posted on 2023-08-30, 15:48authored byRakan A. Aldmour
Mobile phones can be used for basic computations, whilst in contrast smart phones are used for intensive computations, videos, and social media. Processors have become faster, sensors are multi-functional, whereas battery lifetime has had minimal improvement. In view of rich media which involves huge computational complexity, there are greater challenges for mobile users in terms of battery, storage space and transmission time. Therefore, it is vital to send the intensive tasks from mobile to cloud with minimal delay. In this research, a strategy to either save a file on the mobile or offload it to the cloud has been designed through a comparative analysis of two main factors; offloading delay and the power consumption.
An efficient model of offloading process to estimate the battery consumption and the delay was established. Furthermore, a decision engine was designed to choose the most suitable mobile transmission protocol through a comparative study of each route. Additionally, a new model was proposed to compress the file during the 4G offloading technique, which decreased the file size resulting in less delay, enhanced quality of service and secured data integrity. Further innovations were the use of a secondary server when the first was busy and a back up server to prevent repetitive uploading of files.
The results have shown that the newly developed MECCA (Mobile Energy Cloud Computing Application) decreased the processing time by 30% while offloading the files. The use of the secondary server illustrated that the new features saved the mobile battery and reduced the processing time. Moreover, in Second Upload Round (SUR), the improvements in power usage reduction was noticeable whilst using the 4G connection. Overall, the results offer an insight into the offload possibility for different characteristics. The MECCA application was validated through comparative analysis of the main parameters to the developed analytical model which illustrated a match of 96% between the results.
History
Institution
Anglia Ruskin University
File version
Accepted version
Language
eng
Thesis name
PhD
Thesis type
Doctoral
Legacy posted date
2018-11-07
Legacy creation date
2018-11-07
Legacy Faculty/School/Department
Theses from Anglia Ruskin University/Faculty of Science and Technology