Anglia Ruskin Research Online (ARRO)
Browse
- No file added yet -

Leishmania aethiopica cell‐to‐cell spreading involves caspase‐3, AkT, and NF‐κB but not PKC‐δ activation and involves uptake of LAMP‐1‐positive bodies containing parasites

Download (3.09 MB)
journal contribution
posted on 2023-08-30, 16:53 authored by Medhavi Ranatunga, Rajeev Rai, Simon C. W. Richardson, Paul D. R. Dyer, Laurence Harbige, Andrew Deacon, Lauren Pecorino, Giulia T. M. Getti
Development of human leishmaniasis is dependent on the ability of intracellular Leishmania parasites to spread and enter macrophages. The mechanism through which free promastigotes and amastigotes bind and enter host macrophages has been previously investigated; however, little is known about intracellular trafficking and cell-to-cell spreading. In this study, the mechanism involved in the spreading of Leishmania aethiopica and Leishmania mexicana was investigated. A significant increase in phosphatidylserine (PS) exhibition, cytochrome C release, and active caspase-3 expression was detected (P < 0.05) during L. aethiopica, but not L. mexicana spreading. A decrease (P < 0.05) of protein kinase B (Akt) protein and BCL2-associated agonist of cell death (BAD) phosphorylation was also observed. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB) signaling pathway and pro-apoptotic protein protein kinase C delta (PKC-δ) were downregulated while inhibition of caspase-3 activation prevented L. aethiopica spreading. Overall suggesting that L. aethiopica induces host cell’s apoptosis during spreading in a caspase-3-dependent manner. The trafficking of amastigotes within macrophages following cell-to-cell spreading differed from that of axenic parasites and involved co-localization with lysosomal-associated membrane protein 1 (LAMP-1) within 10 min postinfection. Interestingly, following infection with axenic amastigotes and promastigotes, co-localization of parasites with LAMP-1-positive structures took place at 1 and 4 h, respectively, suggesting that the membrane coat and LAMP-1 protein were derived from the donor cell. Collectively, these findings indicate that host cell apoptosis, demonstrated by PS exhibition, caspase-3 activation, cytochrome C release, downregulation of Akt, BAD phosphorylation, NF-kB activation, and independent of PKC-δ expression, is involved in L. aethiopica spreading. Moreover, L. aethiopica parasites associate with LAMP-rich structures when taken up by neighboring macrophages.

History

Refereed

  • Yes

Volume

287

Issue number

9

Page range

1777-1797

Number of pages

21

Publication title

FEBS Journal

ISSN

1742-4658

Publisher

Wiley

File version

  • Accepted version

Language

  • eng

Legacy posted date

2020-01-15

Legacy creation date

2020-01-15

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC