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Abstract

In clinical neuropsychology the cognitive abilities of neurological patients are
commonly estimated using well-established paper-based tests. Typically, scores on
some tests remain relatively well preserved, whilst others exhibit a significant and
disproportionate decline. Scores on those tests that measure preserved cognitive
functions (so-called ‘hold’ tests) may be used to estimate premorbid abilities,
including scores in non-hold tests that would have been expected prior to the onset
of cognitive impairment. Many hold tests entail word reading, with each word being
graded as correctly or incorrectly pronounced. Inevitably, such tests are likely to
contain words that provide little or no diagnostic power (i.e., can be eliminated
without negatively affecting prediction accuracy). In this paper, a genetic algorithm
is developed and demonstrated, using n = 92 neurologically healthy participants, to
identify optimal word subsets from the National Adult Reading Test that minimize
the mean error in predicting the most widely used clinical measure of IQ and
cognitive ability, the Wechsler Adult Intelligence Scale Fourth Edition 1Q. In addition
to requiring only 17 — 20 of the original 50 words (suggesting that this test could be
revised to be up to 66% shorter) and minimizing mean prediction error, the
algorithm increases the proportion of the variance in the predicted variable
explained in comparison to using all words (fromr? = 0.46tor? = 0.61). In a
clinical setting this would improve estimates of premorbid cognitive function and, if
an abbreviated revision to this test were to be adopted, reduce the arduousness of
the test for patients. The proposed method is evaluated with jackknifing and leave

one out cross validation. The general approach may be used to optimize the
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relationship between any two psychological tests by finding the question subset in
one test that minimizes the prediction error in a second test by training the genetic
algorithm using data collected from participants upon whom both tests have been
administered. This approach may also be used to develop new predictive tests, since
it provides a method to identify an optimal subset of a set of candidate questions
(for which empirical data have been collected) that maximizes prediction accuracy

and the proportion of variance in the predicted variable that can be explained.

Introduction

A ‘hold test’ is a neuropsychological test that measures cognitive functions
that remain relatively well preserved following neurological damage caused by
traumatic brain injury, stroke, dementia or other condition. In longitudinal studies of
preclinical to clinical populations, the relative preservation of hold test performance
has been convincingly demonstrated [1]. Since, in neurologically healthy populations,
performance in hold tests is highly correlated with that in non-hold tests [2], hold
tests can be used with clinical populations to infer premorbid cognitive ability, such
as full-scale 1Q on the Wechsler Adult Intelligence Scale (WAIS-1V; [3]; for discussion
see [4]). Knowledge of premorbid cognitive ability is essential both in evaluating the
severity of impairment and in treatment planning.

Examples of hold tests that involve reading include the National Adult
Reading Test (NART; [5-6]) and its international derivatives (which include NAART
and AMNART [USA], [7-9]; NART-SWE [Sweden], [10]; NZART [New Zealand], [11,12];

fNART [France], [13]; DART [Netherlands], [14]; and AUSNART [Australia], [15], the
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Wechsler Test of Adult Reading (WTAR; [16]), the Test of Premorbid Functioning
(TOPF; [17]), and a component of the Wide Range Achievement Test (WRAT4; [18]).
Although the TOPF is intended to supersede the WTAR, the WTAR is still widely used
and the NART also remains popular [19-21], particularly for research purposes.

To develop new neuropsychological tests, and to explore the relationships
between those already in use, data from multiple tests are collected from healthy
participants. In this way, the ability of hold-tests to predict the most likely results in
other tests (such as full-scale 1Q) can be evaluated (although subsequent longitudinal
validation with preclinical to clinical populations is also desirable). In existing studies,
a linear regression equation relating reading test performance to full-scale 1Q is
typically calculated (e.g., [12,20,21]. Ideally, a hold test would yield a perfectly linear
correlation with a non-hold test of interest (r = +1) and produce perfectly accurate
predictions; however, in practice, this goal is unrealistic due to inherent limitations
in test reliability and the imperfectly linear relationship expected between any two
empirical datasets, especially when they measure different (albeit highly correlated)
cognitive functions. The wealth of expertise and normative data relating to existing
reading tests means that modifications either to the test or its corresponding
instructions are undesirable without compelling justification. However, it is possible
to use optimization and artificial intelligence (Al) techniques to develop new tests or
revisions to existing tests that are demonstrably superior, or to identify more
effective scoring procedures that may be applied to standard tests, e.g., by using
guestion weighting schemes or question subsets that minimize the error between
prediction and measurement with experimental data collected from participants

upon whom both tests have been administered. In one recent study [22], a genetic
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algorithm (GA; [23]) was used to produce an abbreviated form of the Psychopathic
Personality Inventory — Revised (PPI-R). In another, a GA was used to abbreviate the
Multidimensional Experiential Avoidance Questionnaire [24]. Similarly, a GA with
logistic regression to select the optimum combination of neuropsychological test
results to predict progression to Alzheimer’s disease [25]. In the present study,
rather than using genetic algorithms to abbreviate a test for comparison against
results obtained using the full test, we use a GA to identify the optimum question
subset from one test to most accurately estimate the result of a second (predicted)
test.

A related area of research abbreviates tests on a per-participant basis. In
Computerized-adaptive Testing (CAT) questions are selected based upon an estimate
of current performance, and can yield accuracy comparable to an equivalent full-
length test in which all questions are used [26]. In Multi-stage Testing (MST; [27]) a
broadly similar approach is taken, except that banks of questions (so-called testlets)
are selected at each decision stage. Using these approaches, sequences of decisions
are made on-the-fly concerning which questions to present. However, such
approaches are not appropriate in this case, where a core subset of questions is to
be developed from which a single linear regression equation is desired, for which
tests are administered by the clinician on paper (rather than using a computer).
Additionally, the standardized instructions for the NART, used in this article to
illustrate the general approach, require all items to be attempted for scoring to be
valid. Furthermore, the approach presented is well suited to test design, enabling

the researcher to develop new tests by establishing optimum combinations of
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questions that maximize predictive accuracy, potentially based upon a parent test
(such as the NART).

To illustrate the general approach, data from the British NART [5,6] is used, in
part because a recent survey indicates that is the most widely cited [21], but also
because has been made freely available for use without restriction. It comprises 50
visually presented words that have irregular non-phonetic spellings and for which
verbal responses elicited from participants are subject (by the experimenter,
following standardized instructions) to binary classification as either having been
correctly or incorrectly pronounced. The NART is scored by counting the number of
incorrectly pronounced words (hereafter referred to as NART errors), and the
instructions require that participants attempt all words for the scoring to be valid.
The irregular nature of the words (i.e., their violation of typical phoneme-grapheme
correspondence rules) is such that participants should be unable to spontaneously
deduce correct pronunciations, and as such the test measures prior knowledge [28].
The set of 50 words that feature in the NART generally increase in difficulty through
the test (thus the order that the words are presented is fixed, with words presented
towards the end of the test intended to be less familiar to the target population). A
patient who has suffered neurological impairment may therefore find the test rather
onerous, particularly towards the end when presented with a sequence of
increasingly difficult words. Furthermore, the intentionally ramped difficulty may
disproportionately affect particular patient types for whom increased fatigue and
impairments in concentration are apparent, making the use of an abbreviated test
both faster to administer and less susceptible to confounds arising from patient

fatigue.
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At present, to predict premorbid intelligence using the NART, a linear
regression equation is calculated in which the explanatory variable is NART errors
and the predicted variable is, in the most recent standardization [20], WAIS-IV Full-
scale 1Q (FSIQ). A negative correlation (r < 0) is expected, such that an increase in
the number of NART errors should yield commensurate reduction in predicted WAIS-
IV FSIQ. In this paper, a GA is presented that increases the association between the
NART and WAIS-IV FSIQ, reduces mean absolute prediction error, and reduces the
number of words that participants are asked to pronounce. This approach is
assessed for stability and overfitting via jackknifing [29,30] and exhaustive leave-one
out cross-validation [31].

In recognition of the possibility that some NART words may provide little or
no diagnostic power, and acknowledging that reduced test duration is desirable, in a
recent study by McGrory and colleagues [32], Mokken scaling [33-34] was used to
produce a reduced (and thus faster to administer) 23-word version of the NART.
Referred to as the mini-NART, it was found to account for a similar proportion of
variance in FSIQ as the full NART (44.8% vs. 46.5%). In this article, a markedly
different approach is used that has several empirical advantages over the use of the
full NART or the mini-NART: 1. it accounts for a greater proportion of the variance in
measured WAIS-IV FSIQ; 2. residuals between predicted and measured WAIS-IV FSIQ
using the identified NART subset are verified to be less than or equal to those
observed using the full NART; 3. The number of words that participants are asked to
pronounce is reduced from 50 (or 23 for the mini-NART) to 17-20 (around two thirds
of the full test), suggesting that the test could be shortened, thereby reducing the

likelihood of unnecessary fatigue. Furthermore, the method proposed simply
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requires the exclusion of individual NART words and the application of a revised
regression equation, and can therefore either be administered as an abbreviated
test or be applied retrospectively to existing data by rescoring the identified subset
of words. The technique can, more generally, be used in the design of new predictive
tests to identify an optimal subset of a set of candidate questions that yields the
greatest coefficient of determination and smallest mean residual in relation to the

measure that the test is intended to predict.

Initial model

Participants

An opportunity sample of 100 neurologically healthy adults were recruited
primarily from University campuses in Cambridge and London, local retail outlets,
and via social media, of which eight participants failed to complete one or more tests
and were excluded from all analyses. There were no missing data across the sample
of 92 participants (mean age 40 years; range 18 — 70; s,4,16.78), of which 30 were
male, on any of the tests reported here. All were British nationals, with English as
the first language, and with normal/corrected-to-normal vision and hearing.
Participants self-declared that they had no history of neurological or psychiatric
disorder. Extensive training in the administration and scoring of all tests was
provided to three research assistants over several days by PB (an experienced
neuropsychologist), and the testing sessions were closely monitored and supervised
to ensure full compliance with the standardized administration and scoring

procedures. All participants were recruited and tested between 2013 and 2016, in a
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UK University setting. The procedure was approved by the University Ethics Panel,
and was conducted in accordance with the tenets of the Declaration of Helsinki. All
participants had normal/corrected-to-normal vision and hearing (self reported), and

spoke English as their first language.

Data collection

All participants completed the NART first and then all 10 core subtests from
the WAIS-IV battery. All tests were administered following standard published
instructions. Participants attended a single session of approx. 90 minutes, with

breaks provided upon request.

Analysis procedure and results

The NART responses for each participant were placed in a 2-D bit matrix, to
be denoted @, in which each row (1..m) corresponded to a NART word index, and

each column (1..n) to a participant number (Fig 1). Here, rowsm = 50 and

columnsn = 92.

<< Figure 1 About Here >>

Fig 1. 2-D bit matrix for all participants and NART word responses in which a black

dot denotes a pronunciation error.
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The presence of a1in Q (a black dot in Fig 1) denotes an incorrect
pronunciation (error), so the total number of NART errors, x;, for each participant j
from 1..n over the sequence of NART words i from 1..m, is given by Eq. 1, such that
Xj € [0..50]. The number of NART errors per participant in our data ranged from 2
to 46 (x = 18.25, s, = 8.91). Corresponding WAIS-IV FSIQ results, to be denoted y,
ranged from 80 to 150 (y = 108.52,s, = 12.71). A Kolmogorov-Smirnov test
indicates that neither empirical dataset deviates significantly from a normal

distribution (k = 0.98, k = 1.00, bothp <.0001).

m
xj:ZQi'j' j=1,...,n (1)
i=1

The linear Pearson product-moment correlation coefficient (PPMCC)
between NART errors (x) and measured WAIS-IV FSIQ (y) is given by Eg. 2. In
addition to enabling a linear regression equation to be calculated (see below), the
PPMCC, v, and coefficient of determination, r?, are commonly used in
neuropsychological literature to assess the degree of association between different
test scores (e.g., see [28]), and provide one metric against which the GA-derived
model described later in this article is to be evaluated. The value given by Eq. 2 for
our data, consistent with that reported in [20], was 7(9p) = —0.68 p < 0.000001,
which is typically classified as large [35]. The coefficient of determination was r? =
0.47, a comparable number to that reported in [5,6] and many subsequent studies

that correlate NART error scores against earlier iterations of WAIS 1Q. It suggests that
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the explanatory variable (NART errors) accounts for 47% of the variance in the

predicted variable (WAIS-IV FSIQ).

Ty Z(xl - DG~ ) @)

nsxsy

A linear regression equation (of the form y = ax + b, where y denotes a
predicted value of y) was produced, again in keeping with earlier approaches, with
multiplicative constant a (slope) and additive constant b (y-intercept), which can
then be used to predict WAIS-IV FSIQ (¥) for any number of NART errors (x). The
PPMCC, r (Eq. 2), is used to calculate the line equation constants (Eg. 3 for slope, a,

and then Eq. 4 for y-intercept, b).

b=7—a%x (4)

Using the full set of NART words, the line equation for our data was y =
—0.9750x + 126.3163, shown on a scatterplot of raw NART errors vs. WAIS-IV FSIQ
in Fig 2 as a dotted black line with circles denoting measured values (i.e., our 92
participant test scores). The proximity of the sample points to the initial line

equation is highlighted as a shaded zone (convex hull [36]).

<< Figure 2 About Here >>

11
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Fig 2. Scatterplot of raw NART errors vs. measured WAIS-IV FSIQ (hollow circles).

Dotted black line is initial line equation; shaded zone is the convex hull.

A correlation coefficient (or coefficient of determination) should not, on its
own, be used to assess the accuracy of a linear regression model such as this, since
in a comparison between two hypothetical models, greater absolute r (or greater
r2) for the first model may coincide with greater predictive accuracy for the second
model, since the slope of a regression line is not necessarily coupled with lower
average residuals (i.e., shorter average distance of measured sample points to their
corresponding predictions). An additional metric should be used that specifically
assesses the accuracy with which a model predicts known values; one simple metric
that can accomplish this is mean absolute error (MAE, Eg. 5), which has the
advantage of being in the same units as the predicted variable (here, IQ points).
Using raw NART errors, MAE = 7.33 (s = 5.64), showing that, on average, the
error between predicted and observed WAIS-IV FSIQ using raw NART errors for our

data was 7.33 1Q points.
1 n
MAE = ;ZW, - (5)
j=1

In addition, regression models should be validated to examine their stability
to the removal of data points (i.e., the degree to which they may be affected by

outliers), and their ability to make accurate predictions for samples not used in their

12
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production (i.e., the degree to which overfitting may have occurred). Alternative
approaches to accomplish this include dividing data into training and testing sets, k-
folds validation [37], and exhaustive leave-one-out cross-validation (LOOCV),
described in [31]. The latter approach is used here, in part because it is fully
reproducible (i.e., does not depend upon the randomized division of data into
training and testing subsamples). In this form of validation, the predicted variable
and other metrics of interest are calculated using models produced using
subsamples of the original data in which one participant at a time has been left out
(i.e., n subsamples of n — 1 participants, with participant k left out, such that k is
iterated from 1..n). These are sometimes referred to as jackknife samples.
Thereafter, the accuracy with which each of the n models predict metrics of interest
for the one left out participant not used their production is assessed. As before,
MAE may be used to evaluate prediction accuracy both for the n jackknife models
(which comprised n(n — 1) = 8372 individual predictions) and the n single left out
sample predictions (here 92 ). A correlation coefficient (or coefficient of
determination) can only be produced for the jackknife models since the left out
samples are not associated with a single line equation.

For our data, averaging over the n jackknife models, with standard deviation
shown in parenthesis, yields r = —0.68 (0.01), a = —0.9750 (0.01), b =
126.3157 (0.28), and MAE = 7.33 (5.61). These values are remarkably close to
where all participant data were used (reported above), indicating that outliers did
not significantly affect these metrics. Next, the accuracy of the predicted variable
elicited by each model using each respective single left-out participant (i.e., the

participant not used in the production of that model) was assessed. This yielded

13
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MAE = 7.49 (SD = 5.78), which is fractionally greater than the MAE calculated
using all data and the average MAE across the n jackknife models; however, this is
to be expected given that the models are now being requested to make predictions
for participants that were not used in their production. Furthermore, the differences
in MAE values (between all data, 8372 jackknife subsamples, n leave-one-out

samples) were not statistically significant (p > .05).

Genetic algorithm model

Apparatus

Statistical analyses and optimization algorithms were implemented in
MATLAB (The Mathworks Inc., Natick MA). The standard regression mode, GA,
validation routines and experimental data used for testing and validation are freely
provided for download from the Open Science Framework

(http://dx.doi.org/10.17605/0SF.I0/34BKU).

Analysis procedure

The GA described below is charged with finding the optimum subset of NART
words that yields the smallest average prediction residual (MAE), working from the
initial starting point of using all 50 words.

GAs search solution spaces so large that they cannot feasibly be traversed
using exhaustive/analytical approaches, enabling them to address computational
problems, like the present one, that have no polynomial-time exhaustive solution.

The final solution returned by a GA is not necessarily the best possible answer, since
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they rely upon an adaptive heuristic approach that iteratively improves upon each
currently held solution until a solution that is deemed acceptably good is obtained.
However, if appropriately configured, GAs can produce solutions that dramatically
improve upon the initial starting point. GAs, being inspired by the biological principle
of natural selection by survival of the fittest, entail the representation of candidate
solutions as chromosomes, the evaluation of chromosome efficacy through a fitness
function, the creation of new chromosomes via mutation and/or crossover
(principally from the chromosomes identified as the most fit), and a selection
method by which individual chromosomes are chosen to sire subsequent
generations. A termination criterion must also be decided upon to determine how
long the GA will run. Alternatives include letting the GA run for a fix period of time,
for a fixed number of generations, until the solution is valid (e.g., in some NP-class
problems in which finding a solution that merely works is a laudable goal), or until
the fitness of the solutions produced over a pre-determined period of time or

number of generations ceases to improve (i.e., evolutionary stagnation).

Chromosome structure

Each chromosome, ¢, was a 1-D bit string (specifically, a sequence of 50
binary digits, each referred to as a gene) wherein each bit controls whether the
NART word at index i should by used (c; = 1) or not used (c; = 0) in the calculation
of each participant’s revised NART score. The number of alleles (alternatives) for
each gene was therefore 2: 0 and 1. All possible solutions to the problem of finding

the optimum NART subset can be represented on such a chromosome, of which

15



339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

there are 259 (one quadrillion, one hundred twenty five trillion, eight hundred ninety
nine billion, nine hundred six million, eight hundred forty two thousand, six hundred
and twenty four), which is the cardinality of the powerset of the set of words (w) in
the original NART, |o(w)| = 2!"! (i.e., the size of the set of all possible subsets of w).
If one were to iterate through these subsets one at a time, a tight bound algorithm
of exponential time complexity 6(2|W|) would be required, which is computationally
impractical. To put this into perspective, if each subset took 1 sec to evaluate, it
would take 36 million years to sequentially test all subsets to identify the true

(guaranteed) optimum.

Settings

The GA was run for a fixed number of generations (128), which was found to
be more than sufficient for fitness to reach a stable asymptote (i.e., after which no
further improvement in fitness was observed), and also provided an acceptable run-
time of approx. 1-2 minutes on a standard computer. The number of children
produced in each generation was also set to 128. With these settings, one run
produces a total of 128 X 128 = 16384 candidate solutions, with a tendency to
improvement from generation-to-generation that inevitably slows as the algorithm

progresses and fitter solutions become more difficult to find. A mutation rate [38] of

%, i.e. 10%, was used, determined experimentally to, when coupled with the use of
128 children per generation, yield fast and stable evolutionary descent.

The mutation routine entailed the negation of randomly selected genes

(sometimes called bit mutation or bit flipping). Crossover (recombination) was not
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used, since this is not thought to be an effective approach for problems in which
large changes in chromosome composition are likely to dramatically affect
performance and thereby thwart evolutionary progress. A simple maximally elitist
GA was used, such that only the fittest child in each generation was retained
(determined as described below), which was set to be the parent of the subsequent
generation. Other (less fit) chromosomes were destroyed. However, the fittest child
in each generation always replaced the parent chromosome (whether fitter or not),
enabling the fitness profile over time to decrease as well as increase, which is
thought to prevent premature convergence (although it is acknowledged that the
single-parent approach could lead to convergence to local optima, to demonstrate
the general procedure, this simple approach was taken, and suitably fit solutions

were indeed produced).

Fitness function

To calculate chromosome fitness (a so-called figure of merit), first a revised
NART response matrix, Q’, is calculated from Q, the original response matrix, by
multiplying each participant’s NART word responses with the chromosome to be
evaluated (Eq. 6). This had the effect of masking the responses for specific words so

that they no longer contributed to the final score for any participant.

m
Q= Z Qij-c, Jj=1l.n (6)
i=1

17
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Next, the number of NART errors for the surviving NART words only, to be
called the revised NART score, x', is calculated using Eq. 1 with Q' substituting for Q.
Next, a correlation coefficient is calculated using Eq. 2 with x’ substituting for x, and
then revised line equation constants, a’ and b’, are calculated using Egs. 3 and 4 with
x' and s, substituting for X and s, respectively. A revised prediction, }7’ can then be
calculated for each participant. Using Eq. 5, withfj’ substituting for y,, the MAE
using the adjusted NART scores can then be calculated, evaluating how accurately
the current word subset approximates measured WAIS-IV FSIQ. The MAE value is
returned as the fitness of the chromosome.

Over successive generations, the GA identifies the optimum subset: i.e., the
optimum values in ¢, that when entrywise multiplied with the raw NART responses
from all participants identically, minimizes MAE. As a consequence of falling MAE,
the absolute correlation and coefficient of determination will also typically increase
from generation-to-generation. It is worth noting that there may be multiple equally
fit chromosomes, and that running the GA on multiple occasions could produce
subtly different word subsets each time because several words or word
combinations may each be equally suitable alternatives in ¢ for MAE minimization
(reflecting the randomness inherent in evolutionary descent, akin to nature).
Selecting for the additional criterion of minimal subset cardinality is one approach
that could be used to select from among equally fit alternatives (i.e., when two
subsets yielding equal MAE are evaluated, particularly if the objective was to devise

an abbreviated test or a new test using the fewest number of candidate questions).

Model results

18
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Using the settings described above, repeating the GA for 100 runs, with
standard deviation shown in parenthesis, yields MAE = 5.76 (0.03), a =
—2.84(0.16), b = 130.18 (1.50), r = —0.78 (0.003), and r? = 0.61 (0.004),
with the average number of words at 19.65. Over the 100 runs performed, 14
unique chromosomes were produced. Of these, the GA identified an optimal subset
comprising 17 of the 50 original NART words. Despite using only around one third
(35%) of the words in the full NART, this subset produces more accurate WAIS-IV
FSIQ predictions (MAE = 5.75 relative to 7.33), and also yields a PPMCC of r =
—0.78 compared to r = —0.68 for the original approach (the corresponding
coefficient of determination, 72, increased from 0.46to 0.61). The line equation
constants for this chromosome werea = —3.4882 and b = 132.7113. The NART
word subset identified by the GA on this run (with original NART word index shown
in parenthesis) was: Capon (7), Nausea (9), Courteous (11), Naive (14), Thyme (17),
Procreate (23), Gouge (25), Superfluous (26), Simile (27), Facade (31), Drachm (33),
Idyll (38), Puerperal (39), Leviathan (43), Prelate (45), Demesne (47), and Campanile
(50). Raw and GA-derived participant scores (shown as © and + symbols,
respectively) and corresponding line equations functions (shown as solid and dotted

lines) are shown in Fig 3.

<< Figure 3 About Here >>

Fig 3. Scatterplot of NART errors vs. WAIS-IV FSIQ using original (sample points
denoted o, line equation dotted, light gray convex hull) and GA-derived (sample

points denoted +, line equation dashed, dark gray convex hull) models.

19



431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

The evolutionary progression from the starting point of using all 50 NART
words is shown in Fig 4, which also indicates that the number of generations that the
GA was permitted to run was adequate for a stable chromosome to be formed using

the mutation rate and number of children per generation described above.

<< Figure 4 About Here >>

Fig 4. Chromosome evolution over 128 generations (top row is start point) in
which black dots denote NART words used in the calculation of each participant’s

revised NART score.

Validation

As with the initial regression model (above), the robustness and
generalizability of the GA-derived model can be evaluated with jackknifing and
LOOCV. For the GA-derived approach, averaging over the n jackknife models, with
standard deviation shown in parenthesis, yieldsr = —0.78 (0.01),a = —2.8064
(0.14), b = 129.6049 (1.63), and MAE = 5.76 (5.45), values that are very close
to the mean performance over 100 run using all participant data described above.
The mean prediction was 108.69 (9.85). The chromosomes produced in each of
these models are shown in Fig 5, in which a high degree of consistency implies a
stable solution that is largely invariant to the removal of individual participants, and

is quite consistent from run to run. For the n single left out samples, the MAE was
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7.32 (6.11), with a mean prediction of 108.69 (9.79). The critical performance
metrics (subset cardinality, mean prediction, r, and r?, and MAE) are shown in
relation to the original model and its validation in Table 1. It is apparent that the
cardinality of the subset (number of retained NART words) is fractionally higher than
the ‘best’ runs using all data described above (in which 17 words are retained).
Indeed, due to the heuristic nature of the approach, running the all-data single-run
GA multiple times also produces some results wherein 19-20 words are retained,
since these alternative solutions also yield an MAE = 5.75. It likely that, with if the
number of participants were increased, MAE for single left-out participants would

fall.

<< Figure 5 About Here >>

Fig 5. Chromosomes for n jackknifed GA models in which participant k was left out.

In Table 1, it is apparent that the MAE for the all-data GA model and its
jackknife subsamples are lower than the initial model all-data MAE and its jackknife
subsamples. Comparing jackknife distributions using a t-test, this difference,
although relatively small, is statistically significant [¢g462) = 2.75,p < 0.01]. The
MAE differences between the one-left-out (validation) sets in the initial and GA-
derived models is not statistically significant (p = 0.84), despite that the GA-derived
model uses, on average, only 19-20 words of the original 50, demonstrating that the
additional words in the NART, as originally formulated, did not improve predictive

accuracy for our data.
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Table 1. Critical performance metrics for each models and cross validation set

(standard deviation shown in parenthesis, were available).

Initial Model Cross Validation GA Model GA Cross Validation
Jackknife One Left Out (Best of 100) Jacknife One Left Out
Cardinality (Words) 50 50 50 17 19.65 (0.80) 19.65 (0.80)

Mean Prediction 108.52 (12.71) 108.52 (8.64) 108.53 (8.66) 108.52 (9.94) 108.52 (9.85) 108.69 (9.79)

PPMCC(r)  -0.68 0.68 (0.01) - -0.78 -0.78 (0.01)
cop (r%) 0.46 0.46 - 0.61 0.61
MAE 7.33(5.64)  7.33(5.61) 7.49 (5.78) 5.75 5.76 (5.45) 7.32 (6.11)
Conclusions

A GA for optimizing the relationship between neuropsychological test data is
presented and demonstrated using the NART and WAIS-IV FSIQ leading to increased
absolute correlation/coefficient of determination, potentially reduced mean
absolute error (i.e., smaller prediction residuals). The GA suggests that the number
of words in the NART may be reduced by up to 66%; however, to evaluate the
potential effects of reduced fatigue and alternate word order, the use of an optimal
word subset should ultimately be evaluated by collecting data using it directly,
rather than having data corresponding to the words identified as having predictive
value being extracted from an administration of the full test. Due to the way that the
GA was implemented, it could be that evolution to a local optimum occurred, and
that a global optimum with higher performance is possible. It is also possible that
incorporating other information, such as participant demographics and results on

other hold tests (such as that WTAR and TOPF), may further elevate the correlation
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and reduce mean prediction error, rather like Johnson et al. [25] who used a GA to
find the best combination of different neuropsychological tests to predict
progression to Alzheimer’s disease (except that, here, questions from within tests
would be selected, rather than tests themselves). Furthermore, greater performance
might be achieved using artificial neural networks or other alternative Al approaches,
or by weighting individual words rather than by the creation of optimal subsets.
These possibilities are under investigation; however, the current article serves to
illustrate a general principle that the strength of association between
neuropsychological tests may be increased using GAs by, in this article, selecting
optimum question subsets. A further caveat is that the cross-validation routines
used here, although including LOOCV in which models are tested upon individual
samples upon which they were not trained, may still be susceptible to a degree of
overfitting; this possibility can be investigated in a follow-up study with a larger
cohort which would support the division of participants into adequately sized
training and validation sets.

It may also be the case that different locations (e.g., clinical centers, or
geographic regions), participant demographics, and other clinical indicators may
influence the optimal subset, so it may be more effective to select data to determine
the optimal subset using one or more of these parameters, all without needing to
adjust the basic NART test procedure, retaining the simplicity of administering this

test for clinicians and enabling it to be used retrospectively on data already collected.
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