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Despite the significant advantages that smartphones’ cameras can provide in 

teleophthalmology and artificial intelligence applications, their use as black-box systems 

for clinical data acquisition, without adequate information of the quality of photographs 

can compromise data accuracy. The aim of this study is to compare the objective and 

subjective quantification of conjunctival redness in images obtained with calibrated and 

non-calibrated cameras, in different lighting conditions and optical magnifications. One 

hundred ninety-two pictures of the eye were taken in 4 subjects using 3 smartphone 

cameras{Bq, Iphone, Nexus}, 2 lighting levels{high 815 lx, low 122 lx} and 2 

magnification levels{high 10x, low 6x}. Images were duplicated: one set was white 

balanced and color corrected (calibrated) and the other was left as it was. Each image 

was subjective and objectively evaluated. There were no significant differences in 

subjective evaluation in any of the conditions whereas many statistically significant main 

effects and interaction effects were shown for all the objective metrics. The clinician’s 

evaluation was not affected by different cameras, lighting conditions or optical 

magnifications, demonstrating the effectiveness of the human eye’s color constancy 

properties. However, calibration of a smartphone’s camera is essential when extracting 

objective data from images. 
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MAIN TEXT 

Introduction 

Telemedicine has already become an emergent field of interest in image-based medical 

specialty including ophthalmology.1,2 Image capture is likely the most important 

component for a tele-ophthalmology system as poor image quality would lead to a poor 

diagnosis.  

Recent widespread use of smart phone cameras attached to ophthalmic imaging 

systems, in particular to the eyepiece of the slit-lamp,3 has enabled acquisition of high-

quality images of the eye in a simple and affordable manner.2,4 There are many studies 

that have used smartphones for teleophthalmology.5–9 In 2012, it was estimated that 

about 81% of the US physicians had smartphones.5 Thus, using smartphones is 

convenient and portable, alleviating the need to carry bulky equipment to a remote site.9 

The wireless connection of the smartphones also adds another advantage by providing 

easy Internet connection, which is an advantage not only for teleophthalmology but also 

for artificial intelligence applications where thousands of images from different 

institutions are stored altogether in a cloud service for further processing.10,11 Another 

application that has received increasing interest is the automated and objective 

assessment information extracted from photographic-based methods, for example, in 

determining ocular redness12–18 An assessment of conjunctival hyperaemia with a slit-

lamp biomicroscope is a vital part of any ophthalmic evaluation. Ocular redness can 

indicate not only certain systemic conditions19–21 but also ocular conditions such as 

anterior eye inflammation,22 allergic and infective conjunctivitis,23 contact lens wear,24 

meibomian gland dysfunction25 and dry eye disease.26  

Despite the significant advantages that smartphones’ cameras provide, their use as 

black-box systems for clinical data acquisition, without adequate information of the 

quality of photographs would compromise data accuracy and repeatability.27 In scientific 

and professional photography it is well-known that two different cameras, or even the 

same camera with different settings, give different images for the same scene, which are 

possibly different to those directly perceived by our visual system. One reason is that the 

responses of the camera sensors vary from one camera to another. The Red, Green and 

Blue (RGB) values given by any imaging system are device dependent.28 Another reason 

is that the responses of the three RGB sensors of a camera are different from the 

responses of the retina cells, and subsequent interpretation by the brain.28,29 In addition,  

it is also well-known that camera manufacturers have their own camera-specific and 



proprietary image processing algorithms,27 including autofocus algorithms that try to 

automatically enhance the perceptual image quality of the images. It is reasonable to 

assume that the most frequent use of smartphones’ cameras is the autofocus mode.  

This fact adds lack of control and introduces uncertainty of color reproductions of clinical 

images obtained with different smartphones. 

To our knowledge, no one has evaluated the impact of smartphone’s camera calibration 

in ophthalmology applications, despite the fact that smartphones are used with a slit-

lamp to image, in the autofocus mode, to take images of anterior segment of the eye. 

Therefore, the purpose of this study is to evaluate and quantify the influence of different 

smartphone cameras, lighting conditions and optical magnifications on various objective 

and subjective quantification of eye’s redness. 

Methods 

Subjects 

A total of 192 images from 4 healthy adult subjects were obtained (24 experimental 

conditions x 2 processing approaches x 4 subjects). Subjects had a best-corrected visual 

acuity equal or better than 0 logMAR (20/20) in both eyes, a mean spherical equivalent 

of –4.75 ± 2.50 D and no ocular pathologies. Subjects did not wear contact lenses during 

the experiment and none of them had anterior eye problems. The mean age ± standard 

deviation was 32 ± 4 years. The study was approved by the Ethics Committee of Anglia 

Ruskin University (Cambridge, UK), it followed the tenets of the Declaration of Helsinki 

and all subjects gave informed written consent.  

Examination protocol 

Pictures of the temporal side of the left eye were taken in 4 subjects under 24 

experimental conditions:  camera type {smartphone 1: Bq Aquaris U Lite, smartphone 2: 

Iphone 6s, smartphone 3: Nexus 6p}, lighting level {high 815 lx, low 122 lx}, magnification 

{high 10x, low 6x}. Two images were taken in each condition with an interval of 5 s 

between them in which participants were required to blink and fixate again the target 

(figure 1). Randomization among all conditions was applied. For each subject, all 

measurements were taken in one session that took less than 20 minutes. A diagram of 

all the study design is shown in figure 2. 

The camera’s specifications of each smartphone are detailed in table 1. All pictures were 

taken with the application Adobe Photoshop Lightroom CC v3.5.1 (Adobe Systems Inc., 



USA) and exported in two formats: raw format (.DNG) and compressed format (.JPEG). 

The slit lamp used for the study was the SL9800 (CSO Srl, Italy) and the smartphone 

and the slitlamp were connected by the HookUpz 2.0 universal optics adapter (Carson 

Optical Inc., USA). The magnification levels (6x or 10x) chosen in the study are typically 

used for slit-lamp evaluation of the conjunctiva. The lighting levels (122 lx or 815 lx) were 

determined prior by a clinical optometrist for best clinical evaluation.    

For each image captured by the camera, two different images were obtained (i.e., the 

calibrated and the non-calibrated image). The calibration procedure of the raw images 

was performed with MATLAB 2018 (Mathworks Inc, USA) using image computation 

steps as explained by Akkayanak et al.27 This involved taking a picture of a color 

reference target (ColorChecker Passport, X-Rite Inc., USA) for each smartphone and 

lighting condition and then compute a color transformation matrix that maps each RGB 

intensity values obtained by each camera with the color ground truth. Detailed 

mathematical explanations can be found elsewhere.27,28  

For subjective assessment, bulbar redness of all images were subjectively graded by 

three clinicians using the Efron grading scale30 (from 0 to 1 in steps of 0.1, being 0 normal 

and 4 severe) in a blinded fashion: none of the clinicians were aware which experimental 

condition each image corresponded to.  

For objective assessment four objective redness metrics (i.e., relative redness, red-

green difference, red-blue difference and red hue) were computed for each image. These 

metrics have been used in previous studies and are explained in detail elsewhere.31 The 

images had to be manually cut leaving only the conjunctiva before the objective metric 

was computed, i.e., the iris, the eyelids and any artifacts such as saturated zones were 

not included in the computation (figure 2).  

Table 1. Specifications of each smartphone’s camera. 

Smartphone Brand Model Number of Pixels Aperture Sensor Size Pixel size 

1 Nexus 6P Huawei 12.3 MP f/2.0, 29mm 1/2.3’’ 1.55 um 
2 BQ Aquaris U Lite 8 MP f/2.0 Unknown Unknown 

3 Iphone 6s 12 MP f/2.2, 29mm 1/3’’ 1.22 um 

Data analysis 

First, the repeatability and agreement between clinicians were analyzed by means of the 

within-subject standard deviation and the 95% Limits of Agreement, respectively. 

Additionally, the repeated measures ANOVA was computed to test whether the 



differences between clinicians were statistically significant or not. 

Second, we evaluated the correlation between the objective metrics and the subjective 

scores for each factor. Then, a 4-way repeated measures ANOVA was computed for the 

4 objective redness metrics, and the subjective evaluation values. The four within-

subjects factors were: camera type smartphone 1: Bq Aquaris U Lite, smartphone 2: 

Iphone 6s, smartphone 3: Nexus 6p}, lighting level {high 815 lx, low 122 lx}, magnification 

{high 10x, low 6x} and calibration {pre- and post- calibration}. 

Significance was set at 0.05 and the statistical analysis was performed using MATLAB 

2018 (MathWorks, Inc., USA). Normality of each variable was verified with the Shapiro-

Wilk test. The Bonferroni correction was applied for pairwise comparisons.  The post-hoc 

statistical power was computed with the free open-source G*Power 3.0.10 and a value 

above 0.9 was obtained for all response variables.  

Results 

The within-subject standard deviation (repeatability) obtained for each clinician was 0.11, 

0.22 and 0.27. The 95% Limits of Agreement between clinicians are shown in the Bland 

and Altman plots of the figure 3, the differences between clinicians are not statistically 

significant (repeated measures ANOVA, F=2.36, p=0.09). 

Pearson correlation coefficients between each objective redness metric (i.e., Relative 

Redness, Red-Green difference, Red-Blue difference and Red Hue difference) and the 

subjective evaluation are shown in table 2. Correlations were computed for all factors 

together (without grouping for factors) and also they were computed grouping according 

to calibration and smartphone type factors.   

Table 2. Pearson correlation coefficients (r-values) between the objective and the subjective measures of 

one of the evaluators computed without grouping for factors and also grouping for calibration and 

smartphone. *Statistically significant (p<0.05). RGdiff.: Red-Green difference. RBdiff.: Red-Blue difference.  

 Correlation Subjective vs Objective 
 Relative 

Redness RGdiff RBdiff RedHue 

All factors together (without grouping) 0.43* 0.51* 0.46* 0.51* 

PreCalibration 
Bq 0.70* 0.85* 0.84* 0.73* 

Iphone 0.79* 0.74* 0.69* 0.73* 
Nexus 0.63* 0.35 0.34 0.61* 

PostCalibration 
Bq 0.59* 0.71* 0.76* 0.68* 

Iphone 0.75* 0.86* 0.75* 0.79* 
Nexus 0.61* 0.43 0.21 0.69* 



The results obtained for the 4-way repeated measures ANOVA applied to each objective 

metric and the subjective evaluation  are shown in table 3. None of the factors nor 

interactions were statistically significant for the subjective evaluation. On the other hand, 

there was a statistically significant effect of each factor (calibration, camera, lighting and 

magnification) for all the 4 objective metrics as well as many significant 2-factor and 3-

factor interactions, in particular for the Relative Redness metric. Given that the results 

obtained for the 4 objective metrics are very similar and in order to disentangle all the 

significant effects (and keep the text concise), only the results for the Relative Redness 

will be analyzed further. 

The main effects of the Relative Redness and the subjective evaluation are shown in 

figure 4, and all the statistically significant 2-factor interactions obtained for the Relative 

Redness, i.e., Calibration*Camera, Calibration*Lighting, Camera*Lighting and 

Calibration*Magnification, are summarized in the boxplots of figure 5. For completeness, 

despite its much more difficult interpretation, the statistically significant 3-factor 

interactions obtained for the Relative Redness, i.e., Calibration*Camera*Lighting, 

Calibration*Camera*Magnification and Calibration*Lighting*Magnification are 

summarized in figure S1 (Supplementary figure S1).   

Table 3. Results of the repeated measures ANOVA with 4 within-subjects factors. *Statistically significant 

(p<0.05). RGdiff.: Red-Green difference. RBdiff.: Red-Blue difference.  

 Objective Evaluation Subjective 
Evaluation 

 Relative 
Redness RGdiff RBdiff RedHue Evaluator 1 

 p-value p-value p-value p-value p-value 
Calibration 0,007* 0,015* 0,035* 0,010* 0,759 

Camera 0,027* 0,009* 0,004* 0,010* 0,929 
Lighting 0,015* <0,001* <0,001* 0,020* 0,069 

Magnification 0,006* <0,001* <0,001* 0,001* 0,116 
Calibration*Camera 0,003* 0,001* <0,001* 0,002* 0,056 
Calibration*Lighting 0,027* <0,001* <0,001* 0,135 0,094 

Camera*Lighting 0,079 0,073 0,051 0,171 0,126 
Calibration*Magnification 0,006* 0,005* 0,178 0,004* 0,498 

Camera*Magnification 0,013* 0,184 0,102 0,028* 0,054 
Lighting*Magnification 0,965 0,699 0,827 0,288 0,168 

Calibration*Camera*Lighting 0,020* 0,002* <0,001* 0,244 0,247 
Calibration*Camera*Magnification <0,001* 0,138 0,147 <0,001* 0,167 
Calibration*Lighting*Magnification 0,022* 0,728 0,966 0,720 0,301 

Camera*Lighting*Magnification 0,647 0,374 0,436 0,514 0,224 
Calibration*Camera*Lighting*Magnification 0,924 0,558 0,840 0,343 0,602 

 



Discussion 

In a clinical setting, the ophthalmic evaluation using the slit-lamp is perhaps one of the 

most often methods conducted in every patient. Commercial slit-lamps offer a wide range 

of light intensities as well as magnifications, and each clinician can use the combination 

of both parameters that best fits each particular case and purpose. In addition, the use 

of commercial digital cameras attached to a slit-lamp to image the anterior and posterior 

segment of the eye are becoming more popular every day in clinical settings, particularly 

for teleophthalmology and artificial intelligence applications.10,11 We investigated the 

effect of smartphone’s camera calibration, camera’s type, slit-lamp lighting level and 

magnification, as well as their interactions on one specific imaging application: the 

objective and subjective quantification of ocular redness. Five variables were studied: 4 

objective ocular redness metrics and the subjective grading score of redness according 

to the Efron grading scale.30 

The repeatability of all three evaluators (0.11, 0.22 and 0.27 units) is consistent with 

previous studies. Chong et al.32 evaluated the repeatability of 5 evaluators using three 

different anterior segment clinical grading scales: 1) verbal descriptors scale, 2) 

photographic matching scale, and 3) continuous matching scale. They reported grading 

scales to be repeatable and obtained within-subject standard deviations for the different 

evaluators between 0.11 and 0.18 units. Murphy et al.33 found inter-observer 95% limits 

of agreement for bulbar redness of 0.38 units. Our values are slightly higher (0.55, 0.61, 

0.54 units), it is possible that these differences are due a much lower sample size and a 

different grading scale, i.e., Murphy et al. used the Cornea and Contact Lens Research 

Unit (CCRLU) grading scale in 20 images only. 

The degree of relationship between the objective and subjective evaluations, examined 

with the Pearson correlation coefficient and considering all factors together, ranged 

between 0.43 and 0.51 for 4 different objective metrics. The 4 objective metrics gave 

similar correlation coefficients, i.e., none of the objective metrics outperformed over the 

others, however, the correlation coefficients were in general smaller in comparison to 

Papas’ study31 who reported correlations of 0.70, 0.70, 0.72 and 0.41 for Relative 

Redness, Red-Green difference, Red-Blue difference and Red Hue value metrics, 

respectively. Our data suggests that the slightly weaker correlations may be influenced 

by other factors that we have studied which are calibration, camera’s type, lighting level 

and magnification which show up as important covariates in the objective quantification 

of ocular redness. This is indeed corroborated by the 4-way repeated measures ANOVA 

applied to the objective variables, and the significant main effects of calibration, camera, 



lighting and magnification, and also several strong 2-factor and 3-factor interactions 

(table 3). 

It is remarkable to note none of the factors nor their interactions significantly affected the 

subjective evaluations, which directly relates to the inherent property of the human eye 

of color constancy, i.e., the perceived color of a surface remains constant despite 

changes in the conditions of illumination.34   

With regards to magnification factor, it is somewhat not surprising that there were 

significant differences between different magnifications (6x and 10x). The Relative 

Redness values are directly proportional to the area being considered, therefore, when 

magnifying an image from 6x to 10x, the objective metrics values obtained for the same 

eye under the same conditions are increased simply because a large area is considered. 

In this study, each image was a different size as the sensor size was different in each 

smartphone and also because the region of interest was manually selected to find the 

largest conjunctival area possible. However, this is not the only reason that explains the 

differences between magnification levels. It is well-known that microscopes (and hence 

magnification) introduce strong color distortions particularly in the periphery of the visual 

field,28 therefore, when magnifying an image in a commercial slit-lamp, the same features 

of an eye are imaged further from the center, into  a region with a stronger color distortion.  

Exploring the differences between low and high light intensities, our results suggest that 

these differences are mainly derived because of their strong interaction with 

magnification, camera’s type and whether images are calibrated or not. Given that slit-

lamps do not provide a homogeneous light field and the fact that each camera can have 

a different response to light intensity in each red, green and blue color channel28 (RGB), 

this would undoubtedly lead to a different color reproduction of an image of the same 

eye.  This difference in color is partially solved by calibrating for each camera and lighting 

level. 

The significant differences between the type of smartphones when computing relative 

redness are possibly not only because of different hardware specifications but because 

each picture was taken in autofocus mode. This introduces a different internal image 

enhancement strategy which is designed by the manufacturer to provide the most 

perceptually realistic image.  

This is the first time that the performance of 3 different smartphone cameras were 

evaluated in the context of a clinical application, and it is quite surprising such large 

differences found for the Iphone in comparison with the other two smartphones. To 



analyze this further, we computed the correlation between the relative redness metric 

and the subjective evaluation of each image, according to each smartphone for 

uncalibrated images. Pearson correlation coefficient between the Iphone and subjective 

evaluation was 0.79, whereas for the Bq and the Nexus these values were, respectively, 

0.70 and 0.63. In all 3 cases the Pearson correlations were statistically significant 

(p<0.05). It is interesting to see that after controlling for the camera’s type and calibration 

factors, the correlation coefficients increased and were very similar to those obtained by 

Papas.31 

Our study highlights the importance of controlling for camera´s type and lighting levels 

when extracting objective data. Consequently, it provides further support to the fact that 

the correlation between objective data and subjective clinical scores are strongly 

influenced by these factors too. The results of this study could also potentially be applied 

to other cameras, including professional slit-lamp cameras, as long as it is possible to 

export the raw data images. The key differences between a professional slit-lamp 

camera and a smartphone camera (attached to the eyepiece of a slit-lamp) are: 1) the 

field of view of the professional slit-lamp camera is optimized to match the field of view 

seen through the eyepiece by the observer. This does not occur in the case of 

smartphone cameras attached to the slit-lamp. 2) A professional slit-lamp camera does 

not require an autofocus algorithm as it relies on the observer’s choice of focus. Having 

these two points in mind, significant differences could be expected between pictures 

taken with different cameras if they are not calibrated and they have a different pixel size, 

sensor size, sensitivity and optics. 

The application of white balance and color correction to each image obtained under 

certain illumination conditions and with one specific camera is a standard procedure to 

obtain the color ground truth of the scene being photographed.27 In this study it is shown 

that calibration has a strong impact on objective ocular redness measurement, as it 

strongly interacts with all the other factors. Our results show that any differences between 

lighting levels and camera’s types are significantly minimized after the cameras are 

calibrated. It is noteworthy that is was not possible to obtain a perfect match of relative 

redness values between cameras or light levels even after calibration. Ideally, if the 

calibration were perfect, no significant differences between smartphones and lighting 

levels after camera calibration would have been obtained, but, the calibration through a 

slit-lamp was affected by the strong inhomogeneous light field introduced by the optical 

system. More elaborated calibration procedures (which are more difficult to implement 

them in a clinical environment) could possibly be applied to improve the calibration’s 

accuracy, particularly when photographing through a microscope (such as the slit-



lamp),28 however these were out of the scope of this study.    

On comparing the influence of camera calibration on the subjective clinical evaluation of 

redness, our results showed no significant effects in different experimental conditions. 

This is explained by the color constancy property of human vision. However, if objective 

data is to be extracted and compared with other images obtained under different 

experimental conditions (i.e., other sensors, illumination or magnification types), camera 

calibration becomes an essential thing to do. 

In conclusion, smartphone’s camera calibration is essential when comparing images of 

the eye obtained with different smartphones and/or lighting levels by means of objective 

metrics. The clinical evaluation of eye’s images is not affected by calibration, type of 

smartphone camera and/or lighting level thanks to the human eye property of color 

constancy. Future studies should include diseased eyes with higher redness scores. 
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Figures 

Figure 1. Schematic representation of the setup used to take pictures of the temporal conjunctiva of each 

subject’s left eye. Pictures were taken with 3 different smartphones attached to a slit lamp and with two 

different magnification and illumination conditions. The pictures of the eyes shown in this figure correspond 
to the same subject. 

 

  



Figure 2. Processing steps conducted for each smartphone and eye. X and Y are the pixel coordinates in 
the horizontal and vertical directions. R, G and B refer to the Red, Green and Blue channels of a camera 

sensor. N is the total number of pixels. H is the Hue channel of an image in the HSL color space. 

 

  



Figure 3. Bland and Altman plots. Agreement between clinicians. Green lines: Superior and Inferior 95% 
Limits of Agreement (LoA). Yellow lines: 95% confidence interval for each LoA. meanDiff.: mean score 

difference.  

 

  



Figure 4. Boxplots comparing each factor obtained for the relative redness metric (first row) and the 
subjective evaluation of redness (seconds row). *Statistically significant (p<0.05). 

  



Figure 5. Boxplots for each statistically significant 2-way interaction found in table 3. *Statistically significant 
pairwise comparisons (p<0.05). 

 

 

 


