Anglia Ruskin Research Online (ARRO)
Browse

Electronic vape fluid activates the pulmonary endothelium and disrupts vascular integrity in vitro through an ARF6-dependent pathway

Download (2.36 MB)
journal contribution
posted on 2024-02-16, 15:33 authored by Evangelene Blackham-Hayward, Zsuzsanna Kertesz, Havovi Chichger

The use of e-cigarettes or vapes is increasingly popular amongst a range of different demographics however the research in this area is surprisingly sparse. Clinical reports of e-cigarette- or vaping use-associated lung injury (EVALI) and vascular disruption, in both nicotine-containing and nicotine-free e-cigarette smokers, prompts the need for further research with a focus on the pulmonary endothelium. Using a common brand of e-cigarette (eVape) and an in vitro model of the human lung microvasculature, we investigated the effect of nicotine-free eVape fluid on pulmonary endothelial barrier integrity, oxidative stress and inflammation profile. Findings demonstrate reactive oxygen species-dependent breakdown of the pulmonary endothelium and release of inflammatory cytokines. These phenotypic changes, following exposure to nicotine-free eVape fluid, were accompanied by dysregulation of a number of adheren junctions-related genes of which ARF6 was most abundantly overexpressed. Further investigation of ARF6 identified it as a key regulator in eVape-induced barrier disruption and ROS accumulation. This study demonstrates, for the first time, the barrier disruptive effect of nicotine-free e-cigarette fluid on the pulmonary microvasculature and the ARF6 and ROS-dependent molecular mechanisms underlying this damage. Whilst these studies focus on a human in vitro model of the pulmonary microvasculature, the results support clinical case studies on EVALI and demonstrate a need for further investigation of the impact of nicotine-free e-cigarettes on the lung.

History

Refereed

  • Yes

Volume

153

Publication title

Microvascular Research

ISSN

0026-2862

Publisher

Elsevier

File version

  • Published version

Item sub-type

Article

Affiliated with

  • School of Life Sciences Outputs

Usage metrics

    ARU Outputs

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC