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Abstract 
	OBJECTIVE: Alzheimer’s disease (AD) is a leading cause of years lived with disability in older age and several cerebrospinal fluid (CSF) markers have been proposed in individual meta-analyses to be associated with AD but fieldwide evaluation and scrutiny of the literature is not available. 
MATERIALS AND METHODS: We performed an umbrella review for the reported associations between CSF biomarkers and AD. Data from available meta-analyses were reanalyzed using both random and fixed effects models. We also estimated between-study heterogeneity, small-study effects, excess significance, and prediction interval. 
RESULTS: A total of 38 meta-analyses on CSF markers from 11 eligible articles were identified and reanalyzed. In 14 (36%) of the meta-analyses, the summary estimate and the results of the largest study showed non-concordant results in terms of statistical significance. Large heterogeneity (I2≥75%) were observed in 73% and small-study effects under Egger’s test were shown in 28% of CSF biomarkers. 
CONCLUSIONS: Our results suggest that there is an excess of statistically significant results and significant biases in the literature of CSF biomarkers for AD. Therefore, the results of CSF biomarkers should be interpreted with caution.
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Introduction
Alzheimer’s disease (AD) is known as the leading cause of dementia, featuring a gradual cognitive decline accompanied by functional deterioration or behavioral changes1. It has also been one of the most challenging conditions to address from a medical and public health perspective2, due to a high percentage of undiagnosed and untreated patients, in addition to the absence of effective treatments3.
Though AD can be diagnosed after pathologic examination, directly sampling brain tissue is not a routinely available clinical method4. AD can also be diagnosed according to generally accepted diagnostic symptomatic criteria; however, some symptoms are obscure and occasionally overlap with other neurologic disorders, making accurate diagnosis challenging5. 
Over the past several decades, in vivo biomarkers have received attention for their potential to demonstrate underlying pathologic characteristics, as well as disease status or progression6. 
Considerable evidence has already shown that deposition of the aberrantly folded tau and amyloid beta proteins in neurofibrillary tangles and amyloid plaques are closely associated with pathologic changes of the patient’s brain 2. Major neuropathological findings of AD, amyloid- and tau-related lesions, and neuronal dysfunction (including pathologic synaptic conditions), can be identified even before the manifestation of clinical signs, with the help of indirect methods such as the identification of the concentration variance of either tau or amyloid proteins in cerebrospinal fluids (CSF)5,6.
To date, some well-established biomarkers of AD from CSF include total tau (T-tau), phosphorylated tau (P-tau), and amyloid-β-42 (Aβ42)7,8. Moreover, several existing studies have verified other novel markers such as lipids, cytokines, and metabolites from CSF to differentiate AD patients from healthy controls9.
Multiple individual meta-analyses focusing on the effectiveness of several biomarkers have already been published9-13. Additionally, there have been several systematic reviews that described the biases of reported evidence in biomarkers for other neurologic and mental disorders14,15. However, there has been no comprehensive evaluation of various biases across the reports of studies of CSF biomarkers for AD. Therefore, we performed an umbrella review a systematic review of meta-analyses which represents one of the highest level of evidence16,17 for the reported associations between CSF biomarkers and AD. 
Materials and Methods
Search Strategy
To extract meta-analyses of AD addressing associations between specific biomarkers and AD, we searched PubMed records that were published up to January 15, 2020. Three of the authors (DYJ, ELP, JL) used the search terms (Alzheimer* All Fields or dementia* All Fields or dementing* All Fields) AND (meta All Fields or level All Fields). Article titles, abstracts, and full texts were used to screen for eligibility. We did not have any language restrictions while selecting the articles. Any discrepancies were discussed with the fourth investigator (JIS) and resolved by consensus of all four authors.
Our initial search yielded about 4,030 articles. Among those, 2,003 articles were left after we ruled out overlapping studies, review articles, studies related to polymorphism, and articles not based on meta-analyses. In addition, articles that described neurodegenerative disorders other than AD were excluded. Also, we excluded studies that examined genetic factors or peripheral biomarker levels, or studies that did not focus on CSF. We ultimately identified 11 eligible articles that satisfied the conditions for this review (Figure 1). 
Data Extraction
Three investigators (DYJ, ELP, JL) recorded the first author, journal title, and publication year from individual meta-analyses of eligible articles. Additionally, numbers of patients, controls, and studies were also recorded. We extracted the effect sizes with corresponding confidence intervals (CIs) and metric types. We tried to adopt either the effect size estimates or raw data, such as the mean, standard deviation (SD), median/interquartile, or median/range of original studies, if such factors were specified in the articles. However, if there were no raw data, we extracted the data from the individual original studies. If the data were represented as median/interquartile range, the mean and standard deviation were estimated by the following formula: (1) mean = (q1+median +q3)/3 and (2) SD = (q3-q1)/1.35, where q1 and q3 are the 25th and 75th percentiles18. In addition, median/range may be approximately converted to mean ± SD according to the following formula: (1) mean = (a+2*median+b)/4 and (2) SD2 = {(a-2*median +b)2/4+(b-a)2}/12, where a and b are the minimum and maximum values19.
Statistical Analysis
 For each meta-analysis, the summary estimate and its 95% CI with both random and fixed models20,21 were calculated by the same metric used by the author, as well as standard mean difference (SMD), weighted mean difference (WMD). Random effects model was favored in the presence of within-study or between-study moderators, as it presumes diverse underlying uncertainties compared to fixed effects model which assumes that all component studies are estimated by the same effect size22. We additionally calculated Hedge’s g by converting effect sizes from SMD to identify whether there were significant differences in statistical outcomes between those methods.
The heterogeneity across studies was estimated by the I2 index, which evaluates the impact of inconsistency23. It is the ratio of between-study variance ranges to the sum of between-study and within-study variances24. It ranges from 0% to 100%; and <50%, 50~75%, and >= 75% respectively demonstrate small, moderate, and large heterogeneity23. Publication bias was determined by the Egger’s test for asymmetry25. It is used to confirm the presence of small-study effects, which account for the tendency of small-sized studies to have larger effect sizes than those of larger studies26.
Excess significance (ES) test was performed to verify an excess number of positive studies compared to the expected number by using a χ2 test27-29. 
A = (O – E)2 /E + (O – E)2/(n – E) 
The observed number of positive studies is denoted as O and n refers to the total number of studies included in each meta-analysis. Expected number of positive studies E was obtained by the sum of the power for individual component study30. The power of each study was estimated in terms of a non-central t distribution31, using G*Power for Windows, version 3.1.9.2. We assumed that the power of each study could be replaced by the power of the largest study (the study with smallest variance)30. ES was claimed when p-value was less than 0.127 with the observed number of statistically significant studies larger than the expected number of statistically significant studies. 95% prediction interval (PI) was also calculated, which could be used to describe the degree of between-study heterogeneity in addition to predicting the uncertainty of the effect that may arise in a future study32-34. We also examined whether the largest study of each meta-analysis had a concordant result in terms of statistical significance with the summary results of the meta-analysis.
To compare the variables between groups as with ES and without ES; groups as with and without having concordance with the largest study from the 38 meta-analyses, two-tailed independent t test and χ2 tests were used.
Statistical analysis was performed using Comprehensive Meta-Analysis software for Windows 8. Statistical power was estimated by G*Power for Windows, Version 3.1.9.2. The SPSS statistical package (version 23.0) was used to perform independent t test and χ2 tests.

Results
We identified 11 eligible articles corresponding to 38 meta-analyses of CSF biomarkers used to detect AD, which we reanalyzed. Overall, we included 624 studies with 66,198 cases assessing CSF biomarkers in AD. The average number of individual studies in each meta-analysis was 16, and the average sample size was 1,742. Of the 38 eligible CSF-related meta-analyses, 17 (44%) were based on more than 500 cases, and 9 (23%) were based on more than 1,000 cases. 
Overall, 19 (51%) studies were statistically significant (p< 0.05) under random effects model, and 10 (26%) were significant at a p-value less than 0.001 (Table I), which were meta-analyses of FA, T-tau, P-tau, A β42, NSE, 24-OHC, neurogranin, NFL, folate, and vitamin C. Compared to random effects model, meta-analyses under fixed effects model yielded less conservative results, as 31 (81%) meta-analyses were statistically significant with p-values less than 0.05 and 24 (63%) had p-value less than 0.001. There were 22 (57%) studies with statistically significant (p< 0.05) under largest study effects, and 16 (42%) were significant at a p-value less than 0.001. 
Five (13%) meta-analyses had small heterogeneity (I2<50%), which were meta-analyses of Al, MCP-1, SAP, folate, vitamin B12, vitamin C, and vitamin E, while 5 (13%) meta-analyses had moderate heterogeneity (50%≤I2<75%), and 28 (73%) had large heterogeneity (I2≥75%). Two meta-analysis, studying folate and vitamin C, had a 95% PI excluding null. 11 (28%) of the meta-analyses were found to have small-study effects under Egger’s test. Additionally, 13 meta-analyses (34%) were confirmed to have ES. In 14 (36%) of the meta-analyses, the summary estimate and the results of the largest study showed non-concordant results in terms of statistical significance (Table II). 
[bookmark: _Hlk23701777]Correlations among variables from the 38 meta-analyses between CSF biomarkers, patients with AD and controls are presented in Table III. The fixed effects size and largest study effects size were correlated with random effects effect size significantly. The associations between largest study effect size and fixed effects effect size was also significant. Egger p-value and I2(%) were not significantly correlated with other variables. When comparing the variables between the meta-analysis group with ES and the meta-analyses group without ES, the number of AD patients, only I2(%) were significantly higher in the meta-analysis group with ES (Table IV). When comparing the variables between the meta-analysis group with concordance with the largest study and the meta-analyses group with discordant without the largest study, there was no significant difference between groups (Table V). 

Discussion
There is a pressing need to identify potential biomarkers for AD, and to the best of our knowledge, the current paper is the first systematic review to comprehensively evaluate the entire field of CSF biomarkers and AD. Specifically, in this review, we reanalyzed the current meta-analyses on associations of CSF biomarker levels between AD patients and healthy controls. We systemically appraised 38 biomarkers from CSF. To the best of our knowledge, this was the first attempt to synthesize evidence on CSF biomarkers of AD while evaluating biases within the literature. Several similar efforts have been reported in the field of neuropsychiatric disorders35,36, which found substantial biases across multiple meta-analyses utilizing diverse statistical indices to interpret existing meta-analyses37.
More than half of the eligible meta-analyses had reported statistically significant association. Twenty (53%) were significant according to meta-analyses under a random effects model. However, for many of them, we found evidence of bias after reanalyzing and calculating additional statistical indices. Most of the associations had PIs including the null, and were not aimed at a sufficiently large number of cases (over 1,000). 
 	Most of the meta-analyses had substantial heterogeneity, and the meta-analyses with low heterogeneity may have included a small number of studies or cases, and therefore should be interpreted with caution. Heterogeneity could be explained by the differences in individual characteristics of subjects within a group, such as age, gender, ethnicity, or severity of the disease. Still, a consensus on the diagnostic criteria of dementia remains to be unestablished, which could contribute to the heterogeneity35. Other contributing factors could be the difference in methodology of the primary studies, such as sample preparation and detection methods.  
Only two biomarkers, FA and vitamin C, was supported by a meta-analysis in which PI excluded the null. It was estimated to have small heterogeneity. Conversely, most significant results, at a p-value less than 0.05 using random effects model, had a PI including the null. They also tended to have relatively substantial heterogeneity, which was to be expected given that the PI was used to describe between-study heterogeneity. A PI including the null suggests a possible existence of uncertainty, which might be due to the confounding factors cited above as well as a number of unknown sources of biases.
ES was introduced to determine the existence of excessively observed significant results. One consequence of selective analysis reporting is ES28. For comparison with ES, the p-value for Egger’s test, which is a traditional indicator of publication bias38, was calculated to estimate small-study effects. In our analysis, the proportion of biomarkers with ES was about 34% and the proportion of biomarkers with small-study effects was about 28%. Moreover, the number of biomarkers with ES was larger than the number of biomarkers with small-study effects.
 	Effect sizes under random and fixed models were highly correlated. It was assumed that all meta-analyses would have a common true effect size in a fixed model, while a random model would have variable effect sizes across studies39. Although they were significantly correlated, most of the overall results under random models were conservative with a wider CI compared to those under fixed models, as we expected. Since the sources of variation in a random model were relevant to the between-study heterogeneity as well as the within-study error, a random effects model might generally be more suitable in cases where individual studies were collected from the published literature39. 
Commonly accepted CSF biomarkers for diagnosing AD are T-tau, P-tau, and Aβ4240. They have been reported to have relatively favorable diagnostic accuracy when used for verifying the prodromal phase of AD41,42. In our analysis, they were substantially significant at p-value less than 0.001 under random effects model; however, the meta-analyses had a high level of heterogeneity, small-study effects, and ES. Heterogeneity could be considered large, though a significant number of studies accounted for the majority. Meanwhile a large number of estimated effects within the meta-analysis can make in the same direction, differently assessed magnitude of each effect may generate the heterogeneity.
Effect sizes of the largest studies showed significantly correlated with both of random effect sizes and fixed effect sizes in the analysis. However, no significant correlation was found largest study effect size and egger p-value or I2 (%). If true effect sizes were assumed to be equivalent to those of the largest studies, it could be asserted that random of fixed models generated more plausible results in this review, where between-study variances were significant. Furthermore, the analysis showed no significant difference of variables between meta-analysis group with ES and meta-analysis group without ES, except I2 (%). Also, there was no significant difference in most variables between meta-analysis group with concordance with the largest study and to meta-analysis group without concordance the largest study. Our results showed the heterogeneity in the meta-analysis of biomarkers of Alzheimer’s disease might be heavily due to both of the magnitude of the estimates and a direction of the estimates for the biomarkers. It is necessary to derive the result of umbrella review considering variance and to avoid checking the level of study without sufficient consideration of these characteristics of heterogeneity and biases in meta-analysis.
Our review has several limitations. First, some meta-analyses could not be reanalyzed due to insufficient raw data. Also, five studies were excluded from ES analysis, due to unavailable raw data. Second, some of the meta-analyses were reanalyzed under different metrics, which may have produced discrepancies in the summary results. Nevertheless, we attempted to reanalyze the meta-analyses regarding the associations between CSF biomarkers and AD by using additional statistical indices to investigate their statistical validity. Although considerable portion of the existing meta-analyses have reported on the statistical significance of associations, we recommend interpreting those results with caution, especially in cases with a high level of heterogeneity. Currently, there is no existing single significant method that can demonstrate the validity of the associations. However, we think using these bias tests can guide the interpretation of the results from meta-analyses.
Conclusions
We evaluated the meta-analyses available using CSF biomarkers in diagnosing Alzheimer's Disease. Our study suggests that significant biases, coupled with substantial heterogeneity between meta-analyses, necessitate that meta-analyses in diagnostic CSF biomarkers be interpreted with caution.
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Table I. Characteristics and quantitative reanalysis of the 38 meta-analyses concerning the CSF biomarkers between AD and controls.
	Biomarker
	No. of studies
	Cases/controls
	Effect metrics
	Random effects*
(95% CI)
	p-value
(Random)
	Fixed effects†
	 p-value
(Fixed)

	P-tau
	88
	7210/5240
	SMD
	1.76 (1.51 to 2.01)
	<0.001
	1.19 (1.15 to 1.24)
	<0.001

	T-tau
	154
	11040/7343
	SMD
	2.02 (1.84 to 2.21)
	<0.001
	1.35 (1.31 to 1.39)
	<0.001

	Aβ42
	131
	9568/6818
	SMD
	-2.36 (-2.6 to -2.11)
	<0.001
	-1.59 (-1.63 to -1.55)
	<0.001

	24-OHC
	12
	713/581
	SMD
	1.26 (0.65 to 1.86)
	<0.001
	0.38 (0.26 to 0.5)
	<0.001

	FA
	4
	150/145
	SMD
	-0.86 (-1.29 to -0.44)
	<0.001
	-0.76 (-1.01 to -0.52)
	<0.001

	HFABP
	3
	231/247
	SMD
	2.73 (0.39 to 5.06)
	0.022
	1.26 (1.04 to 1.48)
	<0.001

	MCP-1
	3
	59/59
	SMD
	0.89 (0.35 to 1.42)
	0.001
	0.93 (0.54 to 1.31)
	<0.001

	NSE
	6
	234/140
	SMD
	0.62 (0.27 to 0.96)
	<0.001
	0.65 (0.43 to 0.87)
	<0.001

	27-OHC
	6
	269/294
	SMD
	1.95 (0.7 to 3.19)
	0.002
	0.56 (0.38 to 0.75)
	<0.001

	TGF-β
	5
	113/114
	WMD
	7.81 (2.27 to 13.35)
	0.006
	0.32 (-0.04 to 0.69)
	0.083

	VLP-1
	4
	252/486
	SMD
	3.1 (0.53 to 5.68)
	0.018
	1.42 (1.23 to 1.62)
	<0.001

	YKL-40
	5
	274/504
	SMD
	2 (0.42 to 3.57)
	0.013
	1.69 (1.5 to 1.89)
	<0.001

	Aβ40
	21
	959/759
	SMD
	-0.23 (-0.41 to -0.05)
	0.011
	-0.22 (-0.32 to -0.11)
	<0.001

	Al
	4
	47/77
	SMD
	0.48 (0.02 to 0.93)
	0.04
	0.46 (0.08 to 0.83)
	0.017

	Cu
	5
	116/129
	SMD
	0.39 (-0.55 to 1.34)
	0.418
	0.36 (0.08 to 0.63)
	0.011

	Hcy
	5
	239/226
	SMD
	0 (-0.27 to 0.28)
	0.978
	-0.03 (-0.22 to 0.16)
	0.76

	IL-1β
	5
	99/80
	SMD
	-0.2 (-1.05 to 0.65)
	0.639
	-0.09 (-0.4 to 0.22)
	0.563

	IL-6
	9
	208/160
	SMD
	-0.22 (-0.9 to 0.46)
	0.523
	0.1 (-0.12 to 0.32)
	0.365

	TNF-α
	4
	121/78
	SMD
	-0.26 (-4.81 to 4.29)
	0.912
	0.52 (0.09 to 0.95)
	0.018

	Aβ38
	5
	203/145
	SMD
	0.07 (-0.41 to 0.55)
	0.771
	-0.03 (-0.25 to 0.19)
	0.798

	Albumin ratio
	20
	854/514
	SMD
	0.28 (-0.04 to 0.61)
	0.086
	0.28 (0.16 to 0.39)
	<0.001

	ApoE
	24
	1064/1338
	WMD
	-0.3 (-0.69 to 0.09)
	0.135
	0.08 (-0.03 to 0.19)
	0.165

	Cholesterol
	16
	959/694
	SMD
	-0.23 (-0.66 to 0.19)
	0.286
	-0.46 (-0.57 to -0.36)
	<0.001

	C3
	4
	299/522
	Cohen's D
	0.45 (0.18 to 0.73)
	0.001
	0.44 (0.29 to 0.59)
	<0.001

	Clusterin
	9
	625/577
	Cohen's D
	7.09 (-4.02 to 18.2)
	0.211
	3.73 (3.61 to 3.84)
	<0.001

	C1q
	4
	160/127
	Cohen's D
	0.28 (-0.41 to 0.97)
	0.425
	0.48 (0.24 to 0.72)
	<0.001

	CRP
	4
	421/450
	Cohen's D
	0.27 (-0.26 to 0.8)
	0.318
	0.11 (-0.03 to 0.26)
	0.124

	SAP
	5
	397/394
	Cohen's D
	0.12 (-0.12 to 0.36)
	0.333
	0.1 (-0.06 to 0.26)
	0.235

	Factor H
	3
	233/394
	Cohen's D
	0.41 (-0.06 to 0.88)
	0.09
	0.33 (0.17 to 0.49)
	<0.001

	sAPPα
	15
	575/383
	WMD
	-9.62 (-40.11 to 20.88)
	0.537
	23.96 (18.45 to 29.48)
	<0.001

	sAPPβ
	13
	581/415
	WMD
	37.05 (-9.96 to 84.07)
	0.122
	43.96 (36.03 to 51.9)
	<0.001

	Nuerogranin
	10
	908/660
	Cohen's D
	268.25 (143.49 to 393.02)
	<0.001
	138.04 (131.09 to 144.98)
	<0.001

	DHEA
	4
	84/78
	Cohen's D
	2.16 (-1.88 to 6.21)
	0.294
	1.11 (0.65 to 1.57)
	<0.001

	NFL
	24
	1071/1219
	Cohen's D
	1.57 (1.12 to 2.01)
	<0.001
	1.3 (1.2 to 1.41)
	<0.001

	Folate
	9
	307/538
	Cohen's D
	-0.47 (-0.63 to -0.32)
	<0.001
	-0.47 (-0.63 to -0.32)
	<0.001

	Vitamin B12
	4
	92/208
	Cohen's D
	-0.42 (-0.79 to -0.04)
	0.028
	-0.4 (-0.75 to -0.06)
	0.022

	Vitamin C
	5
	102/79
	Cohen's D
	-0.83 (-1.16 to -0.5)
	<0.001
	-0.83 (-1.15 to -0.52)
	<0.001

	Vitamine E
	5
	127/100
	Cohen's D
	-0.51 (-1.1 to 0.08)
	0.088
	-0.41 (-0.68 to -0.14)
	0.003


Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; Random effects, summary effect size (95% CI) using random effects model; Fixed effects, summary effect size (95% CI) using fixed effects model; Largest effect, effect size (95% CI) of the largest study in the meta-analysis; Egger, p-value from Egger's regression asymmetry test for evaluation of publication bias; P, p-value; SMD, standard mean difference; WMD, weighted mean difference; PI, prediction interval; ES, excess significance; RoM, ratio of the mean; IL, interleukin; TGF, tumor growth factor; TNF, tumor necrosis factor; Al, aluminum; Hcy, homocysteine; FA, folic acid, Apo, apolipoprotien; T-tau, total tau protein; P-tau; phosphorylated tau protein; Aβ, amyloid beta, NSE, neuron specific enolase; VLP, visinin like protein; HFABP, heart-type fatty acid binding protein; YKL-40, chitinase-3-like protein 1; MCP, monocyte chemoattractant protein; OHC, hydroxycholesterol; C3, third component of complement; CRP, C-reactive protein; SAP, serum amyloid P component; FH, factor H; sAPPα, soluble amyloid precursor protein procurer α; sAPPβ, soluble amyloid precursor protein procurer β, DHEA, dehydroepiandorsterone; NFL, neurofilament light
* Summary random effects effect size (95% CI) of each meta-analysis
† Summary fixed effects effect size (95% CI) of each meta-analysis
‡ Effect size (95% CI) of the largest study in each meta-analysis
§ P-value from the Egger regression asymmetry test for evaluation of publication bias
|| I2 metric of inconsistency (95% confidence intervals of I2) and p-value of the Cochran Q test for evaluation of heterogeneity
¶ Concordance between largest study estimate and random effects summary estimate 


Table II. Characteristics and bias test of the 38 meta-analyses concerning the CSF biomarkers between AD and controls.
	Biomarker
	No. of studies
	Cases/controls
	Largest study 
effects‡
(95% CI)
	p-value

(Largest)
	I2 (%)
	I2 (%)
(p) ||
	PI
	Egger § (p)
	ES
	Concordance¶ 

	P-tau
	88
	7210/5240
	0.64 (0.5 to 0.78)
	<0.001
	97
	<0.001
	-0.57 to 4.09
	<0.001
	No
	Cor

	T-tau
	154
	11040/7343
	1.13 (0.99 to 1.27)
	<0.001
	96
	<0.001
	-0.19 to 4.23
	<0.001
	No
	Cor

	Aβ42
	131
	9568/6818
	-1.53 (-1.68 to -1.38)
	<0.001
	97
	<0.001
	-5.12 to 0.41
	<0.001
	No
	Cor

	24-OHC
	12
	713/581
	-0.03 (-0.3 to 0.24)
	0.836
	96
	<0.001
	-1.11 to 3.62
	0.002
	Yes
	Dis

	FA
	4
	150/145
	-0.57 (-0.96 to -0.18)
	0.004
	58
	0.065
	-2.52 to 0.8
	0.009
	No
	Cor

	HFABP
	3
	231/247
	0.75 (0.42 to 1.07)
	<0.001
	99
	<0.001
	-27.37 to 32.82
	0.013
	No
	Cor

	MCP-1
	3
	59/59
	1.08 (0.49 to 1.68)
	<0.001
	47
	0.15
	-4.5 to 6.28
	0.258
	No
	Cor

	NSE
	6
	234/140
	0.79 (0.35 to 1.23)
	<0.001
	58
	0.036
	-0.41 to 1.65
	0.45
	No
	Cor

	27-OHC
	6
	269/294
	-0.12 (-0.4 to 0.16)
	0.408
	97
	<0.001
	-2.6 to 6.5
	0.017
	Yes
	Dis

	TGF-β
	5
	113/114
	0.2 (-0.17 to 0.57)
	0.293
	93
	<0.001
	-11.11 to 26.72
	0.089
	Yes
	Dis

	VLP-1
	4
	252/486
	0.79 (0.55 to 1.04)
	<0.001
	99
	<0.001
	-9.47 to 15.68
	0.241
	No
	Cor

	YKL-40
	5
	274/504
	0.51 (0.19 to 0.83)
	0.002
	98
	<0.001
	-4.23 to 8.22
	0.536
	No
	Cor

	Aβ40
	21
	959/759
	-0.26 (-0.6 to 0.09)
	0.147
	64
	<0.001
	-0.95 to 0.48
	0.48
	No
	Dis

	Al
	4
	47/77
	0.28 (-0.25 to 0.81)
	0.305
	25
	0.26
	-0.94 to 1.89
	0.844
	No
	Dis

	Cu
	5
	116/129
	-0.24 (-0.78 to 0.3)
	0.386
	91
	<0.001
	-3.21 to 3.99
	0.832
	Yes
	Cor

	Hcy
	5
	239/226
	-0.01 (-0.34 to 0.32)
	0.958
	48
	0.1
	-0.82 to 0.82
	0.213
	No
	Cor

	IL-1β
	5
	99/80
	0.64 (0.11 to 1.17)
	0.017
	86
	<0.001
	-3.36 to 2.95
	0.5
	No
	Dis

	IL-6
	9
	208/160
	0.25 (-0.22 to 0.72)
	0.299
	89
	<0.001
	-2.61 to 2.17
	0.103
	Yes
	Cor

	TNF-α
	4
	121/78
	0.36 (-0.17 to 0.88)
	0.182
	99
	<0.001
	-22.33 to 21.82
	0.97
	No
	Cor

	Aβ38
	5
	203/145
	-0.54 (-0.93 to -0.16)
	0.005
	77
	0.002
	-1.63 to 1.77
	0.135
	No
	Dis

	Albumin ratio
	20
	854/514
	0.41 (0.08 to 0.74)
	0.016
	86
	<0.001
	-1.18 to 1.75
	0.939
	No
	Dis

	ApoE
	24
	1064/1338
	1.3 (1.02 to 1.58)
	<0.001
	90
	<0.001
	-2.13 to 1.53
	0.053
	No
	Dis

	Cholesterol
	16
	959/694
	-0.62 (-0.89 to -0.35)
	<0.001
	93
	<0.001
	-2.07 to 1.6
	0.108
	No
	Dis

	C3
	4
	299/522
	0.43 (0.18 to 0.68)
	<0.001
	68
	0.025
	-0.7 to 1.6
	0.772
	No
	Cor

	Clusterin
	9
	625/577
	0.58 (0.42 to 0.74)
	<0.001
	100
	<0.001
	-35.29 to 49.48
	0.512
	No
	Dis

	C1q
	4
	160/127
	0.61 (0.32 to 0.9)
	<0.001
	80
	0.002
	-2.77 to 3.33
	0.534
	No
	Dis

	CRP
	4
	421/450
	-0.07 (-0.31 to 0.17)
	0.579
	92
	<0.001
	-2.23 to 2.77
	0.096
	No
	Cor

	SAP
	5
	397/394
	0.1 (-0.14 to 0.34)
	0.422
	44
	0.129
	-0.56 to 0.79
	0.733
	No
	Cor

	Factor H
	3
	233/394
	0.1 (-0.14 to 0.34)
	0.422
	88
	<0.001
	-5.41 to 6.22
	0.197
	No
	Cor

	sAPPα
	15
	575/383
	4.18 (-4.15 to 12.51)
	0.33
	93
	<0.001
	-116.08 to 96.85
	0.198
	No
	Cor

	sAPPβ
	13
	581/415
	9.25 (-4.79 to 23.3)
	0.198
	96
	<0.001
	-139.14 to 213.25
	0.964
	No
	Cor

	Nuerogranin
	10
	908/660
	79.25 (70.06 to 88.44)
	<0.001
	100
	<0.001
	-209.76 to 746.27
	0.217
	No
	Cor

	DHEA
	4
	84/78
	1.19 (0.51 to 1.87)
	<0.001
	99
	<0.001
	-17.53 to 21.86
	0.538
	No
	Dis

	NFL
	24
	1071/1219
	0.99 (0.7 to 1.28)
	<0.001
	94
	<0.001
	-0.59 to 3.72
	0.001
	No
	Cor

	Folate
	9
	307/538
	-0.3 (-0.64 to 0.04)
	0.083
	0
	0.475
	-0.66 to -0.29
	0.358
	No
	Dis

	Vitamin B12
	4
	92/208
	-0.32 (-0.86 to 0.22)
	0.248
	11
	0.339
	-1.4 to 0.57
	0.194
	No
	Dis

	Vitamin C
	5
	102/79
	-1.19 (-1.8 to -0.57)
	<0.001
	9
	0.354
	-1.48 to -0.19
	0.547
	No
	Cor

	Vitamine E
	5
	127/100
	-0.51 (-0.96 to -0.07)
	0.024
	76
	0.002
	-2.57 to 1.55
	0.431
	No
	Dis


Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; Random effects, summary effect size (95% CI) using random effects model; Fixed effects, summary effect size (95% CI) using fixed effects model; Largest effect, effect size (95% CI) of the largest study in the meta-analysis; Egger, p-value from Egger's regression asymmetry test for evaluation of publication bias; P, p-value; SMD, standard mean difference; WMD, weighted mean difference; PI, prediction interval; ES, excess significance; RoM, ratio of the mean; IL, interleukin; TGF, tumor growth factor; TNF, tumor necrosis factor; Al, aluminum; Hcy, homocysteine; FA, folic acid, Apo, apolipoprotien; T-tau, total tau protein; P-tau; phosphorylated tau protein; Aβ, amyloid beta, NSE, neuron specific enolase; VLP, visinin like protein; HFABP, heart-type fatty acid binding protein; YKL-40, chitinase-3-like protein 1; MCP, monocyte chemoattractant protein; OHC, hydroxycholesterol; C3, third component of complement; CRP, C-reactive protein; SAP, serum amyloid P component; FH, factor H; sAPPα, soluble amyloid precursor protein procurer α; sAPPβ, soluble amyloid precursor protein procurer β, DHEA, dehydroepiandorsterone; NFL, neurofilament light
* Summary random effects effect size (95% CI) of each meta-analysis
† Summary fixed effects effect size (95% CI) of each meta-analysis
‡ Effect size (95% CI) of the largest study in each meta-analysis
§ p-value from the Egger regression asymmetry test for evaluation of publication bias
|| I2 metric of inconsistency (95% confidence intervals of I2) and p-value of the Cochran Q test for evaluation of heterogeneity
¶ Concordance between largest study estimate and random effects summary estimate



Table III. Correlations among variables from the 38 meta-analyses concerning the CSF biomarkers between AD and controls.
	
	Number of
studies
	Number of
AD patients
	Number
of controls
	Total number
of participants
	Random effects effect size
	Fixed effects 
effect size
	Largest study effect size
	Egger p-value
	I2

	Number of studies
	
	0.995
	0.990
	0.994
	-0.036(-)
	-0.043(-)
	-0.040(-)
	-0.149(-)
	0.241(-)

	Number of AD patients
	0.995
	
	0.995
	0.999
	-0.012(-)
	-0.026(-)
	-0.017(-)
	-0.145(-)
	0.247(-)

	Number of controls
	0.990
	0.995
	
	0.998
	-0.018(-)
	-0.035(-)
	-0.024(-)
	-0.181(-)
	0.255(-)

	Total number of participants
	0.994
	0.999
	0.998
	
	-0.014(-)
	-0.029(-)
	-0.020(-)
	-0.168(-)
	0.250(-)

	Random effects effect size
	-0.036(-)
	-0.012(-)
	-0.018(-)
	-0.014(-)
	
	0.964
	0.994
	-0.083(-)
	0.166(-)

	Fixed effects effect size
	-0.043(-)
	-0.026(-)
	-0.035(-)
	-0.029(-)
	0.964
	
	0.974
	-0.057(-)
	0.197(-)

	Largest study effect size
	-0.040(-)
	-0.017(-)
	-0.024(-)
	-0.020(-)
	0.994
	0.974
	
	-0.096(-)
	0.169(-)

	Egger p-value
	-0.149(-)
	-0.145(-)
	-0.181(-)
	-0.168(-)
	-0.083(-)
	-0.057(-)
	-0.096(-)
	
	0.027(-)

	I2(%)
	0.241(-)
	0.247(-)
	0.255(-)
	0.250(-)
	0.166(-)
	0.197(-)
	0.169(-)
	0.027(-)
	


AD, Alzheimer’s disease;
(-): negative correlation coefficient

Table IV. Comparison of variables between groups with or without ES from the 38 meta-analyses concerning the CSF biomarkers between AD and controls.
	
	Group I with ES
	Group II without ES
	p-value

	Number of studies
	7.33 ± 2.73
	18.14 ± 34.51
	0.453

	Number of AD patients
	304.50 ± 228.19
	1148.77 ± 2585.30
	0.434

	Number of controls
	243.00 ± 177.39
	898.89 ± 1775.27
	0.376

	Total number of participants
	547.50 ± 396.38
	2048.66 ± 4355.76
	0.409

	Random effects effect size
	1.89 ± 2.99
	9.03 ± 45.54
	0.704

	Fixed effects effect size
	0.17 ± 0.40
	6.23 ± 24.39
	0.550

	Largest study effect size
	0.00
	2.83 ± 13.37
	0.611

	Egger p-value
	0.33 ± 0.51
	0.34 ± 0.48
	0.962

	I2(%)
	93.20 ± 3.34
	74.76 ± 29.41
	0.001


ES, excess significance; CSF, cerebrospinal fluid; AD, Alzheimer’s disease


Table V. Comparison of variables between groups with or without concordance with the largest study from the 38 meta-analyses concerning the CSF biomarkers between AD and controls.
	
	Group I concordant
with the largest study
	Group II discordant
without the largest study
	p-value

	Number of studies
	21.58 ± 41.15
	9.47 ± 6.70
	0.169

	Number of AD patients
	1453.83 ± 3081.63
	420.12 ± 362.90
	0.117

	Number of controls
	1105.25 ± 2109.69
	378.12 ± 343.82
	0.110

	Total number of participants
	2559.08 ± 5187.69
	798.24 ± 687.54
	0.113

	Random effects effect size
	12.83 ± 54.92
	1.12 ± 2.52
	0.387

	Fixed effects effect size
	8.88 ± 29.25
	0.35 ± 0.99
	0.167

	Largest study effect size
	4.04 ± 16.09
	0.12 ± 0.69
	0.323

	Egger p-value
	0.38 ± 0.49
	0.29 ± 0.47
	0.587

	I2(%)
	78.00 ± 25.21
	70.24 ± 33.67
	0.403


CSF, cerebrospinal fluid; AD, Alzheimer’s disease; Genetic comparisons additionally extracted from GWAS catalog were also re-analyzed (Table III)27-31. All 18 of the re-analyzed genetic comparisons from four articles had a p-value<0·05. Among the 18 noteworthy comparisons, two genotype comparisons extracted from GWAS catalog were reported to be significant with a p-value<5x10-8. Out of two genotype comparisons, only one (50%) was verified to be noteworthy (<0·2) using FPRP estimation, at a prior probability of 10-3 with a statistical power to detect an OR 1.2. In addition, two (100%) and one (50%) showed noteworthiness at prior probability of 10-3 and 10-6 with a statistical power to detect an OR 1·5. Under BFDP estimation, two (100%) and one (50%) were assessed to be noteworthy at prior probability of 10-3 and 10-6. On the other hand, all 16 of the re-analyzed genetic comparisons extracted from GWAS catalog had a borderline statistical significance (P-value between 0·05 and 5x10-8). Under RPRP estimation, six (37·5%) and three (18·7%) were assessed to be noteworthy at prior probability of 10-3 and 10-6 with a statistical power to detect an OR of 1·2. Moreover, 14 (87·5%) were identified as noteworthy at a prior probability of 10-3 with a statistical power to detect an OR of 1·5. In terms of BFDP, 15 (93·7%) and one (6·2%) had noteworthy findings (<0·8) at a prior probability of 10-3 and 10-6. Consequently, 14 (87·5%) SNPs were found noteworthy using FPRP and BFDP.


Figure legends
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