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Abstract

In clinical neuropsychology the cognitive abilities of neurological patients are commonly esti-

mated using well-established paper-based tests. Typically, scores on some tests remain rel-

atively well preserved, whilst others exhibit a significant and disproportionate decline.

Scores on those tests that measure preserved cognitive functions (so-called ‘hold’ tests)

may be used to estimate premorbid abilities, including scores in non-hold tests that would

have been expected prior to the onset of cognitive impairment. Many hold tests entail word

reading, with each word being graded as correctly or incorrectly pronounced. Inevitably,

such tests are likely to contain words that provide little or no diagnostic power (i.e., can be

eliminated without negatively affecting prediction accuracy). In this paper, a genetic algo-

rithm is developed and demonstrated, using n = 92 neurologically healthy participants, to

identify optimal word subsets from the National Adult Reading Test that minimize the mean

error in predicting the most widely used clinical measure of IQ and cognitive ability, the

Wechsler Adult Intelligence Scale Fourth Edition IQ. In addition to requiring only 17–20 of

the original 50 words (suggesting that this test could be revised to be up to 66% shorter) and

minimizing mean prediction error, the algorithm increases the proportion of the variance in

the predicted variable explained in comparison to using all words (from r2 = 0.46 to r2 =

0.61). In a clinical setting this would improve estimates of premorbid cognitive function and,

if an abbreviated revision to this test were to be adopted, reduce the arduousness of the test

for patients. The proposed method is evaluated with jackknifing and leave one out cross vali-

dation. The general approach may be used to optimize the relationship between any two

psychological tests by finding the question subset in one test that minimizes the prediction

error in a second test by training the genetic algorithm using data collected from participants

upon whom both tests have been administered. This approach may also be used to develop

new predictive tests, since it provides a method to identify an optimal subset of a set of can-

didate questions (for which empirical data have been collected) that maximizes prediction

accuracy and the proportion of variance in the predicted variable that can be explained.
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Introduction

A ‘hold test’ is a neuropsychological test that measures cognitive functions that remain rela-

tively well preserved following neurological damage caused by traumatic brain injury, stroke,

dementia or other condition. In longitudinal studies of preclinical to clinical populations, the

relative preservation of hold test performance has been convincingly demonstrated [1]. Since,

in neurologically healthy populations, performance in hold tests is highly correlated with that

in non-hold tests [2], hold tests can be used with clinical populations to infer premorbid cogni-

tive ability, such as full-scale IQ on the Wechsler Adult Intelligence Scale (WAIS-IV; [3]; for

discussion see [4]). Knowledge of premorbid cognitive ability is essential both in evaluating

the severity of impairment and in treatment planning.

Examples of hold tests that involve reading include the National Adult Reading Test

(NART; [5–6]) and its international derivatives (which include NAART and AMNART

[USA], [7–9]; NART-SWE [Sweden], [10]; NZART [New Zealand], [11,12]; fNART [France],

[13]; DART [Netherlands], [14]; and AUSNART [Australia], [15], the Wechsler Test of Adult

Reading (WTAR; [16]), the Test of Premorbid Functioning (TOPF; [17]), and a component of

the Wide Range Achievement Test (WRAT4; [18]). Although the TOPF is intended to super-

sede the WTAR, the WTAR is still widely used and the NART also remains popular [19–21],

particularly for research purposes.

To develop new neuropsychological tests, and to explore the relationships between those

already in use, data from multiple tests are collected from healthy participants. In this way, the

ability of hold-tests to predict the most likely results in other tests (such as full-scale IQ) can be

evaluated (although subsequent longitudinal validation with preclinical to clinical populations

is also desirable). In existing studies, a linear regression equation relating reading test perfor-

mance to full-scale IQ is typically calculated (e.g., [12,20,21]. Ideally, a hold test would yield a

perfectly linear correlation with a non-hold test of interest (r = ±1) and produce perfectly accu-

rate predictions; however, in practice, this goal is unrealistic due to inherent limitations in test

reliability and the imperfectly linear relationship expected between any two empirical datasets,

especially when they measure different (albeit highly correlated) cognitive functions. The

wealth of expertise and normative data relating to existing reading tests means that modifica-

tions either to the test or its corresponding instructions are undesirable without compelling

justification. However, it is possible to use optimization and artificial intelligence (AI) tech-

niques to develop new tests or revisions to existing tests that are demonstrably superior, or to

identify more effective scoring procedures that may be applied to standard tests, e.g., by using

question weighting schemes or question subsets that minimize the error between prediction

and measurement with experimental data collected from participants upon whom both tests

have been administered. In one recent study [22], a genetic algorithm (GA; [23]) was used to

produce an abbreviated form of the Psychopathic Personality Inventory–Revised (PPI-R). In

another, a GA was used to abbreviate the Multidimensional Experiential Avoidance Question-

naire [24]. Similarly, a GA with logistic regression to select the optimum combination of

neuropsychological test results to predict progression to Alzheimer’s disease [25]. In the pres-

ent study, rather than using genetic algorithms to abbreviate a test for comparison against

results obtained using the full test, we use a GA to identify the optimum question subset from

one test to most accurately estimate the result of a second (predicted) test.

A related area of research abbreviates tests on a per-participant basis. In Computerized-

adaptive Testing (CAT) questions are selected based upon an estimate of current performance,

and can yield accuracy comparable to an equivalent full-length test in which all questions

are used [26]. In Multi-stage Testing (MST; [27]) a broadly similar approach is taken, except

that banks of questions (so-called testlets) are selected at each decision stage. Using these
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approaches, sequences of decisions are made on-the-fly concerning which questions to pres-

ent. However, such approaches are not appropriate in this case, where a core subset of ques-

tions is to be developed from which a single linear regression equation is desired, for which

tests are administered by the clinician on paper (rather than using a computer). Additionally,

the standardized instructions for the NART, used in this article to illustrate the general

approach, require all items to be attempted for scoring to be valid. Furthermore, the approach

presented is well suited to test design, enabling the researcher to develop new tests by establish-

ing optimum combinations of questions that maximize predictive accuracy, potentially based

upon a parent test (such as the NART).

To illustrate the general approach, data from the British NART [5,6] is used, in part because

a recent survey indicates that is the most widely cited [21], but also because has been made

freely available for use without restriction. It comprises 50 visually presented words that have

irregular non-phonetic spellings and for which verbal responses elicited from participants are

subject (by the experimenter, following standardized instructions) to binary classification as

either having been correctly or incorrectly pronounced. The NART is scored by counting the

number of incorrectly pronounced words (hereafter referred to as NART errors), and the

instructions require that participants attempt all words for the scoring to be valid. The irregu-

lar nature of the words (i.e., their violation of typical phoneme-grapheme correspondence

rules) is such that participants should be unable to spontaneously deduce correct pronuncia-

tions, and as such the test measures prior knowledge [28]. The set of 50 words that feature in

the NART generally increase in difficulty through the test (thus the order that the words are

presented is fixed, with words presented towards the end of the test intended to be less familiar

to the target population). A patient who has suffered neurological impairment may therefore

find the test rather onerous, particularly towards the end when presented with a sequence of

increasingly difficult words. Furthermore, the intentionally ramped difficulty may dispropor-

tionately affect particular patient types for whom increased fatigue and impairments in con-

centration are apparent, making the use of an abbreviated test both faster to administer and

less susceptible to confounds arising from patient fatigue.

At present, to predict premorbid intelligence using the NART, a linear regression equation

is calculated in which the explanatory variable is NART errors and the predicted variable is, in

the most recent standardization [20], WAIS-IV Full-scale IQ (FSIQ). A negative correlation

(r< 0) is expected, such that an increase in the number of NART errors should yield commen-

surate reduction in predicted WAIS-IV FSIQ. In this paper, a GA is presented that increases

the association between the NART and WAIS-IV FSIQ, reduces mean absolute prediction

error, and reduces the number of words that participants are asked to pronounce. This

approach is assessed for stability and overfitting via jackknifing [29,30] and exhaustive leave-

one out cross-validation [31].

In recognition of the possibility that some NART words may provide little or no diagnostic

power, and acknowledging that reduced test duration is desirable, in a recent study by

McGrory and colleagues [32], Mokken scaling [33–34] was used to produce a reduced (and

thus faster to administer) 23-word version of the NART. Referred to as the mini-NART, it was

found to account for a similar proportion of variance in FSIQ as the full NART (44.8% vs.
46.5%). In this article, a markedly different approach is used that has several empirical advan-

tages over the use of the full NART or the mini-NART: 1. it accounts for a greater proportion

of the variance in measured WAIS-IV FSIQ; 2. residuals between predicted and measured

WAIS-IV FSIQ using the identified NART subset are verified to be less than or equal to those

observed using the full NART; 3. The number of words that participants are asked to pro-

nounce is reduced from 50 (or 23 for the mini-NART) to 17–20 (around two thirds of the

full test), suggesting that the test could be shortened, thereby reducing the likelihood of
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unnecessary fatigue. Furthermore, the method proposed simply requires the exclusion of indi-

vidual NART words and the application of a revised regression equation, and can therefore

either be administered as an abbreviated test or be applied retrospectively to existing data by

rescoring the identified subset of words. The technique can, more generally, be used in the

design of new predictive tests to identify an optimal subset of a set of candidate questions that

yields the greatest coefficient of determination and smallest mean residual in relation to the

measure that the test is intended to predict.

Initial model

Participants

An opportunity sample of 100 neurologically healthy adults were recruited primarily from

University campuses in Cambridge and London, local retail outlets, and via social media, of

which eight participants failed to complete one or more tests and were excluded from all analy-

ses. There were no missing data across the sample of 92 participants (mean age 40 years; range

18–70; sage16.78), of which 30 were male, on any of the tests reported here. All were British

nationals, with English as the first language, and with normal/corrected-to-normal vision and

hearing. Participants self-declared that they had no history of neurological or psychiatric disor-

der. Extensive training in the administration and scoring of all tests was provided to three

research assistants over several days by PB (an experienced neuropsychologist), and the testing

sessions were closely monitored and supervised to ensure full compliance with the standard-

ized administration and scoring procedures. All participants were recruited and tested

between 2013 and 2016, in a UK University setting. The procedure was approved by the Uni-

versity Ethics Panel, and was conducted in accordance with the tenets of the Declaration of

Helsinki. All participants had normal/corrected-to-normal vision and hearing (self reported),

and spoke English as their first language.

Data collection

All participants completed the NART first and then all 10 core subtests from the WAIS-IV bat-

tery. All tests were administered following standard published instructions. Participants

attended a single session of approx. 90 minutes, with breaks provided upon request.

Analysis procedure and results

The NART responses for each participant were placed in a 2-D bit matrix, to be denoted Q, in

which each row (1..m) corresponded to a NART word index, and each column (1..n) to a par-

ticipant number (Fig 1). Here, rows m = 50 and columns n = 92.

The presence of a 1 in Q (a black dot in Fig 1) denotes an incorrect pronunciation (error),

so the total number of NART errors, xj, for each participant j from 1..n over the sequence of

NART words i from 1..m, is given by Eq 1, such that xj 2 [0..50]. The number of NART errors

per participant in our data ranged from 2 to 46 (�x ¼ 18:25; sx ¼ 8:91). Corresponding WAI-

S-IV FSIQ results, to be denoted y, ranged from 80 to 150 (�y ¼ 108:52; sy ¼ 12:71). A Kolmo-

gorov-Smirnov test indicates that neither empirical dataset deviates significantly from a

normal distribution (k = 0.98, k = 1.00, both p< .0001).

xj ¼
Xm

i¼1

Qi;j; j ¼ 1; . . . ; n ð1Þ

The linear Pearson product-moment correlation coefficient (PPMCC) between NART

errors (x) and measured WAIS-IV FSIQ (y) is given by Eq 2. In addition to enabling a linear
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regression equation to be calculated (see below), the PPMCC, r, and coefficient of determina-

tion, r2, are commonly used in neuropsychological literature to assess the degree of association

between different test scores (e.g., see [28]), and provide one metric against which the GA-

derived model described later in this article is to be evaluated. The value given by Eq 2 for our

data, consistent with that reported in [20], was r(90) = −0.68 p< 0.000001, which is typically

classified as large [35]. The coefficient of determination was r2 = 0.47, a comparable number to

that reported in [5,6] and many subsequent studies that correlate NART error scores against

earlier iterations of WAIS IQ. It suggests that the explanatory variable (NART errors) accounts

for 47% of the variance in the predicted variable (WAIS-IV FSIQ).

rxy ¼
1

nsxsy

Xn

i¼1

ðxi � �xÞðyi � �yÞ ð2Þ

A linear regression equation (of the form ŷ ¼ axþ b, where ŷ denotes a predicted value of

y) was produced, again in keeping with earlier approaches, with multiplicative constant a
(slope) and additive constant b (y-intercept), which can then be used to predict WAIS-IV

FSIQ (ŷ) for any number of NART errors (x). The PPMCC, r (Eq 2), is used to calculate the

Fig 1. 2-D bit matrix for all participants and NART word responses in which a black dot denotes a pronunciation

error.

https://doi.org/10.1371/journal.pone.0205754.g001
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line equation constants (Eq 3 for slope, a, and then Eq 4 for y-intercept, b).

a ¼ r
sy
sx

ð3Þ

b ¼ �y � a�x ð4Þ

Using the full set of NART words, the line equation for our data was ŷ ¼ � 0:9750xþ
126:3163, shown on a scatterplot of raw NART errors vs. WAIS-IV FSIQ in Fig 2 as a dotted

black line with circles denoting measured values (i.e., our 92 participant test scores). The prox-

imity of the sample points to the initial line equation is highlighted as a shaded zone (convex

hull [36]).

A correlation coefficient (or coefficient of determination) should not, on its own, be used to

assess the accuracy of a linear regression model such as this, since in a comparison between

two hypothetical models, greater absolute r (or greater r2) for the first model may coincide

with greater predictive accuracy for the second model, since the slope of a regression line is

not necessarily coupled with lower average residuals (i.e., shorter average distance of measured

sample points to their corresponding predictions). An additional metric should be used that

specifically assesses the accuracy with which a model predicts known values; one simple metric

that can accomplish this is mean absolute error (MAE, Eq 5), which has the advantage of being

in the same units as the predicted variable (here, IQ points). Using raw NART errors,

MAE = 7.33 (s = 5.64), showing that, on average, the error between predicted and observed

WAIS-IV FSIQ using raw NART errors for our data was 7.33 IQ points.

MAE ¼
1

n

Xn

j¼1

jŷj � yjj ð5Þ

In addition, regression models should be validated to examine their stability to the removal

of data points (i.e., the degree to which they may be affected by outliers), and their ability to

make accurate predictions for samples not used in their production (i.e., the degree to which

overfitting may have occurred). Alternative approaches to accomplish this include dividing

data into training and testing sets, k-folds validation [37], and exhaustive leave-one-out cross-

validation (LOOCV), described in [31]. The latter approach is used here, in part because it is

fully reproducible (i.e., does not depend upon the randomized division of data into training

and testing subsamples). In this form of validation, the predicted variable and other metrics of

interest are calculated using models produced using subsamples of the original data in which

one participant at a time has been left out (i.e., n subsamples of n − 1 participants, with partici-

pant k left out, such that k is iterated from 1.. n). These are sometimes referred to as jackknife

samples. Thereafter, the accuracy with which each of the n models predict metrics of interest

for the one left out participant not used their production is assessed. As before, MAE may be

used to evaluate prediction accuracy both for the n jackknife models (which comprised n(n
− 1) = 8372 individual predictions) and the n single left out sample predictions (here 92). A

correlation coefficient (or coefficient of determination) can only be produced for the jackknife

models since the left out samples are not associated with a single line equation.

For our data, averaging over the n jackknife models, with standard deviation shown in

parenthesis, yields = −0.68 (0.01), a = −0.9750 (0.01), b = 126.3157 (0.28), and MAE = 7.33

(5.61). These values are remarkably close to where all participant data were used (reported

above), indicating that outliers did not significantly affect these metrics. Next, the accuracy of

the predicted variable elicited by each model using each respective single left-out participant

(i.e., the participant not used in the production of that model) was assessed. This yielded
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MAE = 7.49 (SD = 5.78), which is fractionally greater than the MAE calculated using all data

and the average MAE across the n jackknife models; however, this is to be expected given that

the models are now being requested to make predictions for participants that were not used in

their production. Furthermore, the differences in MAE values (between all data, 8372 jackknife

subsamples, n leave-one-out samples) were not statistically significant (p> .05).

Fig 2. Scatterplot of raw NART errors vs. measured WAIS-IV FSIQ (hollow circles). Dotted black line is initial line equation; shaded zone is the convex hull.

https://doi.org/10.1371/journal.pone.0205754.g002
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Genetic algorithm model

Apparatus

Statistical analyses and optimization algorithms were implemented in MATLAB (The Math-

works Inc., Natick MA). The standard regression mode, GA, validation routines and experi-

mental data used for testing and validation are freely provided for download from the Open

Science Framework (http://dx.doi.org/10.17605/OSF.IO/34BKU).

Analysis procedure

The GA described below is charged with finding the optimum subset of NART words that

yields the smallest average prediction residual (MAE), working from the initial starting point

of using all 50 words.

GAs search solution spaces so large that they cannot feasibly be traversed using exhaustive/

analytical approaches, enabling them to address computational problems, like the present one,

that have no polynomial-time exhaustive solution. The final solution returned by a GA is not

necessarily the best possible answer, since they rely upon an adaptive heuristic approach that

iteratively improves upon each currently held solution until a solution that is deemed accept-

ably good is obtained. However, if appropriately configured, GAs can produce solutions that

dramatically improve upon the initial starting point. GAs, being inspired by the biological

principle of natural selection by survival of the fittest, entail the representation of candidate

solutions as chromosomes, the evaluation of chromosome efficacy through a fitness function,

the creation of new chromosomes via mutation and/or crossover (principally from the chromo-

somes identified as the most fit), and a selection method by which individual chromosomes are

chosen to sire subsequent generations. A termination criterion must also be decided upon to

determine how long the GA will run. Alternatives include letting the GA run for a fix period of

time, for a fixed number of generations, until the solution is valid (e.g., in some NP-class prob-

lems in which finding a solution that merely works is a laudable goal), or until the fitness of

the solutions produced over a pre-determined period of time or number of generations ceases

to improve (i.e., evolutionary stagnation).

Chromosome structure

Each chromosome, c, was a 1-D bit string (specifically, a sequence of 50 binary digits, each

referred to as a gene) wherein each bit controls whether the NART word at index i should by

used (ci = 1) or not used (ci = 0) in the calculation of each participant’s revised NART score.

The number of alleles (alternatives) for each gene was therefore 2: 0 and 1. All possible solu-

tions to the problem of finding the optimum NART subset can be represented on such a chro-

mosome, of which there are 250 (one quadrillion, one hundred twenty five trillion, eight

hundred ninety nine billion, nine hundred six million, eight hundred forty two thousand, six

hundred and twenty four), which is the cardinality of the powerset of the set of words (w) in

the original NART, |}(w)| = 2|w| (i.e., the size of the set of all possible subsets of w). If one were

to iterate through these subsets one at a time, a tight bound algorithm of exponential time

complexity θ(2|w|) would be required, which is computationally impractical. To put this into

perspective, if each subset took 1 sec to evaluate, it would take 36 million years to sequentially

test all subsets to identify the true (guaranteed) optimum.

Settings

The GA was run for a fixed number of generations (128), which was found to be more than

sufficient for fitness to reach a stable asymptote (i.e., after which no further improvement in
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fitness was observed), and also provided an acceptable run-time of approx. 1–2 minutes on a

standard computer. The number of children produced in each generation was also set to 128.

With these settings, one run produces a total of 128 × 128 = 16384 candidate solutions, with a

tendency to improvement from generation-to-generation that inevitably slows as the algo-

rithm progresses and fitter solutions become more difficult to find. A mutation rate [38] of 5

50
,

i.e. 10%, was used, determined experimentally to, when coupled with the use of 128 children

per generation, yield fast and stable evolutionary descent.

The mutation routine entailed the negation of randomly selected genes (sometimes called

bit mutation or bit flipping). Crossover (recombination) was not used, since this is not thought

to be an effective approach for problems in which large changes in chromosome composition

are likely to dramatically affect performance and thereby thwart evolutionary progress. A sim-

ple maximally elitist GA was used, such that only the fittest child in each generation was

retained (determined as described below), which was set to be the parent of the subsequent

generation. Other (less fit) chromosomes were destroyed. However, the fittest child in each

generation always replaced the parent chromosome (whether fitter or not), enabling the fitness

profile over time to decrease as well as increase, which is thought to prevent premature conver-

gence (although it is acknowledged that the single-parent approach could lead to convergence

to local optima, to demonstrate the general procedure, this simple approach was taken, and

suitably fit solutions were indeed produced).

Fitness function

To calculate chromosome fitness (a so-called figure of merit), first a revised NART response

matrix, Q0, is calculated from Q, the original response matrix, by multiplying each participant’s

NART word responses with the chromosome to be evaluated (Eq 6). This had the effect of

masking the responses for specific words so that they no longer contributed to the final score

for any participant.

Q0i;j ¼
Xm

i¼1

Qi;j � ci; j ¼ 1::n ð6Þ

Next, the number of NART errors for the surviving NART words only, to be called the

revised NART score, x0, is calculated using Eq 1 with Q0 substituting for Q. Next, a correlation

coefficient is calculated using Eq 2 with x0 substituting for x, and then revised line equation

constants, a0 and b’, are calculated using Eqs 3 and 4 with �x0 and sx0 substituting for �x and sx,
respectively. A revised prediction, ŷ0 can then be calculated for each participant. Using Eq 5,

with ŷ0j substituting for ŷj , the MAE using the adjusted NART scores can then be calculated,

evaluating how accurately the current word subset approximates measured WAIS-IV FSIQ.

The MAE value is returned as the fitness of the chromosome.

Over successive generations, the GA identifies the optimum subset: i.e., the optimum values

in c, that when entrywise multiplied with the raw NART responses from all participants identi-

cally, minimizes MAE. As a consequence of falling MAE, the absolute correlation and coeffi-

cient of determination will also typically increase from generation-to-generation. It is worth

noting that there may be multiple equally fit chromosomes, and that running the GA on multi-

ple occasions could produce subtly different word subsets each time because several words or

word combinations may each be equally suitable alternatives in c for MAE minimization

(reflecting the randomness inherent in evolutionary descent, akin to nature). Selecting for the

additional criterion of minimal subset cardinality is one approach that could be used to select

from among equally fit alternatives (i.e., when two subsets yielding equal MAE are evaluated,
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particularly if the objective was to devise an abbreviated test or a new test using the fewest

number of candidate questions).

Model results

Using the settings described above, repeating the GA for 100 runs, with standard deviation

shown in parenthesis, yields MAE = 5.76 (0.03), a = −2.84 (0.16), b = 130.18 (1.50), r = −0.78

(0.003), and r2 = 0.61 (0.004), with the average number of words at 19.65. Over the 100 runs

performed, 14 unique chromosomes were produced. Of these, the GA identified an optimal

subset comprising 17 of the 50 original NART words. Despite using only around one third

(35%) of the words in the full NART, this subset produces more accurate WAIS-IV FSIQ pre-

dictions (MAE = 5.75 relative to 7.33), and also yields a PPMCC of r = −0.78 compared to r =

−0.68 for the original approach (the corresponding coefficient of determination, r2, increased

from 0.46 to 0.61). The line equation constants for this chromosome were a = −3.4882 and

b = 132.7113. The NART word subset identified by the GA on this run (with original NART

word index shown in parenthesis) was: Capon (7), Nausea (9), Courteous (11), Naïve (14),

Thyme (17), Procreate (23), Gouge (25), Superfluous (26), Simile (27), Façade (31), Drachm

Fig 3. Scatterplot of NART errors vs. WAIS-IV FSIQ using original (sample points denoted �, line equation

dotted, light gray convex hull) and GA-derived (sample points denoted +, line equation dashed, dark gray convex

hull) models.

https://doi.org/10.1371/journal.pone.0205754.g003
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(33), Idyll (38), Puerperal (39), Leviathan (43), Prelate (45), Demesne (47), and Campanile

(50). Raw and GA-derived participant scores (shown as � and + symbols, respectively) and

corresponding line equations functions (shown as solid and dotted lines) are shown in Fig 3.

The evolutionary progression from the starting point of using all 50 NART words is shown

in Fig 4, which also indicates that the number of generations that the GA was permitted to run

was adequate for a stable chromosome to be formed using the mutation rate and number of

children per generation described above.

Validation

As with the initial regression model (above), the robustness and generalizability of the GA-

derived model can be evaluated with jackknifing and LOOCV. For the GA-derived approach,

averaging over the n jackknife models, with standard deviation shown in parenthesis, yields

r = −0.78 (0.01), a = −2.8064 (0.14), b = 129.6049 (1.63), and MAE = 5.76 (5.45), values that are

very close to the mean performance over 100 run using all participant data described above.

The mean prediction was 108.69 (9.85). The chromosomes produced in each of these models

are shown in Fig 5, in which a high degree of consistency implies a stable solution that is

largely invariant to the removal of individual participants, and is quite consistent from run to

Fig 4. Chromosome evolution over 128 generations (top row is start point) in which black dots denote NART

words used in the calculation of each participant’s revised NART score.

https://doi.org/10.1371/journal.pone.0205754.g004
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run. For the n single left out samples, the MAE was 7.32 (6.11), with a mean prediction of

108.69 (9.79). The critical performance metrics (subset cardinality, mean prediction, r, and r2,

and MAE) are shown in relation to the original model and its validation in Table 1. It is appar-

ent that the cardinality of the subset (number of retained NART words) is fractionally higher

than the ‘best’ runs using all data described above (in which 17 words are retained). Indeed,

due to the heuristic nature of the approach, running the all-data single-run GA multiple times

also produces some results wherein 19–20 words are retained, since these alternative solutions

Fig 5. Chromosomes for n jackknifed GA models in which participant k was left out.

https://doi.org/10.1371/journal.pone.0205754.g005

Table 1. Critical performance metrics for each models and cross validation set (standard deviation shown in parenthesis, were available).

Initial Model Cross Validation GA Model (Best of 100) GA Cross Validation

Jackknife One Left Out Jacknife One Left Out

Cardinality (Words) 50 50 50 17 19.65 (0.80) 19.65 (0.80)

Mean Prediction 108.52 (12.71) 108.52 (8.64) 108.53 (8.66) 108.52 (9.94) 108.52 (9.85) 108.69 (9.79)

PPMCC (r) -0.68 0.68 (0.01) - -0.78 -0.78 (0.01) -

COD (r2) 0.46 0.46 - 0.61 0.61 -

MAE 7.33 (5.64) 7.33 (5.61) 7.49 (5.78) 5.75 5.76 (5.45) 7.32 (6.11)

https://doi.org/10.1371/journal.pone.0205754.t001
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also yield an MAE = 5.75. It likely that, with if the number of participants were increased,

MAE for single left-out participants would fall.

In Table 1, it is apparent that the MAE for the all-data GA model and its jackknife subsam-

ples are lower than the initial model all-data MAE and its jackknife subsamples. Comparing

jackknife distributions using a t-test, this difference, although relatively small, is statistically

significant [t(8462) = 2.75,p< 0.01]. The MAE differences between the one-left-out (validation)

sets in the initial and GA-derived models is not statistically significant (p = 0.84), despite that

the GA-derived model uses, on average, only 19–20 words of the original 50, demonstrating

that the additional words in the NART, as originally formulated, did not improve predictive

accuracy for our data.

Conclusions

A GA for optimizing the relationship between neuropsychological test data is presented and

demonstrated using the NART and WAIS-IV FSIQ leading to increased absolute correlation/

coefficient of determination, potentially reduced mean absolute error (i.e., smaller prediction

residuals). The GA suggests that the number of words in the NART may be reduced by up to

66%; however, to evaluate the potential effects of reduced fatigue and alternate word order, the

use of an optimal word subset should ultimately be evaluated by collecting data using it

directly, rather than having data corresponding to the words identified as having predictive

value being extracted from an administration of the full test. Due to the way that the GA was

implemented, it could be that evolution to a local optimum occurred, and that a global opti-

mum with higher performance is possible. It is also possible that incorporating other informa-

tion, such as participant demographics and results on other hold tests (such as that WTAR and

TOPF), may further elevate the correlation and reduce mean prediction error, rather like John-

son et al. [25] who used a GA to find the best combination of different neuropsychological

tests to predict progression to Alzheimer’s disease (except that, here, questions from within

tests would be selected, rather than tests themselves). Furthermore, greater performance might

be achieved using artificial neural networks or other alternative AI approaches, or by weight-

ing individual words rather than by the creation of optimal subsets. These possibilities are

under investigation; however, the current article serves to illustrate a general principle that the

strength of association between neuropsychological tests may be increased using GAs by, in

this article, selecting optimum question subsets. A further caveat is that the cross-validation

routines used here, although including LOOCV in which models are tested upon individual

samples upon which they were not trained, may still be susceptible to a degree of overfitting;

this possibility can be investigated in a follow-up study with a larger cohort which would sup-

port the division of participants into adequately sized training and validation sets.

It may also be the case that different locations (e.g., clinical centers, or geographic regions),

participant demographics, and other clinical indicators may influence the optimal subset, so it

may be more effective to select data to determine the optimal subset using one or more of

these parameters, all without needing to adjust the basic NART test procedure, retaining the

simplicity of administering this test for clinicians and enabling it to be used retrospectively on

data already collected.
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