Anglia Ruskin Research Online (ARRO)
Browse

Community detection in multiplex networks using orthogonal non-negative matrix tri-factorization based on graph regularization and diversity

Download (453.72 kB)
journal contribution
posted on 2024-04-12, 10:33 authored by Yuqi Yang, Shanshan Yu, Baicheng Pan, Chenglu Li, Man-Fai Leung
In recent years, community detection has received increasing interest. In network analysis, community detection refers to the identification of tightly connected subsets of nodes, which are called “communities” or “groups”, in the network. Non-negative matrix factorization models are often used to solve the problem. Orthogonal non-negative matrix tri-factorization (ONMTF) exhibits significant potential as an approach for community detection within multiplex networks. This paper explores the application of ONMTF in multiplex networks, aiming to detect both shared and exclusive communities simultaneously. The model decomposes each layer within the multiplex network into two low-rank matrices. One matrix corresponds to shared communities across all layers, and the other to unique communities within each layer. Additionally, graph regularization and the diversity of private communities are taken into account in the algorithm. The Hilbert Schmidt Independence Criterion (HSIC) is used to constrain the independence of private communities. The results prove that ONMTF effectively addresses community detection in multiplex networks. It also offers strong interpretability and feature extraction capabilities. Therefore, it is an advanced method for community detection in multiplex networks.

History

Refereed

  • Yes

Volume

12

Issue number

8

Publication title

Mathematics

ISSN

2227-7390

Publisher

MDPI AG

File version

  • Published version

Language

  • eng

Affiliated with

  • School of Computing and Information Science Outputs

Usage metrics

    ARU Outputs

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC