Anglia Ruskin Research Online (ARRO)
Browse

Lower limb tri-joint synchrony during running gait: A longitudinal age-based study

Download (56.08 kB)
journal contribution
posted on 2023-08-30, 16:16 authored by Ceri Diss, Domenico Vicinanza, Lee Smith, Genevieve K. R. Williams
Biomechanical research exploring the age-based mechanics of running gait can provide valuable insight into the reported decline in master endurance running performance. However, few studies have shown consistent biomechanical differences in the gait of trained distance runners compared to their younger counterparts. It might be that differences occur in the interaction between joints. The aim was to explore the differences in in tri-joint synchrony of the lower limb, quantified through Cluster Phase analysis, of runners at 50 years of age compared to seven years later. Cluster Phase analysis was used to examine changes in synchrony between 3 joints of the lower limb during the stance phase of running. Ten male, endurance-trained athletes M50 (age = 53.54±2.56 years, mass = 71.05±7.92 kg) participated in the study and returned after seven years M57 (age = 60.49±2.56 years, mass = 69.08±8.23 kg). Lower limb kinematics (Vicon, 120 Hz) and ground reaction forces (Kistler, 1080 Hz) were collected as participants performed multiple trials at a horizontal running velocity = 3.83±0.40 m·s-1 over the force plate. Significant increase (31 %) in rate of force development in the absorption phase, and significantly reduced sagittal plane knee joint range of motion (30.50 v 23.68o) were found following the seven years of ageing. No further discrete single joint measures were significantly different between M50 and M57. Joint synchrony between the hip, knee and ankle was significantly higher at M57 compared to M50 during the absorption phase of stance. The force attenuation strategy is compromised after seven years of ageing, which is associated with more synchronous movements in the lower limb joints. Increased joint synchrony as a function of age could be a mechanism associated with this key injury provoking phase of running gait.

History

Refereed

  • Yes

Volume

66

Page range

301-309

Publication title

Human Movement Science

ISSN

1872-7646

Publisher

Elsevier

File version

  • Accepted version

Language

  • eng

Legacy posted date

2019-05-14

Legacy creation date

2019-05-13

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC