CUD and control 

volunteers and showed subtle effects of atomoxetine on prefrontal-basal ganglia interactions.  

Conclusions: These findings demonstrate that atomoxetine improves response inhibition in a 

baseline-dependent manner in control and in CUD participants. Our results emphasize 

inferior frontal cortex function as a future treatment target due to its key role in improving 

response inhibition in CUD.  

Key words: Impulsivity; Stop Signal Task; fMRI; Cocaine Addiction; Connectivity, DCM, 

Norepinephrine  
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INTRODUCTION 

Cocaine use disorder (CUD) is exemplified by high levels of impulsivity and impaired response 

inhibition (1,2). Response inhibition is typically assessed using the stop-signal reaction time (SSRT) 

task (3–5), with prefrontal hypoactivity a feature of impaired inhibition in stimulant use disorder (6,7). 

The response inhibitory fronto-striatal network includes the right inferior frontal gyrus (rIFG), 

dorsomedial prefrontal cortex (dmPFC), putamen and the subthalamic nucleus (STN) (8–11). 

Neurochemically, response inhibition encompasses dopaminergic and noradrenergic mechanisms 

operating at distinct cortical and subcortical sites (12,13). Norepinephrine in particular appears to 

have a preferential contribution to response inhibition in the prefrontal cortex (PFC) (12,14). 

Given the prominence of response inhibition difficulties in the conceptualisation of addiction models 

(7), pharmacological interventions of norepinephrine neurotransmission have been suggested as 

potentially improving executive inhibitory control in addiction, though its effects in CUD remain to 

be established (15–17). Atomoxetine is a well-tolerated selective presynaptic norepinephrine 

transporter blocker (18–20) prescribed for Attention Deficit Hyperactivity Disorder (ADHD), which 

is also characterised by impulsive behavior and poor response control (21). Acute administration of 

atomoxetine has been found to improve response inhibition in healthy volunteers and in adult ADHD 

patients (14,22) and longer-term administration in ADHD has been associated with broader attentional 

control improvements (23). Additionally, atomoxetine was found to upregulate rIFG during stopping 

in healthy volunteers (24). Further, atomoxetine ameliorated attentional bias to drug-related cues in 

CUD participants (25). 

However, not all studies on atomoxetine have found performance improvements in stopping or 

concomitant brain correlates (26–29). A possible reason for this may be baseline-dependent individual 

differences, whereby only those with worse stopping performance benefit from atomoxetine 

administration. Two studies on atomoxetine administration in older adults with Parkinson’s Disease 

(PD) found that atomoxetine-related improvement in stopping was associated with baseline 

performance (30,31). In one of these studies, improvement of response inhibition by atomoxetine was 

also associated with increased rIFG activation (30). Moreover, these studies pointed to atomoxetine 

enhancing and even restoring abnormal connectivity within the stopping fronto-striatal network 

(30,31). 

In the current study, we investigated the effects of atomoxetine on inhibitory performance and 

associated brain function in CUD and healthy control participants. We used pharmacological 

functional magnetic resonance imaging (fMRI) of the stop-signal task (6,32), expecting CUD 

participants to show performance impairments that could be remediated by atomoxetine. We 

hypothesized that changes in fronto-striatal regions subserving stopping would underlie any beneficial 

effects of atomoxetine. We further aimed to identify effects of atomoxetine on effective connectivity 
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of the stopping network. To this end, we built on previous dynamic causal modelling (DCM) of the 

stop-signal task (9), employing this approach on healthy controls and on CUD participants. We 

extended the network being investigated to encompass the putamen to better assess the interactions 

between the prefrontal cortex and basal ganglia. 

 

METHODS AND MATERIALS 

Participants 

A starting sample of twenty-eight healthy participants and twenty-eight individuals who satisfied 

DSM-IV TR (33) criteria for cocaine dependence, here referred to as cocaine use disorder (CUD) 

were recruited from drug treatment services by advertisement and word of mouth. Two CUD patients 

did not complete the task in the scanner and thus were excluded. Healthy control participants were 

recruited from the Cambridge BioResource volunteer panel (www.cambridgebioresource.org.uk) and 

had no current or past psychiatric disorders. All participants were screened using the Mini-

International Neuropsychiatric Interview  (34) and completed the Beck Depression Inventory Version 

II to record levels of dysphoric mood. We did not assess ADHD but none of our participants had a 

prior diagnosis of ADHD and had been prescribed stimulants for the treatment of ADHD. Cocaine 

dependence was verified using the Structured Interview to the DSM-IV (Structured Clinical 

Interview, SCID (35). Fifteen CUD patients also met the DSM-IV criteria for opioid dependence; 10 

of whom were taking methadone or buprenorphine as part of their maintenance therapy. Ten CUD 

patients also met criteria for tetrahydrocannabinol dependence. Participants were excluded if they 1) 

had a history of neurological disorder, head or brain injury, history of psychotic disorder, or metabolic 

disorder, 2) were taking any medication that would interact with atomoxetine such as aripiprazole or 

bupropion, 3) were pregnant, 4) had MR incompatibilities or 5) had been involved in a clinical trial 

within the past six months. Urine screens verified recent cocaine use in all CUD patients and were 

drug negative for all control participants. Additional five CUD patients were excluded from each 

session due to limited task compliance and race model violations (6), resulting in eight CUD patients 

precluded from analyses incorporating both sessions (see Supplementary Table 1).  

Experimental Procedure and Design 

The study followed a randomised, double-blind, placebo-controlled, crossover, balanced design. All 

participants provided written informed consent, which received ethical approval from National Ethics 

Committee (12/EE/0519; PI: KD Ersche). Participants received orally either 40mg atomoxetine or a 

placebo of identical appearance, consistent with previous studies (24,30). At least seven days 

separated the sessions for each participant, which included a neuropsychological battery and brain 

imaging (25). Blood samples for plasma were collected 150 minutes after administration (mean 366 

http://www.cambridgebioresource.org.uk/
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ng/mL, standard deviation 200 ng/mL) following established pharmacokinetics immediately after 

scanning (36,37). Participants underwent structural and functional MRI scanning where they 

performed the stop-signal task. Generalised linear models (GLM) on SSRT and Go RT were 

conducted with subject-level random effects (equivalent to mixed-effect Analyses of Variance) to 

explore the main effects of group (cocaine vs control), drug (atomoxetine vs placebo) and the group-

by-drug interaction (nlme and car packages in RStudio v3.4.1). Age and atomoxetine plasma levels 

were included as covariates. Regression weights with their respective t and p values are reported. 

Following the GLM analyses described below, predictors of performance changes due to atomoxetine 

were explored. ANCOVA models (aov package in RStudio, v3.4.1) were fitted to explain the 

variability in atomoxetine-dependent changes in SSRT and in Go RT.  

MRI Acquisition. MRI data were acquired using a Siemens Trio 3T scanner (Erlangen, Germany). 

Functional images used a whole-brain echo planar image sequence (repetition time, 2000 ms; echo 

time, 30 ms; flip angle, 78°; 32 slices with 3mm slice thickness and a 0.75mm gap; matrix=64x64; 

field of view, 192x192mm; 3 x 3mm in-plane resolution; number of volumes ranging between 278 

and 305). High resolution T1-weighted gradient echo images were acquired for registration purposes 

(176 sequential slices of 1mm thickness; repetition time, 2300 ms; echo time, 2.98 ms; flip angle, 9°, 

FOV, 240x256mm).  

Stop-Signal Task. On go trials participants were required to respond with left or right key presses to 

corresponding left or right arrow stimuli (100ms) (6). On stop trials, a stop signal subsequently 

appeared (an orange upward arrow, 300 ms) and participants had to cancel their planned response. 

Left and right arrows were counterbalanced and intermixed, and the delay between go and stop 

stimuli was adjusted in 50 ms steps from an initial value of 250 ms to achieve 50% successful 

stopping (38). The task included 48 stop trials and 240 go trials in one block, with stop trials repeating 

at a later time if participants responded before stop signal onset. Inter-trial-intervals varied randomly 

between 900 and 1100 ms (39). Participants were instructed to respond as quickly as possible and not 

to delay responding. Key task outcome measures included mean reaction time (RT) on Go Trials and 

the SSRT calculated using the integration method with replacement of go omissions (32). Participants 

who did not meet the assumptions of the race were excluded (6). ΔSSRT was calculated as the 

difference between SSRT on atomoxetine and SSRT on placebo. 

Finally, as part of clinical assessments, participants completed the Beck Depression Inventory (BDI-

II), the National Adult Reading Test (NART), an estimate of verbal intelligence, the Obsessive 

Compulsive Drug Use Scale (OCDUS), Alcohol Use Disorders Identification Test (AUDIT), and the 

Barratt Impulsivity Scale (BIS-11) (40–45).  
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MRI Data Processing and Analyses 

Pre-processing. FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The first five 

volumes were discarded to achieve steady-state equilibrium. Registration to structural and standard 

space images was carried out using FLIRT (46–48) and FNIRT (49,50). Pre-processing included 

motion correction using MCFLIRT (Jenkinson 2002); non-brain removal using BET (51); spatial 

smoothing using a Gaussian kernel of FWHM 5mm and grand-mean intensity normalisation; high-

pass temporal filtering (100s). First level analysis (52) included four regressors of interest: successful 

stops, failed stops, successful go and error go responses (all other Go-trials) convolved with double-

gamma haemodynamic response function. Temporal derivatives were also included for each of the 

regressors. Successful stops were contrasted with successful go responses (stopping contrast). 

Twenty-four movement parameters were included as covariates of no interest along with a pre-

whitening step.  

GLM Analyses. Two GLMs, one for the placebo and one for the atomoxetine drug condition, used one 

sample whole brain t-tests to identify significant stop-related group mean activations in the control 

and cocaine groups using FEAT FLAME1 analysis (53). Conjunction analysis tested for overlap 

between the groups (easythresh_conj.sh, https://warwick.ac.uk/fac/sci/statistics/staff/academic-

research/nichols/scripts/fsl ). An additional GLM included the difference maps of parameter estimate 

contrasts for placebo and atomoxetine. Here, one sample t-tests of the atomoxetine versus placebo 

difference maps were used to evaluate drug effects across subjects and a group-by-drug interaction 

was tested using independent sample t-tests (CUD vs control) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide).  

We also sought to assess whether behavioral effects of atomoxetine were conditional on individual 

differences in brain activation. To test for associations between drug-related changes in task 

performance and brain activity, the difference between atomoxetine and placebo in SSRT (ΔSSRT) 

was added as a covariate to the atomoxetine vs placebo difference GLM. Based on previous findings 

(24,30), an IFG region of interest (ROI) was applied using the Harvard-Oxford atlas. As significant 

improvement in Go RT was noted, a parallel yet exploratory analysis was conducted with the 

difference between drug conditions in Go RT (ΔGoRT) added as a covariate to the go>stop drug 

difference GLM with primary motor cortex (M1) serving as an ROI (primary motor cortex from the 

Juelich Atlas). For all analyses, images were thresholded using threshold free cluster enhancement in 

randomise with 5000 permutations (z>2.3, p<0.05). Demeaned order of drug vs placebo sessions was 

included as a second-level covariate of no interest in all GLMs. Group mean activations and placebo-

atomoxetine GLMs were conducted using a whole-brain mask while the ∆SSRT and ∆GoRT analyses 

were conducted within the IFG and M1 masks, respectively. 

http://www.fmrib.ox.ac.uk/fsl
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/fsl
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/fsl
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide
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DCM Analyses. To examine the most likely network identified by group mean GLM maps, and to 

inspect the directed connectivity in that network, dynamic causal models (DCM; Friston 2003) were 

built and tested in each group and drug condition in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). We examined the effective connectivity 

between well-known nodes of the stopping network that included the IFG, dorsal Anterior Cingulate 

Cortex (ACC), M1, and STN, building on previous DCM findings (9). We extended the network 

underlying action initiation and inhibition by adding the putamen, a key node of the indirect cortico-

basal ganglia pathway (54,55). The addition of the putamen allowed for the assessment of striatal 

contributions to response inhibition via the indirect pathway (56) by explicitly modelling its 

connections with cortical regions such as the dACC and IFG as well as subcortical regions such as the 

STN.  

Full details of the DCM analyses are provided in the Supplementary Information (SI). Briefly, the 

DCMs allowed us to compare a) fixed connections between the network nodes (DCM.a), b) 

modulatory effects of the task (successful stop > go contrast) on these connections (DCM.b), c) inputs 

that drive network activity (Go stimulus presentation on all trials) and d) nonlinear modulatory effects 

of one node on connectivity between other nodes (DCM.d). A set of 33 models guided by a priori 

hypotheses (Rae et al., 2015) were generated (Figure 3A). Six linear models and five nonlinear 

models were initially defined to test for linear (DCM.A) and nonlinear (DCM.D) effects (Figure 3A). 

All models included connections from dACC and from STN to M1, connections from dACC to 

Putamen and from Putamen to STN. Among the nonlinear models, models A, B and C included 

interactive effects by the IFG, models D and E included interactive effects by the putamen. The set of 

11 models was tested for task modulatory effects (successful stop vs go) at the IFG, the dACC and the 

putamen, resulting in 3x11=33 models. Bayesian model selection (BMS, Stephan et al, 2010) 

determined the winning models separately in each group in each drug condition. Subject-specific 

connectivity values from the DCM.A and DCM.B matrices were then extracted for the most likely 

model for each group by drug condition using Bayesian Model Averaging. The resulting connectivity 

values from the most likely group model were subsequently subjected to the same subject-level 

random effects analysis approach as the behavioral performance measures.  

RESULTS 

Demographic and Behavioral Results 

Demographic, clinical and personality measures are reported in Table 1. The participants were well 

matched in terms of their sex, education level and pattern of alcohol use as reflected by the AUDIT 

score. CUD patients were younger, had a lower verbal IQ and significantly higher levels of depressed 

mood  on the BDI-II. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Stopping performance is summarized in Table 2. For SSRT there was no main effect of atomoxetine  

compared with placebo (β=12.6, SE=9.4, t44=1.3, p=0.180), CUD compared with controls (β=5.3, 

SE=14.7, t42=0.4, p=0.717), nor was there a significant interaction (β=-17.3, SE=12.0, t42=1.4, 

p=0.151) while controlling for age (β=1.9, SE=0.9, t44=2.1, p=0.038) and plasma atomoxetine levels 

(p=0.388). For Go RT, there was a significant main effect of drug condition as atomoxetine speeded 

responding compared with placebo (β=28.5, SE=11.0, t44=2.6, p=0.009), with no main effect of group 

(β=-27.2, SE=19.3, t42=-1.4, p=0.159) or significant interaction (β=-17.5, SE=14.1, t44=-1.2, p=0.215).  

fMRI Results 

Whole-brain group mean activations were found in the IFG, dorsal ACC, medial frontal gyrus, 

parietal and visual areas for the stopping contrast. Conjunction analysis revealed wide-ranging overlap 

in the above areas activated by both cocaine and control groups in both drug conditions (Figure 1). On 

placebo, no significant group differences were observed using a whole brain mask. On atomoxetine, 

CUD patients showed significantly greater activation than controls in the dorsal ACC (peak MNI 

coordinates [-6, 16, 52], zmax=3.89, p=0.002). There were no significant drug effects in either group, 

nor was there an interaction between group and drug.  

In sum, both CUD and control participants showed robust and largely consistent activations in the key 

nodes of the stopping network regardless of drug condition. Thus, associations with drug-dependent 

performance differences (ΔSSRT) were assessed across the entire sample. At the whole-brain level no 

results survived threshold-free cluster-enhancement multiple comparison correction. Using the 

bilateral IFG mask, we identified a robust cluster of right IFG activation that was associated with 

improved SSRT performance on atomoxetine (Figure 2A, 2B). This finding was in line with our 

hypothesis that fronto-striatal activation would be associated with atomoxetine-induced stopping 

improvements. 

Analyses for the go>stop contrast revealed group mean activations in the left precentral gyrus (M1), 

contralateral to the right-handed task response as would be expected (Supplementary Figure 1). 

Associations with drug-dependent performance differences (ΔGo RT) showed that within the primary 

motor cortex (M1) ROI, increased activation in a robust cluster was associated with improved Go RT 

performance on atomoxetine across all participants (Figure 2C, 2D).      

Predictors of changes in performance induced by atomoxetine 

To determine the factors predicting changes in performance following atomoxetine administration, 

mixed-effect generalized linear models (aov package) assessed the contribution of placebo 

performance (“baseline"), plasma atomoxetine, and change in rIFG activation on SSRT improvements 

on atomoxetine. The rIFG region was defined based on the voxelwise fMRI results in which ΔSSRT 
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was included as covariate of interest. The full model explained a significant amount of variance in 

ΔSSRT in all participants (r2= 0.64, F4,41=18.33, p= 1.1e-8).  

ΔSSRT = 𝛽𝛽1 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽𝛽2 × [Δ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] +  𝛽𝛽3 × [𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 𝐴𝐴𝑎𝑎𝐴𝐴] + 𝑎𝑎𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟 

Stopping improvement on atomoxetine was predicted by worse baseline stopping performance (beta=-

0.32, t42=-3.8, p=4.6e-4), greater activation of rIFG (Figure 2B; beta=-0.19, t42=-5.1, p= 9.5e-6) and 

by higher levels of plasma atomoxetine (beta=-0.05, t42=-2.3, p=0.025). No significant effects of order 

were found (p=0.268). 

A separate exploratory parallel model was fitted to explain atomoxetine-dependent Go RT 

improvement. M1 was defined based on the voxelwise fMRI results where ΔGo RT was included as a 

covariate.  

ΔGoRT = 𝛽𝛽1 × 𝑟𝑟𝑎𝑎𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝛽𝛽2 × [Δ M1 activation] + 𝛽𝛽3 × [plasma Atx] + 𝑎𝑎𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟 

The full model explained a significant amount of variance in ΔGo RT in all participants (r2= 0.48, 

F4,41=9.59, p=1.4e-5). Baseline Go RT predicted greater improvement with atomoxetine, with slower 

responders benefitting more from atomoxetine (beta=-0.22, t40=-2.25, p=0.030). Increases in M1 

activation were also associated with faster response execution (Figure 2D, beta=-0.34, t40=-3.8, p=4.4 

× 10-4). No significant effects of plasma atomoxetine were found (beta=-0.01, t40=-0.4, p=0.663). No 

significant effects of order were found (p=0.151).  

DCM Results 

Overall, DCM connectivity analyses were consistent between the groups and largely replicated 

previous findings regarding the effective connectivity underlying stopping, though the putamen was 

not included in previous models (9). Bayesian model selection (Figure 3A, Supplementary Figure 2) 

indicated the same winning model for both groups on placebo (nonlinear C). Additionally, the 

winning model was the same for both groups on atomoxetine (linear D). On placebo, the winning 

model included nonlinear modulation of the hyperdirect dACC-STN connection by the IFG (Figure 

3B). In contrast, on atomoxetine this nonlinear modulatory connection was replaced with a fixed 

connection between the IFG and putamen. Looking at task modulation (the red arrow in Figure 3B), 

stopping modulated the IFG in controls on placebo, but this changed to the putamen when they were 

given atomoxetine (DCM.b). Stopping modulated putamen BOLD activity in CUD individuals, 

regardless of drug condition. This observation is consistent with the expectation that the putamen 

plays a key role in the stopping network (8–11) and further refines our hypothesis of a fronto-striatal 

network incorporating the IFG and putamen in modulating stopping performance.  

The excitatory and inhibitory connectivity patterns as revealed by the Bayesian Model Averaging in 

the controls on placebo replicated previous findings with an inhibitory connection from STN to M1 
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and an excitatory connection between dorsomedial PFC and STN as well as excitatory modulation of 

this connection by the IFG (9). Extending these results, we show that the putamen provides inhibitory 

inputs to the STN. To investigate further, mixed effect models assessed the parameters obtained in the 

Bayesian Model averaging, with no results surviving Bonferroni multiple comparison correction (see 

SI for further details). Overall, our DCMs replicate and extend an effective connectivity model of 

prefrontal-basal ganglia interactions in both control and CUD groups and show subtle effects of 

atomoxetine on the interactions between the IFG and the putamen in both groups. 

DISCUSSION 

This study investigated the mechanisms underlying the effects of atomoxetine on inhibitory control in 

CUD and healthy participants. Atomoxetine led to faster response execution across the two groups 

with no significant effects on stopping latency, in keeping with some previous studies of the effects of 

atomoxetine on the SSRT task (28,29). We noted prominent and consistent stopping-related group-

level BOLD activations in both the placebo and the atomoxetine conditions in both samples with 

considerable overlap between the groups. These activations encompassed key established nodes of the 

stopping network including rIFG and dmPFC in addition to striatal and parietal regions (39). 

Additional connectivity analyses pointed to the same winning model of network architecture in both 

groups on placebo. The architecture, connections and weights are consistent with those previously 

found in a cohort of sixteen healthy young adults (9). We extended the connectivity model for 

response inhibition by introducing and showing the contributions of the putamen which again was 

consistent across the two groups. Importantly, we also investigated the effect of atomoxetine on 

effective connectivity. Specifically, whereas on placebo the rIFG modulated the hyper-direct fronto-

striatal pathway from the dmPFC to the STN, atomoxetine led to the rIFG modulating the indirect 

pathway by interacting with the putamen. This change in the network architecture with atomoxetine 

was found in both groups independently. Taken together, task performance and neural activations 

point to similar mechanisms of action for atomoxetine across the CUD and control participants.  

Individual differences in atomoxetine effects 

Importantly, atomoxetine improved stopping performance in a baseline-dependent manner 

independent from diagnosis, in keeping with findings from a much older cohort of healthy volunteers 

and PD patients (30,31). Thus, poorer inhibitors benefited the most from atomoxetine compared to 

placebo. Moreover, this was accompanied by increased rIFG activation such that the greatest 

improvement in stopping latency was associated with greater upregulation of this region. Higher 

levels of atomoxetine as detected in the blood were also positively correlated with greater brain 

activation in the rIFG during successful stopping (24). These results are consistent with the inverted-U 

modulation by norepinephrine of PFC-mediated cognitive control (58–60). They are reminiscent of 

findings found not only with atomoxetine but also with methylphenidate which acts on both the 
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noradrenergic and dopaminergic systems, in accordance with the broader literature of optimal 

catecholamine levels determining optimal performance (61–63). This also points to the likely utility 

of placebo inhibitory performance (“baseline”) in predicting subsequent effects of atomoxetine on 

cognitive control across individuals.  Larger studies may be more adequately powered to detect group-

level benefits to CUD patients driven by those who showed increased rIFG activation and improved 

stopping performance.   

Unexpectedly, atomoxetine also improved response execution compared to placebo. These 

improvements were found in a baseline-dependent manner, independent from diagnosis. Moreover, 

faster responding with atomoxetine was positively associated with enhanced activation in primary 

motor cortex, which is typically activated with response execution (8). Atomoxetine is known to 

improve attention, but acute administration does not typically promote general response speeding 

(26,64). Faster response latencies with atomoxetine compared to placebo in the stop-signal task were 

also reported in ADHD boys (28), suggesting speeding may occur in some situations. The effects on 

response speeding indicate that atomoxetine facilitated compliance without any concomitant negative 

effects on stopping, as instructions emphasized to respond as fast as possible and avoid slowing.  

Effective connectivity underlying response inhibition and execution 

Some of the network connectivity findings are relevant to a general understanding of response 

inhibition, with others being more specific to its basis in CUD. Present results in controls on placebo 

provide an important replication and extension of previous DCM findings (9), particularly as such 

replications are uncommon. Despite some methodological differences, not only was the same winning 

architecture found, but also there was notable agreement as to the effective connectivity between 

regions. Specifically, dACC projections to M1 and STN were excitatory, while putamen to the STN 

and STN to M1 projections were inhibitory (65). Positive modulation of the hyperdirect pathway by 

rIFG allows for top-down control over response cancellation. Present rIFG-dmPFC connectivity 

diverges from those previously found (9), possibly due to differences in task instantiation such as their 

inclusion of no-go trials. Additionally, present results found activation in the dorsal part of the dACC 

rather than the pre-supplementary motor area, though exact ROI locations appeared spatially adjacent. 

A subsequent DCM study by the same authors also did not yield similar results, though it was 

conducted on a considerably older cohort, suggesting that age may modulate stopping network 

connectivity (31). This would be consistent with the well-established decline in response inhibition 

from adulthood to older age, with gradual worsening in stopping efficiency (66,67). The present 

connectivity analyses also extended the stopping network by incorporating an indirect route from the 

dmPFC to the STN by way of the putamen, as supported by animal and human research in response 

execution (68). Atomoxetine selectively altered rIFG modulation of dmPFC to STN connectivity for 

both control and CUD patients, consistent with the notion that it is a key node by which the drug 
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exerts its influence on response inhibition. Group differences in connectivity were noted, though these 

did not survive type I error control and were obscured by individual differences. Nevertheless, on the 

whole the results draw attention to the potential importance of cortico-cortical connectivity in addition 

to corticostriatal connectivity traditionally associated with impulsivity in CUD (69). 

Conclusions and limitations 

This study points to baseline-dependent improvements in response inhibition with atomoxetine 

administration along with concomitant rIFG upregulation in a cohort of CUD patients and in healthy 

volunteers. CUD patients did not demonstrate impaired stopping or reduced PFC activation compared 

to controls, contrary to expectations (1,6,70,71). However, CUD patients showed significantly more 

omissions on Go trials, suggesting a degree of hesitancy manifesting from  proactive inhibition (72) 

being used in this group in view of increased impulsivity (6)(73). Some of the participants were also 

dependent on opioids and cannabis in addition to cocaine. The stop-signal task is a sensitive measure 

of response inhibition in stimulant use disorder, with impaired stopping in both clinical and preclinical 

studies (74–76). Notably, our participants were active cocaine users, and acute cocaine administration 

has been shown to improve response inhibition (76,77). Alternatively, lack of case-control differences 

in response inhibition may be due low of power in our sample or differences between the behavioral 

and the fMRI versions of the stop signal task as some previous studies of CUD patients also report no 

significant differences in behavioral performance (78–81), suggesting that the evidence for SSRT 

impairments in CUD patients is inconsistent (75). Therefore, atomoxetine might prove more 

beneficial in drug abstinent CUD patients in recovery, strengthening response inhibition and 

preventing relapse. Further, it is possible that participants who chose to undertake a lengthy 

pharmacological study with multiple visits and perform the task adequately in the scanner exhibit 

good executive control. In accordance with this notion, alcohol use was not increased in this cohort, 

though they reported high levels of trait impulsivity, chronic and compulsive drug use. The two 

groups were also not matched on demographic characteristics, though age was added as a covariate. In 

principle, atomoxetine may alter the hemodynamic response to neural activity obscuring or 

confounding any differences detected by fMRI though there is some evidence to counteract this (82). 

The spatial resolution of fMRI methods restricts precision in regions such as the putamen and STN. 

To mitigate this, we followed previous methods where possible (9) and used established anatomical 

masks. The present study used a dose of 40 mg of atomoxetine which is the standard starting 

therapeutic dose (14). Whilst greater improvements may have been detected with a larger dose, 

dosage was guided by safety and tolerability considerations.  

The results emphasize the nature of response inhibition functioning as existing along a continuum, 

with considerable overlap between CUD patients and healthy volunteers in the underlying neural 

network, determining the overall effects atomoxetine has on its nodes and connectivity. Future studies 
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may explore whether this is the case for other forms of impulsive behaviors such as premature 

responding also found to be abnormal in stimulant-dependent individuals (73), given the 

improvements with atomoxetine found in rodent studies (83). The findings also underscore the 

importance of individual differences within the CUD patients in responding to atomoxetine, as those 

with worse response control are expected to benefit more from atomoxetine. More generally, the 

association between rIFG upregulation and successful stopping underscoring the effects of 

atomoxetine in the present sample supports the development of new interventions that can robustly 

upregulate rIFG activation in chronic cocaine users.  
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Tables and Figures 

Table 1. Demographic and psychological assessment data for final Control and CUD groups. Data 

shown are means (standard deviation). 

  Control CUD 

Group statistic 

(T-value) 

Male:Female 27:1 18:0 - 

Age (Years) 44.7 (7.4) 38.8 (6.5) *2.80 

Education (Years) 12.8 (2.8) 11.7 (2.2) 1.46 

Verbal intelligence (NART) 115.3 (6.7) 104.4 (8.8) **4.44 

Impulsivity (BIS-11 Total) 58.4 (6.8) 74.3 (7.9) **-6.94 

Depression (BDI-II Total) 3.0 (4.4) 16.9 (8.6) **-6.31 

Alcohol use (AUDIT) 3.9 (2.1) 5.6 (6.5) -1.07 

Compulsive drug use 

(OCDUS) - 24.4 (8.6) - 

Duration of cocaine use 

(Years)  - 16.0 (5.6) - 

Plasma atomoxetine ng/ml 293.5 (191.8) 478.4 (159.4) **-3.48 

* p<.01; ** p<.001, Control vs CUD independent samples t-statistics are shown.  

 

Table 2. Performance indices on the Stop Signal Task for final Control and CUD groups. Data shown 

are means (standard deviations). 

  Control 
 

CUD 
 

Group 

Effect 

Atomoxetine 

Effect 

  Plc Atx Plc Atx F1,44 F1,44 

SSRT (msec) 218 (46) 222 (43) 224 (47) 211 (39) 0.03 0.43 

Go RT (msec) 414 (57) 403 (55) 449 (63) 420 (52) 2.73 **7.85 

P(Go response|stop) 0.486 0.492 0.466 0.478 2.65 1.30 

SSD 171.4 192.7 159.9 183.1 1.19 1.234 

P(Go Omissions) 0.009 0.007 0.05 0.05 **11.14 0.09 

P(Go Errors) 0.029 0.032 0.05 0.05 *5.34 0.13 

GoRT(failed stop) 371.4 363.9 388.5 366.8 0.41 3.61 

Plc – placebo, Atx – atomoxetine, * p<.05; ** p<.01 
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Figure 1. Mean group activation overlap between healthy control and cocaine use disorder 

(CUD) groups in the placebo and atomoxetine conditions. Overlap maps between the cocaine 

and control groups were generated in a conjunction analysis of group mean maps using 

whole-brain cluster-forming threshold of z=2.3, p<0.05. MNI Z-coordinates are shown below 

the image slices. 

Figure 2. Improved stopping efficiency (stop signal reaction time, SSRT) on atomoxetine is 

associated with changes in rIFG/rOFC activation (A, B). A bilateral IFG mask (Harvard-

Oxford atlas) was used as a region of interest (slices shown at MNI X=50, Z=-12). Improved 

response execution (reaction times on Go trials, GoRT) on atomoxetine was predicted by 

changes in primary motor cortex (M1) activity in both groups combined (C, D). A bilateral 

primary motor cortex mask (Harvard Oxford Atlas) was used as a region of interest (slices 

shown at MNI X=29, Z=60). T-statistic maps thresholded with threshold-free cluster 

enhancement (tfce)-corrected p<0.05 are shown. ΔrIFG and ΔM1 activations were calculated 

as the atomoxetine-placebo difference between the average activations (z-maps from first-

level GLM analyses) within the regions shown in (A) and (C), respectively. 

Figure 3. (A) Fixed connections and driving inputs of dynamic causal models comprising the 

model space. Six linear models and five nonlinear models were initially defined. The 

modulatory effects of stopping at 1. IFG, 2. dACC, 3. PUT, resulted in 3x11=33 models. The 

winning models as revealed by BMS are highlighted for the CUD group (in red) and for the 

control group (in blue). IFG, inferior frontal gyrus; dACC, dACC dorsal anterior cingulate; 

STN, subthalamic nucleus; M1, motor cortex; PUT, putamen. Black arrows show driving 

inputs to the dACC and IFG. Modulatory inputs varied in their location.  

Figure 3 (B). Results of Bayesian Model Averaging for control and CUD groups on placebo 

and atomoxetine. Average parameter estimates for the control and cocaine groups in placebo 

and atomoxetine conditions in winning DCM model (nonlinear model D on placebo and 

linear model C on atomoxetine). Bolded connections were significantly different from 0 (one-

sample t-tests, uncorrected for multiple comparisons). Autoinhibitory and auto-excitatory 

connections for IFG, PUT, STN and M1 are not shown. Task modulation locations are 

highlighted using dotted red arrows and driving inputs to the dACC and IFG are shown in 

black arrows. (B). IFG, inferior frontal gyrus; dACC, STN, M1, primary motor cortex; PUT, 

putamen 
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Prefrontal cortex activation and stopping performance underlie the beneficial 

effects of atomoxetine on response inhibition in healthy and cocaine use 

disorder volunteers –  
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Methods 

Dynamic Causal Modelling (DCM) Analyses.  

DCM allows us to estimate generative models of brain connectivity between a set of regions of 
interest (ROIs), which can then be compared in terms of their posterior probability given the BOLD 
timeseries data (1). We examined the effective connectivity between well-known nodes of the 
stopping network that included the inferior frontal gyrus (IFG), dorsal anterior cingulate (ACC), 
primary motor cortex (M1), and the subthalamic nucleus (STN), building on previous evidence (2–8).  

We extended the network by adding the putamen, a key component of the direct and indirect cortico-
basal ganglia pathways (9,10) underlying action initiation and response inhibition.  

The DCMs allowed us to assess: a) fixed connections between these nodes (DCM.a), b) modulatory 
effects of the task (successful stop > go contrast) on these connections (DCM.b), c) inputs that drive 
network activity (all trials, regardless of trial type or outcome) and d) nonlinear modulatory effects of 
one ROI on connectivity between other ROIs (DCM.d). A set of 33 models guided by a priori 
hypotheses was compared using Bayesian model selection based on the free-energy bound F, adjusted 
for model complexity. Further, subject-specific connectivity values can be extracted for the most 
likely model for each group by drug condition using Bayesian Model Averaging.  

Model space included 33 models (Figure 3A), systematically varying in the location of fixed 
connections (DCM.a), nonlinear modulatory connections (DCM.d) and location of task modulation 
effects (DCM.b). Fixed connections in linear models tested for systematic differences in the 
connectivity between the IFG and putamen (linear models A-F). Linear models A-C aimed to test 
whether ACC-Putamen-STN pathway could replace the hyperdirect pathway (dACC-STN) in 
stopping; models D-F tested for the role of the IFG given the presence of the hyperdirect pathway and 
a parallel pathway from the dACC to the STN via the putamen. In particular, we tested whether the 
IFG-putamen connection was likely, given the data (model D vs model F) and whether an additional 
projection from the IFG to STN was likely (model E). Nonlinear models examined the addition of 
nonlinear modulation of the ACC-STN or the ACC-Putamen-STN pathway by the IFG (models A-C). 
Nonlinear models D and E tested whether putamen may be modulating projections from the ACC to 
M1 or from the STN to M1. Each of the 11 models had three versions, with task demands (successful 
stop vs go) modulating the IFG, ACC or Putamen in each model. This resulted in 33 models, though 
three models failed to converge and were excluded. In each model, all ROIs also had an 
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autoinhibitory or an autoexcitatory self-connection and all trials provided driving inputs (DCM.c) to 
the dACC and the IFG following previous definitions of stopping DCMs (8).  

Node activations were calculated for each participant. The first Eigenvariate of the BOLD timeseries 
was extracted from the 1st level analysis. All anatomical masks were taken from the Harvard Oxford 
cortical and subcortical atlases (11–14). The dorsal ACC and IFG spheres were determined as 
follows: a search region was first created from the intersection of the significant group mean 
activation for the successful stop vs go contrast and the anatomical masks of ACC and bilateral IFG 
(pars opercularis and pars triangularis). This was then masked by a sphere (5 mm radius) of the peak 
activation from each participant’s parameter estimate map for the successful stop vs go contrast. The 
bilateral motor cortex search region was created from the intersection of the primary motor cortex 
anatomical mask and significant mean activation for successful go vs stop. Individual-specific spheres 
(5mm radius) were placed at peak activation for the go vs stop contrast in the search ROI. The 
putamen sphere (3mm radius) was placed at the subject-specific peak activation in the putamen 
anatomical region. Finally, STN spheres were created as in Rae et al. 2015 by placing spheres of 5mm 
radius at the specified coordinates (Forstmann et al, 2012). Twenty-four extended motion parameters 
generated in the first level analyses were regressed out of the extracted timeseries and the remaining 
variability in the BOLD signal was then used to estimate DCMs. Bayesian model selection (BMS, 
Stephan et al 2009) was used to compare models and model families in each group in each condition 
by evaluating model posterior probability in a fixed effects analysis. Bayesian model averaging was 
then used to extract subject-specific connectivity values from the DCM.A and DCM.B matrices for 
the most likely model for each group in each respective drug condition. These connectivity values 
were subsequently used in subject-level random effects analyses to examine potential effects of group, 
drug condition and interaction between group and drug condition. To correct for the number of 
multiple comparisons, we used the Bonferroni method (p<0.004, i.e. 0.05 divided by 12 fixed 
connections common to all winning models, Figure 3B).  

 

DCM Results and Discussion 

Figure S1 summarizes the results of the model selection between thirty DCMs representing competing 
hypotheses regarding the causal interactions between prefrontal cortical regions and the subcortical 
response inhibition pathways. The winning models in both groups in both conditions did not differ in 
terms of fixed connections between ROI pairs (DCM.a). On placebo, but not on atomoxetine, the 
winning model in both groups included nonlinear modulation of the hyperdirect pathway (ACC to 
STN) by the IFG (DCM.d). Further, stopping modulated the IFG in the control group in the placebo 
condition, but the location of stopping modulation changed to the putamen when healthy participants 
were given atomoxetine. In the Cocaine User Dependent (CUD) group, stopping modulated the 
putamen activity regardless of drug condition.  

Having clarified the presence or absence of connections and modulatory effects, we investigated the 
connectivity strength within the winning model identified by BMS. Estimating connectivity strength 
of fixed connections (DCM.a) allows us to assess whether a region is providing excitatory or 
inhibitory inputs to another region, while nonlinear modulations inform us about increase or reduction 
in connectivity between two regions by a third modulatory ROI. 

The analysis revealed striking similarities to the network architecture previously identified in humans 
and animals. In particular, the hyperdirect pathway (dACC to STN) as well as the nonlinear 
modulatory influence of the IFG on the hyperdirect pathway were excitatory. This finding is 
consistent with a role for the IFG in increasing the excitatory connectivity in the hyperdirect pathway 
when participants successfully stop a motor response and allowing ACC to activate the STN more 
strongly. The STN exerts inhibitory control over motor cortex (Redgrave et al 2010) and can thus 
relay the stopping command it received from the ACC to successfully inhibit the initiated response in 
the motor cortex.  
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The dACC provides excitatory inputs to M1, likely facilitating motor action initiation on Go trials, as 
Go RT performance was related to the dACC-M1 connectivity. Finally, cortical projections to the 
putamen were excitatory, consistent with models of the direct and indirect pathway (10). The putamen 
itself provided inhibitory inputs to the STN. It is possible that due to fMRI resolution, the putamen 
mask included some of the Globus pallidus external, which is thought to have inhibitory projections to 
the STN.  

There were twelve connections (5 autoinhibitory or autoexcitatory connections and 7 fixed or 
modulatory connections between regions of interest), resulting in twelve mixed models with age and 
plasma atomoxetine concentration as covariates and subject-level random effects (nlme package in R). 
None of the main or interactive effects were significant at Bonferroni-corrected level, p<0.004 
(0.05/12). We found a trend interaction between group (cocaine vs control) and drug (atomoxetine vs 
placebo) on the connectivity between IFG and dACC (β=0.24, SE=0.12, t44=2.0, p=0.049), and 
between dACC and M1 (β=0.18, SE=0.09, t44=2.1, p=0.042). Post-hoc tests with FDR correction 
revealed that the connectivity between IFG and dACC was significantly lower in cocaine dependent 
participants than in control participants on placebo (p=0.016) and decreased in controls (p=0.006) but 
not in cocaine users when they were given atomoxetine. No FDR-corrected differences in 
connectivity between dACC and M1 were found.   

 

Table S1. Sample size and participant exclusions. Twenty-eight healthy controls were tested on the 
stop signal task. Twenty-six cocaine dependent active users completed the stop signal task whilst in 
the scanner. Of these 26 participants, two different subsets of 21 participants were included in the 2nd 
level comparisons of the group mean activations for the atomoxetine and the placebo conditions. In 
the placebo condition, five participants were excluded. Exclusion criteria were adopted from (16). In 
the atomoxetine condition, five participants were also excluded, two of which were the same 
participants as those who were excluded in the placebo condition. When comparing group mean 
activations in each condition separately, the maximum number of participants available, namely 21 
were used. However, for the interaction analyses between group and condition, only those 18 
participants who had fulfilled the task criteria on both the placebo and atomoxetine sessions were 
included. 

 

 HC CUD  
  Plc, Atx Plc Atx 
Recruited and tested 28 26 26 
fMRI mean group comparison 28 21 21 
fMRI Group X Condition 28 18 18 
DCM 28 18 18 
Behavioural analysis 28 18 18 
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Figure S1. Significant activation maps for the [Successful Go>Successful Stop] contrast showcase the 
motor cortex activation – precentral/postcentral gyrus. Shown is the conjunction between control and 
CUD group, cluster corrected with the cluster forming threshold of z>2.3 and p<0.05.  
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Figure S2. Relative log evidence for each of the thirty models included in the Bayesian model 
comparison and selection. Models 1-10 are nonlinear models A, B, C, D, E and linear models A, B, C, 
D, E, F with task modulation of the IFG; models 11-20 are the nonlinear models A, B, C, D, E and 
linear models A, B, C, D, E, F with task modulation of the ACC; models 21-30 are nonlinear models 
A, B, C, D, E and linear models A, B, C, D, E, F with task modulation of the putamen. Three models 
were excluded since they failed to converge for several subjects: nonlinear model D with IFG 
modulation, nonlinear model E with ACC modulation and nonlinear model E with putamen 
modulation. The winning models and are highlighted in red. In the placebo condition, nonlinear model 
C provided the best fit to data from both control and cocaine groups, although stopping modulated the 
IFG in the controls and the putamen in the cocaine group. In the atomoxetine condition, linear model 
D with task modulation of the putamen gathered the most evidence in both control and cocaine 
groups.  
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Group differences in Go Omissions 

In addition to the results reported in Table 1, we show the distribution of the Go omissions in Figure 
S3. Although a robust, significant difference between CUD patients and controls was found (with 
increased probability of Go Omissions in CUD), the distribution was heavily skewed towards zero (as 
shown in Figure S3) and we therefore refrain from testing for linear associations between Go 
Omissions with task-based stop-signal fMRI data. 

 

Figure S3. Go omission distribution in healthy controls and CUD patients. 
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