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Abstract 16 

Resilience-informed water quality management embraces the growing environmental challenges and 17 

provides greater accuracy by unpacking the systems’ characteristics in response to failure conditions in 18 

order to identify more effective opportunities for intervention. Assessing the resilience of water quality 19 

requires complex analysis of influential parameters which can be challenging, time consuming and 20 

costly to compute. It may also require building detailed conceptual and/or physically process-based 21 

models that are difficult to build, calibrate and validate. This study utilises Artificial Neural Network 22 

(ANN) to develop a novel application to predict water quality resilience to simplify resilience 23 

evaluation. The Fuzzy Analytic Hierarchy Process method is used to rank water basins based on their 24 

level of resilience and to identify the ones that demand prompt restoration strategies. The commonly 25 

used ‘magnitude * duration of being in failure state’ quantification method has been used to formulate 26 

and evaluate resilience. A 17-years long water quality dataset from the 22 water basins in the State of 27 

São Paulo, Brazil, was used to train and test the ANN model. The overall agreement between the 28 

measured and simulated WQI resilience values is satisfactory and hence, can be used by planners and 29 

decision makers for improved water management. Moreover, comparative analyses show similarities 30 

and differences between the ‘level of criticalities’ reported in each zone by Environment Agency of the 31 

state of São Paulo (CETESB) and by the resilience model in this study. 32 
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1 Introduction 35 

Historically, environmental status of water resources in an area is assessed against pre-defined water quality 36 

(WQ) standards. For this purpose, spatial and temporal changes (e.g. monthly or annually) of WQ 37 

parameters (or WQ indexes) are collected and used to identify and assess WQ characteristics due to natural 38 

and man-made influences (Chounlamany et al., 2017) or for life cycle assessment of geomorphological 39 

dynamics (Tooth, 2018). In line with this, risk-based approaches are also commonly used to tackle the 40 

sparsity of WQ data and the limitations of statistical methods to reconstruct the time-series for WQ analysis 41 

(Maier et al., 2001; Hart et al., 2003; Mondal and Wasimi, 2007; Sarang et al., 2008; Asefa et al., 2014; 42 

Hoque et al., 2013, 2016). However, in practice, there are limitations to traditional WQ assessment methods 43 

and approaches used due to first, a high degree of uncertainty in emerging threats; second, time blindness 44 

of risk measures used; third, complexity of their consequences (Park et al., 2012; Sweetapple et al., 2018). 45 

Some latest studies have proposed resilience as a complementary measure to risk for a more robust decision-46 

making in WQ management (Sweetapple et al., 2018). These studies focus on the promotion of key drivers, 47 

attributes and role players’ adaptive capacities to cope with changing conditions rather than the use of 48 

control-based risk management (van Den Hoek et al., 2011; Hoque et al., 2012; Mallya et al., 2018). 49 

Conventional WQ management relies on the ability to project future change in order to design restoration 50 

strategies to well-known and defined problems (Pahl‐Wostl et al. 2011). Therefore, the assessment methods 51 

used, tend to overlook the collective interaction of magnitude, frequency, and duration of failing periods as 52 

long as the overall performance (e.g., annual average) can fairly satisfy the desired standards. This approach 53 

can potentially become more difficult to maintain under highly variable future with numerous 54 

interconnected stressors leading to failure incidents (Zimmerman et al. 2008; Butler et al., 2016). 55 

Resilience-informed water quality management embraces the growing environmental challenges and 56 

provides greater accuracy by unpacking the systems’ characteristics in response to failure conditions in 57 

order to identify more effective opportunities for intervention.  58 

Drawing on the above discussion, resilience-informed WQ assessment requires WQ data and information 59 

that are generally expensive and time-consuming to collect, particularly for large-scale and complex 60 

catchments (Cumming, 2011; Rowny and Stewart, 2012; Zeng et al., 2013; Li et al., 2014). Building 61 
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surrogate models and/or methods proved to be effective methods in water quality (WQ) management to 62 

evaluate and demonstrate the relationship between different components in a system - particularly the effect 63 

of different interventions. Historically, Machine Learning (ML) techniques such as Artificial Neural 64 

Network (ANN) have been widely used for prediction and forecasting in water quality studies (Mitrović et 65 

al., 2019; Ahmed et al., 2019; Zhu and Heddam, 2020; Antanasijević et al., 2020), especially in WQ 66 

predictions (Palani et al., 2008; Singh et al., 2009; Khalil et al., 2011; Khan and See, 2016; Seo et al., 2016) 67 

and also in WQ indexes predictions (Gazzaz et al., 2015; Elshemy and Meon, 2017). In addition, there are 68 

many advantages of using ANNs for prediction purposes such as: eliminating the need for a priori 69 

knowledge of the underlying process and the existing complex relationships of the system elements (Kalin 70 

et al., 2010; Sarkar and Pandey, 2015). ANNs are often combined with other AI-based and/or evolutionary 71 

techniques to improve quality and accuracy of predictions in various applications for analysis and decision-72 

making (Chau, 2006; Kuo et al., 2006; Zhang and Lai, 2011; Chen and Liu, 2015; Chen et al., 2015; 73 

Mahmoudi et al., 2016; Noori et al., 2020). Moreover, there are several studies based on multiple linear 74 

regression methods combined with AI methods to develop WQ models (Ji et al., 2017; Slaughter et al., 75 

2017; Tomas et al., 2017; Wu et al., 2018; Antanasijević et al., 2020; Rajaee et al., 2020).  76 

In recent years, advancement and innovations have been made in relation to resilience-informed disasters 77 

management (such as flood resilience) but very limited studies are available in the context of WQ 78 

management, partly due to non-acute and less visible impacts and consequences. To the date of this paper, 79 

WQ resilience has been quantified and analysed in a few studies using adaptive cycle algorithm (Li et al., 80 

2016), functionality loss metrics and evolutionary algorithm-based optimisation (Zhang et al., 2020) and 81 

remained functionality metrics (Hoque et al., 2012; Sweetapple et al., 2018). These studies rely on case 82 

studies’ data sets/archives and physical models to evaluate resilience and validate the results which are 83 

quite challenging. Having a resilience predictive model, in conjunction with the existing evaluation 84 

methods, can support WQ resilience management by reducing the reliance on physical data/model for 85 

evaluation and validation purposes and additionally, it can support future planning for resilience by making 86 

predictions. To data of this paper such model is yet to be studied and this is the gap that this study aims to 87 

tap in. Hence, the key novelty of this research embeds in development of a new model to predict WQI 88 

https://link.springer.com/article/10.1007/s00521-019-04079-y#auth-1
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resilience. It should be noted that this paper will not introduce any new machine learning method or 89 

algorithms, rather, it utilises the commonly used algorithms and methods in a new application (i.e., 90 

resilience-informed WQ assessment).  91 

In general, three stages can be defined for resilience-informed WQ management at a catchment level: 1. 92 

modelling, assessing, evaluating resilience of the catchment; 2. prioritising the areas (e.g. (sub)-catchments) 93 

needing restorative intervention on the basis of their resilience level; and 3. determining the appropriate 94 

intervention to those most at risk. This paper focuses on the first stage and how it can inform prioritisation 95 

process in the second stage.  96 

In this study, the resilience prediction model is set up for the case study of São Paulo city in Brazil to 97 

identify vulnerable contaminated areas (so-called critical zones or sub-catchments). Prediction of resilience 98 

(spatially/temporally) provides a tool for resilience planning by capturing the trend of resilience fluctuations 99 

(e.g., on an annual basis) in order to characterize, design and evaluate adaptation strategies. This predictive 100 

model can potentially assist key stakeholders and decision-makers in CETESB in their annual planning for 101 

environmental improvement. 102 

In this paper, the study methodology is explained in Section 3 with the discussion of measuring water 103 

quality resilience and ANN structure. In this section, the Fuzzy Analytic Hierarchy Process (FAHP) 104 

conceptual model with the mathematical representation of that is also explained. In Section 4, we have 105 

discussed the procedure of identifying the critical zones based on the developed model. The results and 106 

associated discussions based on the outcomes have been described in Section 5. The study limitations have 107 

been also critically evaluated in this section. The conclusions with the future direction have been drawn in 108 

the last section.  109 

2 Material and methods 110 

The methodology section is twofold: the first part describes the development of WQ resilience evaluation 111 

framework (i.e. stage 1 mentioned above); and the second part focuses on the integration of the ANN model 112 

as a surrogate for calculating WQ values (i.e. stage 2 mentioned above). 113 
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The first stage (Section 2.4) explores the feasibility of integrating historical data and conventional machine 114 

learning techniques (ANNs) to develop a novel resilience predictive model for WQ without the need of 115 

costly physical models. In the second stage (Section 2.5), the widely studied Analytical Hierarchy Process 116 

(AHP) (Saaty, 1982; Saaty, 1977) is adopted for the prioritisation process adopting a fuzzy approach due 117 

to its simplicity and effectiveness in this kind of problem (Kahraman et al., 2004; Moktadir et al., 2017). 118 

This predictive model can assist key stakeholders and decision-makers in two possible ways; first, in 119 

creating effective long-term actions to promote regional water resources resilience; second, in developing 120 

strategies that focus on desirable priorities such as environmental compliance, social equity or economic 121 

prosperity. The predictive model is particularly useful to overcome the challenges of costly and time-122 

consuming manual data collection. In addition to being costly, manual data collection has its own challenges 123 

such as significant accessibility and safety issues particularly in the case study used. Also, data quality is 124 

critical in improving model accuracy and reducing uncertainty; and it can significantly be affected by the 125 

lack of automated monitoring systems. It should be noted that this is a feasibility study and not a 126 

comprehensive evaluation of the approach. 127 

2.1 Case study 128 

Surface water resources in the state of São Paulo (SP) in Brazil have been used as a case study in this 129 

research.  SP is located southeast of Brazil with a state area of 248,000 km2 and is the most populous state 130 

in Brazil (IBGE, 2014). It is divided into 22 Hydrographic Units of Water Resources Management 131 

(UGRHI) (Instituto Socioambiental, 2009) with three river basin districts and seven distinct 132 

climates. Surface water and groundwater resources together account for about 80% and 20% of water 133 

supply in SP, respectively. It has benefited from rapid economic and urban growth over recent decades 134 

which has come at the cost of compromising the quality of local water resources. This reduction in WQ has 135 

occurred for various reasons, mainly water management conflicts and the absence of clear long-term 136 

sustainable development plans for both urban areas and wastewater infrastructure. Environment Agency of 137 

the state of São Paulo (CETESB) operates 425 manual and 44 automatic freshwater quality monitoring 138 

stations (in total: 469 stations) and the number of collected WQ samples could vary from one season to 139 

https://en.wikipedia.org/wiki/Southeast_Region,_Brazil
https://en.wikipedia.org/wiki/List_of_Brazilian_states_by_population
https://en.wikipedia.org/wiki/River_basin
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another in each station depending on climatic conditions. These data are used by CETESB for WQ 140 

management in the state of SP.  141 

2.2 Water quality data 142 

Decision makers in CETESB and the imposed environmental and social concerns of unsustainable 143 

developments in the state of SP have created the need for a great deal of information to be collected in 144 

response to public policies and the monitoring of their effects. To aid this data collection and analysis, 145 

CETESB has developed water quality indexes (WQI) that process increasing quantities of information, in 146 

a systematic and accessible way for decision makers. The main advantages of the indexes are the ease of 147 

communication with the lay public, the status greater than the isolated variables and the fact that it 148 

represents an average of several variables in a single number by combining different units of measure into 149 

a single unit (CETESB-Appendix C, 2017). 150 

This study will focus on the impairment of surface WQ due to organic substances (mainly arisen from the 151 

lack of sufficient and efficient sewage collection and treatment systems) and in relation to aquatic life. 152 

Therefore, Table 1 in Supplementary Information (SI) outlines CETESB’s three relevant WQIs (IQA, IET, 153 

and IVA) for decision-making on WQ policies and in line with the focus of this paper.  154 

This study uses the average monthly values of CETESB’s WQI (shown in Table 2 in SI) from 2000-2017 155 

(in total 17 years of data) (CETESB, 2000-2017) to develop the predictive WQ resilience model, which 156 

provides a consistent and long-term data set ideal for ANN calibration and validation. As the data published 157 

by CETESB from 2010 onwards were more comprehensive, it was necessary to use data sets from latter 158 

years i.e. the first 16 years in this study, to develop a more accurate predictive model. The 2017 data set 159 

was then used for prediction validation purpose. The data used are publicly available in CETESB’s annual 160 

reports and published after rigorous evaluations in terms of quality and accuracy. The data sets are of high 161 

quality, resolution, coverage and are used for policy and decision-making, on environmental matters in the 162 

region; therefore, no significant data pre-processing was needed (further details can be found in section 2 163 

in SI). The water quality data used in this study are collected by CETESB from 469 automatic and manual 164 

monitoring stations across the State of São Paulo and WQIs are evaluated. These stations are spatially wide-165 

spread, well-representing the whole study area. The quality of the monitoring stations is continuously 166 
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monitored and improved by CETESB. The data collected represent temporal changes in wet and dry 167 

seasons. The collection sites cover the surface water resources such as rivers, streams, lakes, branches, and 168 

places of transposition to reservoirs.  WQI time series are used to calculate the annual resilience values that 169 

are used for ranking of the zones using a fuzzy algorithm which will be discussed in section 2.5 in the paper. 170 

In addition to that, to evaluate resilience in terms of locally-defined acceptable levels of WQ, CETESB has 171 

introduced service thresholds and descriptive classification ranges for WQIs as shown in Table 2 in SI 172 

(CETESB, 2017). The greater IQA value indicates a better quality of surface water resources while this is 173 

opposite for IET and IVA (the lower, the better). These thresholds are used throughout the study for 174 

resilience evaluation. It should be noted that in this study the lower limits of the ‘average quality class’ in 175 

Table 2 in SI (i.e., 36 for IQA, 3.4 for IVA and 52 for IET), are used as the standard threshold (i.e. P0 in 176 

Eq.(2) in SI) for each WQI. This is in line with CETESB’s approach to ‘average quality’ as an acceptable 177 

threshold. 178 

2.3 Water quality resilience formulation  179 

In this study, WQ resilience is defined as the capacity of a surface water resource system to cope with, and 180 

recover from contamination in order to maintain the required level of service and comply with predefined 181 

WQ standards to protect people and the environment.  182 

It is important to make a distinction between the emerging concept of resilience and the commonly used 183 

assimilative capacity in WQ assessment. Traditionally, assimilative capacity utilises process-based 184 

modelling to build a relationship between WQ and quantity to assess whether a waterbody can meet pre-185 

determined criteria for its ecological function and designated use. In other words, assimilative capacity 186 

tends to be reliability-driven (i.e. ‘Fail-Safe’ approach) aiming to avoid/prevent failures. On the other hand, 187 

resilience embraces assimilative capacity to improve its resistance capacity (one of the characteristics of 188 

resilience), but it also takes a ‘Safe-Fail’ approach in order to maximise its adaptation capacity to tackle 189 

emerging challenges (and their uncertainties) and to minimise adverse impacts (Butler et al., 2016). Further 190 

information about some potential differences between traditional environmental assessment method and 191 

resilience-based assessment methods have been provided in section 1 in the enclosed SI. 192 
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Several metrics/measures have been developed and introduced in literature to quantify resilience for 193 

different contexts in different water systems (Hashimoto et al., 1982; Fowler et al., 2003; Matrosov et al., 194 

2012; Jung, 2013; Paton et al., 2014; Butler et al., 2016). This study inspired by the ‘volume-based 195 

resilience metrics’ method, introduced in the study by Roach et al. (2018), and formulated by Hasan et al. 196 

(2019) and McClymont et al. (2020), to encapsulate a suitable resilience-based performance metric for WQ 197 

evaluation. Details about formulation of WQR can be found in section 3 in SI. Additionally, details have 198 

been provided on data preparation and pre-processing in section 2 in SI.  199 

2.4 Stage 1 - predictive water quality resilience model  200 

As mentioned above, Stage 1 focuses on development of the predictive WQ resilience model and its output 201 

can be the resilience value predicted in a zone (or a station in a zone) in the study area. The predictive WQ 202 

resilience model integrates the WQ resilience evaluation method (section 2.3) and the ANN. This model 203 

can be used to assess water resource adaptive capacity in order to identify the most vulnerable/critical 204 

contaminated UGRHIs (so-called zones in this paper) without the need for a great deal of costly data 205 

collection and time-consuming system modelling. Additionally, it can enable water and environment 206 

sectors to map the spatial and temporal dynamics of resilience fluctuations across the study area and time 207 

(Hasan et al., 2019), without direct characterisation of the influential factors (e.g., land use pattern, 208 

hydrological parameters, etc.). The proposed predictive model can be utilised to make predictions of future 209 

WQ resilience and therefore, enables proactive resilience planning. The key advantage of the predictive 210 

model is that it can be integrated into complex process-based models, for example as a surrogate to assess 211 

WQ resilience in ungauged catchments or for a fast resilience evaluation to enhance resilience-informed 212 

land-water system planning. It should be noted that resilience thresholds (how much resilience is needed, 213 

feasible, good enough, acceptable, low, high, etc.) have been recognised as playing a key role in resilience 214 

planning strategies and to the best of the authors’ knowledge, these thresholds are yet to be developed due 215 

to the complexity and challenges involved. The predictive model can assist and facilitate in the development 216 

of these resilience thresholds. 217 
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2.4.1 ANN structure 218 

ANN and its algorithms have played a crucial role in predicting, modelling and classifying WQ parameters. 219 

The predictive model developed in this study is a multilayer perceptron neural network (MLPNN). This 220 

ANN model is formed in three layers: input layer that contains WQI values in a zone (IQA or IET or IVA), 221 

hidden layers and output layer having the dependent variable (i.e. the predicted resilience value associated 222 

with each WQI in a zone). It should be noted that, in this study, separated networks for each WQI have 223 

been produced (i.e. three separated networks). This reflects CETESB’ approach to distinct remedial 224 

planning for surface water protection as defined in Table 1 in SI.  225 

A log-sigmoid function widely used as a transform function to update weights and biases in the hidden 226 

layer and a linear transfer function for the output layer. All these layers contain a number of interconnected 227 

neurons (i.e., processing units). The optimal number of neurons in the hidden layer is proceeded by trial 228 

and error using the backpropagation (BP) algorithm and the mean square error (MSE). In this study, the 229 

best network training results were achieved with 11, 10 and 13 neurons in the hidden layer for IQA, IET 230 

and IVA datasets, respectively. 231 

Fig.1a demonstrates the overall architecture of the predictive model in this study with WQI as the input 232 

neuron (IQA or IET or IVA) and its associated resilience value predicted, in output layer. Fig.1b 233 

demonstrates the network architecture in ‘training phase’. In training phase, the input layer has 22 input 234 

neurons representing annual WQI (i.e., IQA or IET or IVA) in each of 22 UGRHIs (or zones) and their 235 

associated resilience values (using Eq. (3) in section 3 in SI). Hence, the total number of input neurons adds 236 

up to 44 for each WQI in this phase. Table 1 summarises the details of the network in training phase and 237 

also illustrates the number of epochs, gradient and Mu values for each input dataset in training phase and 238 

also illustrates the number of epochs, gradient and Mu values for each input dataset. 239 
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Fig. 1- ANN predictive model; a) Architecture of the predictive network and b) Predictive network 240 
architecture in the 'training phase'. 241 

Table 1 - Structure of the predictive model in ‘training phase’ for each WQI. 242 

Input 
datasets 

Total 
number 
of input  
neurons 

Hidden  
neurons 

Transfer 
functions 
for 
Hidden 
layers 

Output 
dataset 

Total 
number 
of 
output  
neurons 

Transfer 
function 
for 
output 
layer 

Epochs Gradient Mu 

[IQA, RIQA] 44 11 
Log-
Sigmoid 

RIQA 1 
Linear 

60 9.6178 0.1 
[IET, RIET] 44 10 RIET 1 22 0.1977 0.01 
[IVA, RIVA] 44 13 RIVA 1 30 0.0025 0.0001 

 243 
In this study, a feed-forward back propagation ANN (i.e., ANN trained using the Levenberg-Marquardt 244 

(LM) method), which has been widely used in developing predictive models for water systems (Sarkar and 245 

Pandey, 2015), is set to approximate WQ resilience. For this purpose, LM algorithm is used in the curve 246 

fitting process, Bayesian Regularization (BR) algorithm is used for nonlinear regression conversions during 247 

training process, and Scaled Conjugate Gradient (SCG) algorithm is used for batch learning method while 248 

computing the errors. These are commonly well-performed ANN algorithms in a wide range of applications 249 

(including WQ evaluations) (Xiang et al., 2006; Palani et al., 2008; Singh et al., 2009; Najah et al., 2013; 250 

Sarkar and Pandey, 2015; Seo et al., 2016). 251 

The BR back propagation method is used for its accurate predictions in training (Alvisi and Franchini, 2011; 252 

Ha and Stenstrom, 2003; Malekmohammadi, et al., 2009). A batch mode of training is applied to enter the 253 

inputs to the network before the weights to be updated utilising SCG algorithm. The network training is 254 

finished when the specified number of epochs or training accuracy is achieved. The number of epochs 255 

represents the time needed for training of the network. If the training time is shorter, the network 256 
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architecture is more efficient. Similarly, the fewer number of weights indicate that the net will better 257 

generalize to validation, test, and new data with the same statistical attributes.  258 

Given the ANN structure, each input dataset (Table 1) was randomly distributed into a 70% set for training, 259 

15% set for validation and 15% set for testing, using the 469 WQ monitoring stations collected data across 260 

the 22 zones in São Paulo state. 261 

It should be noted that authors are aware of further studies that could be conducted to identify the most 262 

suitable ANN algorithms and functions in a more systematic way. However, this is a feasibility study 263 

aiming to explore the possibility of developing a reliable model for resilience prediction in a water system 264 

application.                                   265 

2.5 Stage 2 - predictive model application: to identify the critical zones 266 

Stage 2 embraces CETESB’s approach in prioritisation of zones most in need for interventions. This could 267 

be easily implemented by evaluating the resilience of each zone. However, due to the existing conflicting 268 

interactions among the three WQIs, identification and prioritisation of critical zones can be quite 269 

challenging. Hence, this study has developed a multi-criteria ranking method by integrating predicted 270 

resilience in each zone (i.e. the outcomes of the Stage 1) and Fuzzy Logic to overcome the abovementioned 271 

challenge. In line with this, FAHP method has been utilised in this study for its proven robustness and 272 

flexibility in resolving multi-criteria decision-making problems. It should be noted that, there are several 273 

approaches available in AHP methods such as weighted linear optimisation approach, ABC clustering 274 

approaches (Lolli et al., 2014) and triangular fuzzy number (TFN). In the context of this application and 275 

using TFN, there are several approaches that have been explored such as distance-based trapezoidal fuzzy 276 

number, graded mean integration representation and pairwise comparison matrix (Zhang and Ma, 2014). 277 

The step-by-step process is illustrated in Fig.6 in SI. 278 

2.5.1 Step 1: set the geometric fuzzy  279 

In this step, a fuzzy algorithm is used to measure the importance of each WQI for each monitoring station 280 

based on its overall resilience value (from Stage 1) over the time period of study. Fuzzy analysis has been 281 

used in this study because of its inherent ability and flexibility in solving multi-criteria decision-making 282 
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problems with embedded vagueness and uncertainties. Fuzzy linguistic labels are particularly great assets 283 

in the methodology to represent significant intensity in the context of resilience levels/thresholds.  284 

TFN has been utilised in this study because of its proven simplicity and suitability to scale the ‘significance 285 

intensity’ (i.e. importance) of each WQI (in each station) based on its evaluated resilience value; and the 286 

multi-criteria system required (IET, IQA, IVA) to create the perception of different alternatives according 287 

to the criterion (wang et al., 2016). It should be noted that TFN is used in this study based on the pairwise 288 

comparison matrix. The TFN scales shown for each WQI in Table 2, have been widely used for group 289 

assessment and approximation (Dagdeviren and Yüksel, 2008; Wang et al., 2008). A set of membership 290 

functions have been defined and used by the triplet (l, m, n), as shown in section 4, Eq. (6) and Fig. 3 in SI, 291 

in relation to the required fuzzy algorithm.  292 

In this study, l, m and n are the representatives for the upper, middle and lower values in a fuzzy AHP, 293 

adopted from TFN by Kahraman et al. (2004). A knowledge contrivance is created by utilising AHP (Saaty, 294 

1977), which is a technique to solve multi-criteria-based complex systems. To facilitate the decision-295 

making process in this study, linguistic variables (e.g. high quality, poor quality, etc.) (Zadeh, 1975) are 296 

created and scaled to categorise resilience as presented in Table 2 (high resilience, low resilience, etc). 297 

  Table 2 – ‘Significance intensity’ of WQI by AHP and TFN (Kahraman et al., 2004). 298 

IQA Resilience IVA/IET Resilience 
Significance intensity 

FAHP 
Scale (λ)   

TFN Scale 
(l, m, n) Significance intensity  FAHP  

Scale (σ)  
TFN Scale   
(l, m, n) 

Very low resilience  
(very poor WQ)  1 (0.1,0.2,0.3) Very high resilience  

(very high WQ) 6 (0.9, 1.0,1.0) 

Low resilience (poor 
WQ)  2 (0.3,0.4,0.5) High resilience (high WQ) 5 (0.8,0.9,1.0) 

Average resilience 
(average WQ)  3 (0.5,0.6,0.7) Good resilience (good WQ) 4 (0.7,0.8,0.9) 

Good resilience (good 
WQ) 4 (0.7,0.8,0.9) Average resilience (average 

WQ) 3 (0.4,0.5,0.6) 

High resilience (high 
WQ) 5 (0.9,1.0,1.0) Low resilience (poor WQ) 2 (0.0,0.1,0.2) 

   Very low resilience (very poor 
WQ) 1 (0.0,0.1,0.2) 

In this study, the ‘criticality’ (of the zones) is set using TFN and scaled between 0 (resilient) and 1 (critical). 299 

2.5.2 Step 2: set the global index of monitoring stations 300 

In this step, a fuzzy-based global index is developed to measure the overall importance of each zone. The 301 

global index will be used to identify the critical zones based on their overall resilience value. Eq.(1) 302 

calculates the aforementioned global index using FAHP and TFN scales shown in Table 3.  303 
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𝛿𝛿𝑘𝑘𝑧𝑧 = 𝜆𝜆𝑗𝑗 × 𝜎𝜎𝑗𝑗              (1) 304 

where, 𝛿𝛿𝑘𝑘𝑧𝑧 denotes the fuzzy global index associated to a zone (z=1,..,22); λ and σ are the significance 305 

intensity of each monitoring station in a zone (Table 3); and k denotes the number of monitoring stations in 306 

a zone. 307 

2.5.3 Step 3: set the fuzzy weight of each WQI  308 

In this step, the weight of each WQI is determined by fuzzy mean using TFN scale (in Table 3), indicating 309 

the ‘significance intensity (importance)’ of that WQI, in its zone (as shown in Eq. (2)): 310 

𝑤𝑤𝑧𝑧 = � 𝑙𝑙𝑖𝑖
∑ 𝑙𝑙𝑖𝑖𝑘𝑘
𝑖𝑖=1

, 𝑚𝑚𝑖𝑖
∑ 𝑚𝑚𝑖𝑖
𝑘𝑘
𝑖𝑖=1

, 𝑛𝑛𝑖𝑖
∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1

�           (2) 311 

where, 𝑤𝑤 denotes the fuzzy mean; l, m and n are the membership functions (as shown in Table 2); k 312 

represents the number of stations in a zone; and z represents the zone number. 𝑤𝑤𝑧𝑧 is then used to evaluate 313 

the total weight of each WQI, across the 22 zones, by combining the entire upper and lower values and 314 

dividing them by the sum of the α-cut values as shown in Eq. (3). 315 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝛼𝛼�𝑊𝑊𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�

∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

,
𝛼𝛼�𝑊𝑊𝑍𝑍𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

�

∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

 �       𝑧𝑧 = 1, … , 22        (3) 316 

where, Widx denotes the fuzzy weight of each WQI; 𝛼𝛼 denotes the cut values in the crisp values; z presents 317 

the number of zones; 𝑊𝑊𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 and 𝑊𝑊𝑍𝑍𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 are the upper and lower bounds of the 𝛼𝛼-cut values, respectively, 318 

using the weighting average method (Kim and Park, 1990; Klir and Yuan, 1995). It should be noted that 319 

the factors belonging to the IQA have five 𝛼𝛼-cut values and IET have IVA, six cut values.  320 

2.5.4 Step 4: defuzzify the total weight of each WQI 321 
In this step, Widx is defuzzified using Eq.(4). This process interprets membership degrees into a specific 322 

decision.  323 

𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 = �𝛾𝛾 �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)� × (1 − 𝛾𝛾) �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝑤𝑤𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)�� ;  𝛾𝛾 ∈ [0,1]𝑊𝑊𝑖𝑖𝑖𝑖 = �𝛾𝛾 �𝛼𝛼(𝑤𝑤𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

� × (1 − 𝛾𝛾) �𝛼𝛼(𝑤𝑤𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

�� ;  𝛾𝛾 ∈ [0,1] (4) 324 

where, 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 denotes the total weight of each WQI in a zone; 𝛾𝛾 represents optimism index (i.e. reflects 325 

risk-taking attitude of decision makers); z presents the number of zones. 326 

2.5.5 Step 5: fine-tune the parameters  327 
In this step, the ANN parameters are fine-tuned until the minimum errors are obtained. The root mean 328 

square error (RMSE) method is used to calculate the errors. 329 
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2.5.6 Step 6: identify and rank the critical zones  330 

Generally, the critical zones are determined using 𝛿𝛿𝑘𝑘 and 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 as shown in Eq. (3). To identify the most 331 

critical zones, initially all zones are ranked based on their 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 (for each WQI). The higher 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇values 332 

represent more criticality (lower resilience) and the lower ones represent less criticality (higher resilience).  333 

The ranking process follows the ‘stack principle’ in a standard data structure for a given list. In other words, 334 

the ‘stack’ contains the most critical zones. For example, if the stack contains a lower 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 for IQA (i.e. 335 

less critical) in one zone and a higher 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 for IQA in the next one (i.e. more critical), then the stack pops 336 

that zone and pushes the new one. In this study, it includes the highest values for IET and IVA and the 337 

lowest values for IQA in a monitoring station (see Eq. (5)). Eq. (5) illustrates the critical monitoring stations 338 

based on the combined WQI importance. This study only considers a zone with more than two critical 339 

stations for each WQI. Drawing on these, each monitoring station can be expressed by Eq. (3):  340 

𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘 = 𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥: ∑ [�𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧
𝑖𝑖=1 �& �𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧

𝑖𝑖=1 �] + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: �𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧
𝑖𝑖=1 �𝑛𝑛

𝑖𝑖=1     (5) 341 

where, 𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘 denotes the identified critical monitoring stations in each zone (based on combined WQI); n 342 

denotes the number of monitoring stations (it varies for each WQI); z and k present the number of zones 343 

and monitoring stations in that zone, respectively; 𝛿𝛿 denotes the global index value. 344 

Drawing on Eq. (5), Eq. (6) is finally used to identify the most critical zones in the case study area using 345 

𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 and 𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘. 346 

𝑍𝑍 = [𝐶𝐶𝐶𝐶𝑧𝑧 ]; ∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑊𝑊𝑖𝑖𝑖𝑖 = �𝛾𝛾 �𝛼𝛼(𝑤𝑤𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

� × (1 − 𝛾𝛾) �𝛼𝛼(𝑤𝑤𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

�� ;  𝛾𝛾 ∈ [0,1]       (6) 347 

where, Z denotes the critical zones across the case study area (i.e. 22 zones); 𝐶𝐶𝐶𝐶𝑧𝑧 is the number of critical 348 

stations in each zone.  349 

3 Results and discussion 350 

In this study, the network training stops as soon as any of the following conditions occur: (i) model 351 

performance in validation dataset decreases abruptly in successive iterations; (ii) the maximum number of 352 

epochs of 100 is reached.  353 

Fig.2 depicts the overall performance of the neural network based on the training, validation and testing 354 

dataset for IQA and IET and IVA. In this figure, the best validation performance occurred at epoch 54, 16 355 
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and 24 for IQA, IET and IVA, respectively, showing Mean Squared Error (MSE) trend during the learning 356 

procedure. The decreasing trend of the validation set confirms that there is no over-fitting in the model. 357 

IQA IET 

  
IVA 

 
Fig. 2 - ANN performance. 358 

Fig.3 demonstrates the scatter plots of the calculated WQI resilience values using Eq.(2) in SI and their 359 

corresponding ANN-based resilience prediction model. The observations demonstrate that there is a 360 

reasonable approximation by the ANN model across the spectrum of the evaluated WQI resilience values. 361 

Therefore, the overall agreement between the measured and simulated WQI resilience values (R values for 362 

IQA: 0.98814; IET: 0.99228; and IVA: 0.9999) are satisfactory. Similarly, a set of error histograms using 363 

student’s T-test have been presented in Fig.4 in SI. Further details about the test can be found in the study 364 

by Hasan (2020).   365 

 366 

 367 

 368 
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IQA IET IVA 

   
Fig. 3 - ANN model validation results. 369 

Fig. 4 illustrates the MSE and R values of different algorithms for IQA, IET and IVA resilience predictions. 370 

It is noticeable in Fig. 4 that LM has performed better than BR and SCG for IQA and IET training. However, 371 

BR has performed significantly better with the testing dataset in the ANN model. Moreover, in all cases, 372 

SCG has shown the weakest performance. A possible reason is the poor convergence due to the adjustments 373 

of the weights and eigenvalues.  374 

 375 
Fig. 4 - Performance evaluation of the utilised algorithms. 376 

Table 3 shows the RMSE for the IQA, IET and IVA resilience, where it measures the differences between 377 

the resilience values predicted by the developed ANN-based resilience prediction model and the calculated 378 

WQI resilience values using Eq.(2) in SI. In other words, it shows the goodness-of-fit of generalization of 379 

the model. For the IET and IVA resilience, the BR performs significantly better compared to the LM and 380 

SCG in training, validation and testing purposes. Similarly, SCG performs poorest in all three WQIs. As a 381 

result, the SCG is not a suitable choice for predicting WQ resilience due to its poor accuracy in training, 382 
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validation and testing phases. In terms of accuracy, the BR is preferable than LM for IET and IVA 383 

resilience. However, the average RMSE is slightly better for LM in the dataset of IQA. 384 

Table 3 - Average RMSE values of the applied algorithms. 385 
Algorithm RMSE for IQA RMSE for IET RMSE for IVA 
LM 0.651 0.722 0.031 
BR 0.670 0.076 0.011 
SCG 4.635 3.479 0.227 

Fig. 5 maps the identified critical (so-called vulnerable) zones utilising the predictive ANN-based resilience 386 

model and the FAHP method results for the case study area over the collective study period. The zones 387 

have been characterised descriptively by colour codes, varying from dark to light colours (most critical to 388 

least critical OR low resilience to high resilience). The observations illustrate that the Zones 5, 6, 7 and 9 389 

have the lowest level of water resources resilience and therefore, in critical condition in São Paulo state. 390 

These zones are the most populated zones with rapid urban creeps and unsustainable developments leading 391 

to deteriorated WQ in the absence of sufficient and efficient wastewater collection and treatment 392 

infrastructures. However, prioritisation for intervention in critical Zones 5, 6, 7 and 9, where resources are 393 

limited, is required and according to the resilience-driven predictive model, Zone 5 has the most priority 394 

and Zone 7, the least.  395 

 396 
Fig. 5 –Mapped critical zones. 397 

 398 
It is important to investigate the ranking of critical zones using the resilience–driven ranking method 399 

proposed in this study with CETESB’s traditional approach in order to gain a better understanding of 400 

paradigm shift in WQ assessment. Details of these investigation can be found in section 6 and Fig. 5 in SI. 401 
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3.1 Limitations 402 

This is a feasibility study to investigate the potential and suitability of using machine learning methods for 403 

resilience predictions in water engineering applications. Machine learning methods, and particularly 404 

artificial neural networks, have been commonly and successfully used in water systems management. On 405 

the other hand, resilience is a fast-growing concept proved to be an effective approach in preparing 406 

engineering systems to tackle and cope with emerging challenges. Authors believe that the integration of 407 

machine learning techniques to predict water quality resilience can provide an opportunity for more 408 

effective adoption of resilience to tackle the emerging challenges. This study is currently at its early stages 409 

and will be furthered in future studies. One potential improvement in horizon will be using more effective 410 

machine learning methods such as deep learning or deep reinforcement learning. 411 

4 Conclusions 412 

Planning water resources and related systems that are resilient in terms of delivering water of sufficient 413 

quality despite potential contamination that may occur in the catchment requires complex and integrated 414 

physical models that are challenging to build, characterize, and calibrate/validate. Moreover, these models 415 

rely on datasets that are costly and time consuming to collect. This study has focused on the application of 416 

a machine learning method (i.e. Artificial Neural Network), to develop a predictive model to evaluate 417 

resilience using readily available local data. This predictive model can support the key stakeholders and 418 

decision makers for targeted investments to improve resilience. The key advantage of the predictive model 419 

is that it can be integrated into complex process-based models to enhance resilience-informed land-water 420 

system planning. The predictive model can assist and facilitate in the development of the resilience 421 

thresholds. 422 

This study has inspired by a ‘volume-based resilience metrics’ method for water quality resilience 423 

evaluation. It has also utilised a fuzzy-based algorithm to measure the criticality of water quality parameters 424 

with conflicting interactions. Additionally, the Fuzzy Analytical Hierarchy Process was used to develop a 425 

multi-criteria rating method to identify and rank the critical areas based on predicted resilience values.  426 

The model was applied to and tested, using real data, for a case study in São Paulo state in Brazil. The 427 

results are satisfactory and demonstrate that the predictive model can make accurate predictions of 428 
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resilience. In this model, Bayesian Regularization algorithm offered better performance as compared to the 429 

Levenberg-Marquardt and Scaled Conjugate Gradient in making water quality resilience predictions and 430 

Scaled Conjugate Gradient showed the poorest performance. Additionally, the results indicated the low 431 

resilience identified in 45% of the 22 zones mainly located on the east and south east of the São Paulo state. 432 

These zones are the most populated zones with rapid unsustainable developments and climate change-433 

induced risks leading to the deterioration of water resources quality in the absence of sufficient and efficient 434 

wastewater collection and treatment infrastructures.  435 

The São Paulo state’s environment agency (CETESB) publishes an annual report on the conditions of water 436 

resources quality across the whole region. There is a desire to incorporate ‘resilience mapping’ into this 437 

annual report for more effective resilience-informed planning. This can create an opportunity for adoption 438 

of the developed predictive model to assist decision makers’ in CETESB in the future. Additionally, the 439 

integration of different machine learning techniques (e.g. deep reinforcement learning, recurrent neural 440 

network, convolutional neural network, etc.) with resilience-based methods could be further explored in 441 

order to create new techniques/methods for more effective adoption of ‘resilience’ in complex systems (e.g. 442 

integration of the resilience predictive model with physical models). Moreover, this study can potentially 443 

support reactive and planned maintenance for water supply. It also shows a direction for the researchers to 444 

implement the proposed model in various water reservoirs to measure water quality resilience, which may 445 

help to reduce the efforts of manual data collection. Therefore, the successful implementation of various 446 

machine learning algorithms in predicting water quality resilience is a new paradigm and can enrich the 447 

implementation of Artificial Intelligence and machine learning technologies to study the hydroinformatics 448 

and hydrodynamics arena. Furthermore, this model can be promoted and expanded by integration of real-449 

time data monitoring systems for a more dynamic resilience prediction system.  450 
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