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A B S T R A C T   

Alzheimer’s dementia (AD) is a major contributor to global disability, and effective therapies to modify disease 
progression are currently lacking. The neuro-inflammatory theory is a potential etiology underlying this 
neurodegenerative disease. Previous randomized, controlled trials (RCTs) have provided inconclusive results 
regarding efficacy of omega-3 polyunsaturated fatty acids (PUFAs) regimens, which might provide anti- 
inflammatory benefits in the management of AD, in improving cognitive function among participants with 
AD. The objective of this frequentist-model based network meta-analysis (NMA) was to evaluate the potential 
advantages of omega-3 PUFAs and currently FDA-approved medications for AD on overall cognitive function in 
AD individuals. The primary outcomes were: (1) changes in cognitive function, and (2) acceptability, which 
refers to all-cause discontinuation. Additionally, secondary outcomes included quality of life, behavioral dis-
turbances and safety/tolerability, which was assessed through the frequency of any reported adverse event. This 
NMA included 52 RCTs (6 with omega-3 PUFAs and 46 with FDA-approved medications) involving 21,111 
participants. The results showed that long-term high-dose (1500–2000 mg/day) of eicosapentaenoic acid (EPA)- 
dominant omega-3 PUFAs augmented with anti-oxidants had the highest potential for cognitive improvement 
among all investigated treatments [standardized mean difference = 3.00, 95% confidence intervals (95 %CIs) =
1.84–4.16]. Compared to placebo, omega-3 PUFAs had similar acceptability [odds ratio (OR) = 0.46, 95 %CIs =
0.04 to 5.87] and safety profiles (OR = 1.24, 95 %CIs = 0.66 to 2.33)o. These findings support the potential 
neurotherapeutic effects of high dosage EPA-dominant omega-3 PUFAs for the amelioration of cognitive decline 
in patients with AD. Future large-scale, long-term RCTs should focus on different dosages of EPA-dominant 
omega-3 PUFAs regimens on improving cognitive dysfunction in patients with AD at different levels of inflam-
matory status and psychopathology.   

1. Introduction 

The prevalence of Alzheimer’s dementia (AD) is continuously 
increasing along with the expansion of aging populations worldwide, 
with rates reaching up to 32% in individuals over 85 years old (Hebert 
et al., 2013). In 2019, the estimated number of dementia cases globally 
was 57.4 million (Collaborators, 2022), with significant number of cases 
exhibiting biobehavioural disturbances that adversely affect the quality 
of life of people with AD and their caregivers (Gonzalez-Salvador et al., 
2000). Several hypotheses have been proposed for the etiology of AD, 
including β-amyloid deposition, dysfunctional neurotransmitters, and 
neuro-inflammation. Pharmacologic or non-pharmacologic treatments 
had been developed to manage AD based on the aforementioned 
hypothesis. 

The hypothesis of β-amyloid deposition has been a prominent area of 
interest in the management of AD (Lesne et al., 2006). However, phar-
macological interventions targeting this hypothesis have yielded 
inconsistent and unsatisfactory results (Piller, 2022; Tampi et al., 2021; 
van Dyck et al., 2023). Regarding the neurotransmitter hypothesis, 
various pharmacological interventions have been developed for man-
aging AD by modulating neurotransmitters. However, their efficacy and 
acceptability fall short of expectations, and unfortunately, they cannot 

modify the course of AD (Moore et al., 2014). There are two classes of 
FDA-approved medications that are recommended for AD patients, 
including cholinesterase inhibitors (donepezil, galantamine, and riva-
stigmine) (Li et al., 2019) and glutamate antagonists (memantine) (Glinz 
et al., 2019). A previous network meta-analysis demonstrated the 
cognitive and behavioural benefit with pharmacological interventions 
(Thancharoen et al., 2019). Galantamine, rivastigmine patch, and oral 
rivastigmine showed modest functional or behavioral benefits compared 
to placebo, but had significantly higher treatment discontinuation rates 
than placebo. The safety profile and potential adverse effects of tradi-
tional pharmacotherapies are major concerns in AD management 
(Moore et al., 2014). Therefore, the development of novel neuro-
therapeutic agents that effective target cognitive dysfunction is an ur-
gent unmet clinical need. 

Recent research has shown growing evidence implicating the role of 
neuro-inflammatory theory in the pathophysiology of AD.. A mendelian 
randomization analysis conducted by Pagoni and colleagues found that 
several cytokines, including interleukin (IL)-8 and IL-2, have a causal 
effect on AD risk and cognitive decline (Pagoni et al., 2022). In the 
animal study, the increased systematic tumor necrosis factor-alpha 
(TNF-alpha) would contribute to cognitive dysfunction and exagger-
ated sickness behaviors in the mice with neurodegenerated brain 
(Hennessy et al., 2017). Similar evidences regarding neuroinflammatory 
theory could also be supported by the human studies. For example, 
Holmes and the colleagues noticed that the increased systemic 1 Contributed equally as first authors. 
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inflammation and the increased serum TNF-alpha were associated with 
an increase in cognitive decline in AD subjects (Holmes et al., 2009). The 
aforementioned findings in the observational studies could be supported 
by the findings in other clinical studies. For example, the melatonin, 
which was found to have anti-oxidative effect (Reiter et al., 2016), 
demonstrated its potential efficacy in cognitive function in AD subjects 
(Tseng et al., 2022). Similarly, the high-frequency repetitive transcranial 
magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex had 
been proven to have anti-inflammatory effect in target and remote brain 
regions (Sasso et al., 2016), which had also been found to have benefi-
cial effect on the cognitive function in AD subjects (Tseng et al., 2023). 

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), including 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have 
demonstrated multiple beneficial effects on cardiovascular/cerebro-
vascular (Bhatt et al., 2019; Chang et al., 2020; Chang et al., 2015; Iso 
et al., 2001) and neuropsychiatric diseases (Chang and Su, 2020; Sato-
gami et al., 2019; Su et al., 2018), including AD (Knöchel et al., 2017). In 
addition, unlike traditional, approved pharmacological treatments, 
omega-3 PUFAs may have more favorable acceptability and, possibly, 
even efficacy (Chang et al., 2018). Omega-3 PUFAs are known to have 
several beneficial effects, including anti-inflammatory, anti-amyloid-β 
protein formation, cerebrovascular regulatory, neurogenetic, and 
modulatory effects upon synaptic membrane function (Borsini et al., 
2017; Wigner et al., 2018; Zgórzyńska et al., 2017). Several epidemio-
logic studies demonstrated the association of a deficiency in omega-3 
PUFAs with a higher risk of dementia. For example, total plasma 
omega-3 PUFAs levels were significantly lower in AD patients than in 
normally aging control groups (Conquer et al., 2000). Similarly, in 
another cognitive function study, there was a significantly positive as-
sociation between mini-mental state examination (MMSE) scores and 
red blood cell (RBC) omega-3 PUFAs levels (Wang et al., 2008). 
Furthermore, another epidemiologic surveillance study demonstrated a 
protective effect of higher blood DHA levels against dementia or AD 
(Schaefer et al., 2006). In addition to its merits for cognitive function, a 
previous, large-scale meta-review demonstrated that omega-3 PUFAs 
had good safety profiles without definitive evidence of serious adverse 
effects or contraindications when combined with psychiatric medica-
tions (Firth et al., 2019). 

Prior in vivo studies demonstrated that omega-3 PUFAs may prevent 
aggregation of amyloid-β proteins (Hooijmans et al., 2007; Oksman 
et al., 2006). However, previous pairwise meta-analyses (Araya-Quin-
tanilla et al., 2020; Mazereeuw et al., 2012) provided conflicting find-
ings about the efficacy of different omega-3 PUFAs regimens for 
cognitive function in participants with Alzheimer’s disease. The efficacy 
and acceptability of omega-3 PUFAs might vary across dosages as well as 
different eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) ra-
tios (Su et al., 2018), so that it would be inappropriate to merge different 
dosages or EPA/DHA ratios omega-3 PUFAs into one study group in 
meta-analyses. Therefore, the methodological limitation of pooling all 
different dosages or EPA/DHA ratios of omega-3 PUFAs into a single 
group might explain the conflicting findings reported by previous meta- 
analyses. Therefore, it is more appropriate to consider different dosages 
and EPA/DHA ratios of omega-3 PUFAs as different groups when 
assessing clinical effects. 

A network meta-analysis (NMA) of existing RCTs does not only 
compares the efficacy or tolerability of treatments with placebo but also 
enables estimating the comparative efficacy and understanding the 
relative merits of multiple interventions (Davies et al., 2018), while also 
maximizing statistical power that cannot be achieved with traditional 
pairwise meta-analyses (Higgins and Welton, 2015; Naci et al., 2020). 
Therefore, the methodological merits of an NMA is better suited to study 
dosage-ratio dependent regimens, such as are relevant for omega-3 
PUFAs (Tseng et al., 2022). The aim of this NMA was to compare the 
relative efficacy and acceptability of different dosages and of EPA/DHA 
ratios of omega-3 PUFAs regimens to elucidate the potential role of FDA- 
approved medications and omega-3 PUFAs in improving cognitive 

function or ameliorating cognitive decline in AD patients. 

2. Materials and methods 

2.1. General study guidelines 

This NMA followed the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 2020 guidelines (Table S1) (Page 
et al., 2021) and the AMSTAR 2 appraisal tool (Shea et al., 2017). The 
current study complies with the Institutional Review Board of the Tri- 
Service General Hospital (TSGHIRB: B-109–29) and has been regis-
tered in PROSPERO (CRD42022336051). 

2.2. Search strategy and selection criteria 

In the current NMA, we conducted a systematic review using Clin-
icalKey, Cochrane CENTRAL, Embase, ProQuest, PubMed, ScienceDir-
ect, and Web of Science databases from database inception to May 28th, 
2022. Furthermore, to search for unpublished studies, we conducted 
additional searches on ClinicalTrials.gov (Table S2). During the litera-
ture search, we intended to find and extract data from RCTs of (a) 
omega-3 PUFAs regimens or (b) oral medications with FDA-approval for 
cognition in AD. The aforementioned FDA-approved medications 
included donepezil, galantamine, rivastigmine, memantine, and Nam-
zaric. In order to reduce the potential bias, we intended only to include 
RCTs with placebo or active controls, excluding studies using a waiting- 
list control. No language restriction was used. Additionally, manual 
searches were performed for potentially eligible articles selected from 
the reference lists of review articles, clinical guidelines, and pairwise 
meta-analyses (Araya-Quintanilla et al., 2020; Birks and Harvey, 2018; 
Cui et al., 2019; Dou et al., 2018; Glinz et al., 2019; Kishi et al., 2017; 
Koola et al., 2018; Li et al., 2019; McCleery and Sharpley, 2020; 
McShane et al., 2019; Sumsuzzman et al., 2021; Thancharoen et al., 
2019; Urrestarazu and Iriarte, 2016; Wang et al., 2017; Watanabe et al., 
2019; Wood et al., 2022; Zhang et al., 2016). 

2.3. Inclusion and exclusion criteria 

The PICO (population, intervention, comparison, outcome) setting of 
the current meta-analysis included: (1) P: patients diagnosed with AD; 
(2) I: omega-3 PUFAs regimens, donepezil, galantamine, rivastigmine, 
memantine, or Namzaric; (3) C: placebo-control or active-control; and 
(4) O: change in cognitive function, using a standardized assessment 
battery. Included were only peer-reviewed publications. 

Exclusion criteria were: (1) not a clinical trial, (2) not an RCT, (3) not 
including only patients with AD, excluding also patients with minimal 
cognitive impairment, (4) not reporting meta-analyzable data of efficacy 
for cognition, and (5) not related to omega-3 PUFAs, donepezil, gal-
antamine, rivastigmine, memantine, or namzaric. In cases of duplicated 
data usage (different articles based on the same sample sources), we 
included only the article with the largest sample size. 

2.4. Data extraction 

Two authors independently screened the studies and extracted the 
data. In cases of discrepancy, the corresponding author was consulted. If 
data were missing from published reports, corresponding authors or co- 
authors were contacted to obtain additional data. 

2.5. Node definition 

Because omega-3 PUFAs exert different efficacy according to dosage 
and EPA/DHA ratio (Su et al., 2018), we categorized the omega-3 PUFAs 
into “low-dosage (<800 mg/day),” “medium-dosage (800–1500 mg/ 
day),” and “high-dosage (1500–2000 mg/day)”, and “very high-dosage 
(>2000 mg/day)” groups, and “pure EPA”, “EPA/DHA < 1”, “EPA/DHA 
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> 1“, and “pure DHA” groups, instead of merging all omega-3 PUFAs 
into one group (Table S3). Also, because different dosages of individual 
dementia-managing medications may exert different efficacy on cogni-
tion in AD (Dou et al., 2018; Tseng et al., 2022), we also sub-grouped the 
individual dementia-managing medications according to their dosages. 
The detailed subgrouping of individual regimens is depicted in Table S3 
based on the dosage subgroup proposed by Dou et al. (2018) (Dou et al., 
2018) and by our previous NMA (Tseng et al., 2022) Further, in previous 
reports (Atri et al., 2008; Tseng et al., 2022), different efficacy of 
dementia-managing medications for improving cognition was found 
regarding different stratifications of treatment duration. Therefore, we 
categorized treatment arms according to different treatment durations 
defined in previous reports, i.e., “short term (<6 months),” “medium 
term (6 months - <1 year),” “long term (1 year to < 2 years),” and “very 
long-term (≥2 years)” (Atri et al., 2008; Tseng et al., 2022). 

2.6. Outcomes 

2.6.1. Primary outcomes 
The primary outcomes were: (a) changes in cognitive function after 

treatment in patients with AD. and (b) acceptability defined as all-cause 
discontinuation. If studies assessed cognitive changes with different 
measurements, we chose the mini-mental status examination (MMSE) as 
the preferred measure because the MMSE: [a] has an approximately 
linear relationships with quality of life scores (association between 
Assessment of Quality of Life scale and MMSE scores: r = 0.30, p <
0.0001) (Wlodarczyk et al., 2004); [b] is widely used and accepted to 
serve as a surrogate measure of other time-consuming methods of 
staging dementia, such as the Clinical Dementia Rating (CDR) (Per-
neczky et al., 2006); [c] is significant for determining the time to clin-
ically meaningful decline during longitudinal follow-up (Doody et al., 
2001) and can serve as an index of disease progression and sequence of 
cognitive decline in patients with AD (Henneges et al., 2016); and [d] is 
suitable to evaluate AD patients across a wide range of severity, whereas 
the Alzheimer’s Disease Assessment Scale-cognition subscale (ADAS- 
cog) is only suitable for patients with MMSE scores of ≥ 14 according to 
previous research (Mohs et al., 1997). If any of the potentially eligible 

RCTs did not provide MMSE measurements, we extracted the other 
cognition measurement as the primary outcome data in our NMA. In 
addition, all-cause discontinuation was defined as the percentage of 
patients dropping out for any reason before study completion. 

2.6.2. Secondary outcomes and safety profile 
Secondary outcomes were quality of life and behavioral distur-

bances. Safety/tolerability was assessed using the frequency of any 
adverse events reported in an intention-to-treat analysis. 

2.7. Cochrane risk-of-bias tool and GRADE ratings 

Two independent authors evaluated the risk of bias (interrater reli-
ability = 0.87) for each domain according to the Cochrane risk-of-bias 
tool (Higgins and Green, 2009). We followed GRADE ratings recom-
mendation in BMJ (Brignardello-Petersen et al., 2020) for quality 
assessment. 

2.8. Statistical analysis 

For continuous variables, we estimated the effect size using the 
standardized mean difference (SMD) with 95% confidence intervals (95 
%CIs). For categorical variables, we used the odds ratio (OR) and 95% 
CIs and applied a 0.5-zero-cell correction during the meta-analysis. 
However, if zeroes were present in both the intervention and control 
arms of a study, we did not apply this correction procedure because of 
the risk of increasing the bias; instead, these studies were excluded from 
our analysis (Brockhaus et al., 2014; Cheng et al., 2016). We used the 
frequentist model of NMA to compare the effect size of studies with 
similar interventions. All comparisons were performed using a two- 
tailed t-test, and p < 0.05 was considered statistically significant. Het-
erogeneity among the included studies was evaluated using the tau 
value, which is the estimated standard deviation of the effect across the 
included studies. 

We used mixed comparison with generalized linear mixed models to 
make direct and indirect comparisons (Tu, 2014). To compare multiple 
treatment arms, we combined the direct and indirect evidence from the 
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Fig. 1. Flowchart of the current network meta-analysis.  
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included studies (Lu and Ades, 2004). STATA version 16.0 (StataCorp 
Statistics/Data Analysis, StataCorp LLC, College Station, TX, USA) was 
used in our NMA with the mvmeta command (White, 2015). The 
restricted maximum likelihood method was used to evaluate the 
between-study variances (Kontopantelis et al., 2013). The surface under 
the cumulative ranking curve (SUCRA) (Salanti et al., 2011) was applied 
calculate the relative ranking probabilities of the treatment effects of all 
of the treatments for the target outcomes. 

We evaluated the potential inconsistencies using the loop-specific 
approach, node-splitting method, and design-by-treatment model (Hig-
gins et al., 2014). We used comparison-adjusted funnel plots and Egger’s 
regression to evaluate the potentially small study effects in the order of 
efficacy of individual treatments (Chaimani et al., 2013). Finally, in 
order to reduce the potential bias of open-label treatments, we con-
ducted a sensitivity subgroup analysis focusing only on placebo- 
controlled trials. 

3. Results 

Altogether, 190 articles were considered for full-text review (Fig. 1) 
and 138 were excluded for noted reasons (Table S4). Finally, 52 articles 

were included in the quantitative meta-analysis (Table S5). Fig. 2 depicts 
the entire network structure of the treatment arms. 

3.1. Characteristics of included studies 

Altogether, 21,111 participants were included in the current syn-
thesis. The mean age of the participants was 75.0 (range = 65.2–85.7) 
years old), and the mean female proportion was 62.7% (range = 3.0%- 
84.5%). The mean treatment duration was 36.5 weeks (range = 6–208 
weeks). The baseline characteristics of the included study participants 
are summarized in Table S5. 

3.2. Primary outcome: (1) change in cognition 

Compared to controls, long-term high-dosage (1500–2000 mg/day) 
EPA/DHA ratio > 1 omega-3 PUFAs augmented with alpha-lipoic acid 
(Hi-n3PUFA-EPA + ALA) (SMD = 3.00, 95 %CIs = 1.84 to 4.16), long- 
term rivastigmine high dose (<= 12 mg/day) (Long-High-Riv) (SMD 
= 1.51, 95 %CIs = 0.65 to 2.38), short-term rivastigmine high dose 12 
mg/day (<= 12 mg/day) (Short-High-Riv) (SMD = 0.77, 95 %CIs =
0.03 to 1.51), medium-term memantine high dose (<= 20 mg/day) +

Fig. 2. The network structure of (A) changes in cognitive function and (B) acceptability in aspect of drop-out rate.  
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donepezil high dose (<= 10 mg/day) (Med-High-Mem + Med-High- 
Don) (SMD = 0.70, 95 %CIs = 0.23 to 1.17), short-term galantamine 
high dose (>24 mg/day) (Short-High-Gal) (SMD = 0.66, 95 %CIs = 0.04 
to 1.27), short-term galantamine medium dose (>16 mg/day but <=24 
mg/day) (Short-Med-Gal) (SMD = 0.57, 95 %CIs = 0.24 to 0.91), 
medium-term donepezil very high dose (>10 mg/day) (Med-ExHigh- 

Don) (SMD = 0.54, 95 %CIs = 0.13 to 0.95), medium-term donepezil 
high dose (<= 10 mg/day) (Med-High-Don) (SMD = 0.52, 95 %CIs =
0.35 to 0.69), medium-term galantamine high dose (>24 mg/day) (Med- 
High-Gal) (SMD = 0.51, 95 %CIs = 0.15 to 0.87), medium-term gal-
antamine medium dose (>16 mg/day but <=24 mg/day) (Med-Med- 
Gal) (SMD = 0.43, 95 %CIs = 0.17 to 0.69), and medium-term donepezil 

Fig. 3. Forest plot of (A) changes in cognitive function and (B) acceptability in aspect of drop-out rate.  
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Table 1A 
League table of the primary outcome (1) improvement of cognition.  

Pairwise (upper-right portion) and network (lower-left portion) meta-analysis results are presented as estimated effect sizes for the outcome of improvement of cognition in patients with Alzheimer’s dementia. In-
terventions are reported in order of mean ranking of cognition improvement, and outcomes are expressed as standardized mean difference (SMD) (95% confidence intervals). For the pairwise meta-analyses, SMD of>0 
indicate that the treatment specified in the row had more improvement than that specified in the column. For the network meta-analysis (NMA), SMD of>0 indicate that the treatment specified in the column had more 
improvement than that specified in the row. Bold results marked with * indicate statistical significance. 
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Table 1B 
League table of the primary outcome (2) acceptability in aspect of drop-out rate.  

Pairwise (upper-right portion) and network (lower-left portion) meta-analysis results are presented as estimated effect sizes for the outcome of drop-out rate in patients with Alzheimer’s dementia. Interventions are 
reported in order of mean ranking of acceptability, and outcomes are expressed as odds ratio (OR) (95% confidence intervals). For the pairwise meta-analyses, OR of<1 indicate that the treatment specified in the row had 
better acceptability than that specified in the column. For the network meta-analysis (NMA), OR of<1 indicate that the treatment specified in the column had better acceptability than that specified in the row. Bold results 
marked with * indicate statistical significance. 
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medium dose (<= 5 mg/day) (Med-Med-Don) (SMD = 0.41, 95 %CIs =
0.15 to 0.66) were associated with significantly better improvement in 
cognition (Table 1A, Fig. 2A, and Fig. 3A). According to the SUCRA, Hi- 
n3PUFA-EPA + ALA, Long-High-Riv were associated with the two best 
cognitive improvement (Table S6A).The subgroup analysis focusing on 
placebo-controlled RCTs revealed similar findings (Table S7A, 
Table S6B, Figure S1A, and Figure S2A). 

3.3. Primary outcome: (2) acceptability reflected by dropout rates 

Compared to controls, several FDA-approved pharmacotherapy but 
not the omega-PUFAs were associated with significantly higher dropout 
rates (Table 1B, Table S6C, Fig. 2B, and Fig. 3B). 

3.4. Secondary outcome: Change in quality of life 

Compared to controls, Med-High-Mem + Med-High-Don (SMD =
-0.47, 95 %CIs = -0.86 to − 0.09), and Med-High-Don (SMD = -0.27, 95 
%CIs = -0.45 to − 0.10) were associated with significantly better post- 
treatment quality of life (Table S7B, Table S6D, Figure S1B, and 
Figure S2B). 

3.5. Secondary outcome: Changes in behavioral disturbances 

Compared to controls only Short-High-Mem (SMD = -0.55, 95 %CIs 
= -0.98 to − 0.13) were associated with significantly higher improve-
ments in behavioral disturbances (Table S7C, Table S6E, Figure S1C, and 
Figure S2C). 

3.6. Safety profile reflected by the frequency of any adverse events 
reported 

Compared to controls, only souvenaid (Sou) (OR = 0.77, 95 %CIs =
0.59 to 1.00) was associated with significantly lower frequency of any 
adverse events. The other investigated omega-3 PUFAs supplements 
were not associated with significantly higher drop-out than controls. 
Conversely, compared to controls, several FDA-approved pharmaco-
therapies were associated with significantly higher frequency of any 
adverse event (Table S7D, Table S6F, Figure S1D, and Figure S2D). 

3.7. Risk of bias, publication bias, inconsistency assessment, and GRADE 
ratings 

Overall, we found that 74.7% (272/364 items), 23.1% (84/364 
items), and 2.2% (8/364 items) of the included studies had a low, un-
clear, and high risk of bias, respectively. Unclear reporting of the allo-
cation procedures and blinding of the participants or research personnel 
were the most often encountered reasons for high risk of bias 
(Figure S3A-S3B). Funnel plots were generally symmetrical (Figure S4A- 
S4D), and Egger’s test indicated no significant publication bias among 
the articles included in the NMA. In general, the NMA did not demon-
strate inconsistencies in terms of either local inconsistencies as assessed 
using the loop-specific approach and node-splitting method, or global 
inconsistencies according to the design-by-treatment method (Table S8- 
S10). The GRADE evaluation results are listed in the appendix. In brief, 
the overall quality of the evidence of the NMA was low to medium 
(Table S11). 

4. Discussion 

To the best of our knowledge, this is the first NMA providing an 
overview of the potential benefits of omega-3 PUFAs and the FDA- 
approved medications for AD (i.e., donepezil, rivastigmine, mem-
antine, and galantamine) for patients with AD. The most important 
finding of the current NMA is that different dosages and treatment du-
rations of FDA-approved medications as well as high-dosage 

(1500–2000 mg/day) EPA-dominant omega-3 PUFAs improved cogni-
tion, quality of life and behavioral disturbances in AD participants. 
Regarding specific effect of omega-3 PUFAs plus ALA on specific 
cognitive sub-categories, no RCTs addressing its efficacy on specific 
cognitive sub-categories. Furthermore, the omega-3 PUFAs supplement 
had similar fair acceptability regarding drop-out rate and safety profiles 
regarding the frequency of any adverse event compared with controls. 
Several hypotheses support the rationale of PUFA supplementation or 
medications to improve cognitive function in patients with AD. The most 
proposed hypotheses are: (a) anti-oxidant/anti-inflammatory effects, (b) 
anti-amyloid-β protein formation effects, and (c) cerebrovascular pro-
tective effects. 

4.1. (a) Anti-oxidant/inflammasome hypothesis 

The most relevant hypothesis regarding the efficacy of omega-3 
PUFAs in AD management was the anti-inflammatory properties by 
omega-3 PUFAs. In previous research, AD been frequently associated 
with increased oxidative stress, thus, treatments with antioxidative 
stress effects might exert beneficial effects on cognitive function (Ton-
nies and Trushina, 2017; Tseng et al., 2022). Cholinesterase inhibitors, 
such as galantamine, donepezil, and rivastigmine, play an important 
role for the improvement of cognitive, functional and behavioral 
disturbance (Li et al., 2019). In animal studies, the omega-3 PUFAs and 
ALA was proven to exert antioxidant and anti-inflammatory activities 
(Nair et al., 2020) by reducing TNF-alpha levels, which might support 
their protective role in ameliorating cognitive decline in AD patients. 
Our findings suggest that the Hi-n3PUFA-EPA + ALA arm exhibited 
superior efficacy compared to the Hi-n3PUFA-EPA arm (Table 1A), 
which may indicate an additional benefit of ALA. This potential benefit 
could be attributed to the fact that EPA is one of the metabolites of ALA’s 
metabolic pathway (Takic et al., 2022). However not all RCTs have 
supported the anti-oxidant/anti-inflammation hypothesis. In a recent 
RCT (Shinto et al., 2014), the authors demonstrated significantly 
improved cognitive function in patients with AD. However, the oxida-
tive stress marker (i.e. peripheral F2-isoprostane levels) was not signif-
icantly improved. This inconsistency might be due to the measurement 
of different oxidative stress markers in different studies (F2-isoprostane 
vs TNF-alpha) (Shinto et al., 2014). 

EPA helps to ameliorate decreased neurogenesis in the presence of 
IL-1β, whereas DHA can help in neurogenesis without this precondition 
(Borsini et al., 2021). EPA has an anti-apoptosis effect, while DHA has a 
pro-apoptosis effect in the presence of IL-1β (Borsini et al., 2021). 
Venlafaxine and EPA both provide anti-inflammatory effects, but DHA 
results in pro-inflammatory effects (Horowitz et al., 2014). The thera-
peutic strategies targeting metabolites and enzymes of the kynurenine 
pathway would be relevant therapeutic interventions as they are key 
factors that suppress neurogenesis and enhance neuro-apoptosis (Borsini 
et al., 2017). Therefore, EPA and DHA could enhance neuronal differ-
entiation by alternative mechanisms (Katakura et al., 2013). 

4.2. (b) Anti-amyloid-β protein formation hypothesis 

Another hypothesized mechanism is antagonism of amyloid-β pro-
tein formation (Jicha and Markesbery, 2010). Donepezil decreases the 
level of amyloid precursor protein, and rivastigmine has some effect in 
modulating the formation of the amyloid precursor protein. The cell 
membranes of brain tissue with sufficient omega-3 PUFAs were found to 
prevent amyloid-β protein formation, reduce enzymatic augmentation of 
γ-secretase activity, and inhibit fibrillation of toxic amyloid-β protein 
(Hashimoto et al., 2008). Studies in tissue cultures (Oksman et al., 2006) 
and transgenic mice (Green et al., 2007) all support this ameliorating 
effect of omega-3 PUFAs on amyloid-β protein formation. 
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4.3. (c) cerebrovascular protective hypothesis 

In our previous meta-analysis, cerebrovascular-protective medica-
tions (i.e. statins) were associated with a lower risk of dementia (Chu 
et al., 2018). The benefits of cerebrovascular protection include 
ensuring a sufficient supply of nutrients, enhanced removal of toxic 
metabolites, and better oxygenation of neurons, which was found to be a 
deficit in AD patients (Jicha and Markesbery, 2010). 

In sum, the above evidence provides the mechanistic underpinnings 
for the observed efficacy of different treatments for cognition in AD 
patients. This NMA indicates that rivastigmine and omega-3 PUFAs 
supplementation has potent therapeutic effects on the improvement of 
cognition. These results might support the hypothesis that omega-3 
PUFAs supplementation plus other antioxidants ameliorates the cogni-
tive decline (or improves cognitive function) in AD patients through 
several different pathways associated with AD-related pathophysiology. 
However, FDA-approved anti-AD treatments were each associated with 
higher frequencies of adverse events than controls, limiting their clinical 
utility for AD management. Therefore, the evidence from this NMA 
provides a sound rationale for future large-scale RCTs to investigate the 
potential role and optimal dosing of omega-3 PUFAs and, possibly, other 
treatments investigating their benefit-to-risk ratio regarding cognition 
in patients with AD. 

4.4. Strengths and limitations: 

The current NMA has several strengths. First, due to the large 
numbers of included RCTs and participants (52 RCTs and 21,111 par-
ticipants), the current NMA provides more information and robust evi-
dence on the potential utility of omega-e PUFAs for cognition in AD than 
RCTs and traditional meta-analyses. Second, we only included RCTs to 
increase the reliability and validity of the current study. In addition, we 
also performed subgroup analyses of placebo-controlled trials to 
enhance the confidence in the findings of this study. Third, to inform 
clinical treatment choice, we included RCTs of FDA-approved regimens 
in the current study, which helps clinicians make relevant comparisons 
of omega-3 PUFAs with traditional pharmacologic interventions. 

There are several limitations in the current NMA. First, some ana-
lyses in this study were limited by reduced statistical power, including 
heterogeneity in the participant characteristics (e.g., comorbid diseases, 
concomitant medications, wide age range, lack of uniform diagnostic 
criteria for AD, wide variety of rating scales of secondary outcomes, and 
different trial durations) and the small number of trials for some treat-
ment arms (i.e., omega-3 PUFA supplements). Second, as addressed in 
the methods, as the treatment duration increased, the effects on cogni-
tion between dementia-managing medications and placebos were more 
significant (Riemersma-van der Lek et al., 2008). Nevertheless, the 
relatively overall short treatment duration among the included RCTs 
(mean duration = 36.5 weeks, range = 6–208 weeks) limits the results of 
the current NMA. Third, there might be heterogeneity regarding the 
initial severity of cognition, anxiety, behavioral dysregulation and 
quality of AD patients across the different studies, which could affect the 
outcomes. Fourth, we only included RCTs reporting efficacy of cogni-
tion. Therefore, any RCTs reporting on side effects or acceptability only, 
but not on cognition would have been excluded. We choose this re-
striction, in order to increase the methodological homogeneity in the 
recruited RCTs, as all the population and research methods were 
selected for the same study aim. However, this selection likely reduced 
the final numbers of the included RCTs. Finally, although our study is 
strengthened by comparing different treatments within an NMA meth-
odology, generalization of our results is still limited and dependent on 
the included studies and the possible comparisons between studies. 
Future research is warranted to assess the efficacy of omega-3 PUFAs 
focusing on the optimal dosage and EPA-dominant or DHA-dominant as 
well as treatment duration for the alleviation of cognitive decline in AD 
in different medical settings. 

5. Conclusion 

The current network meta-analysis (NMA) provides evidence sup-
porting the potential efficacy of several FDA approved treatments, 
particularly rivastigmine and high dose EPA-dominant omega-3 PUFAs 
for the amelioration of cognitive decline in AD patients. Furthermore, 
omega-3 PUFAs supplementation had the most favorable acceptability 
and safety profiles among all of the investigated treatments. These 
findings serve as a clear indication for further investigation into the 
efficacy of different medication and supplementation dosages of omega- 
3 PUFAs for cognitive dysfunction in AD patients through future, large- 
scale, methodologically robust, and longer-term RCTs. 
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